Remote-Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using Physical Conversion Models and Weather Data †
Abstract
:1. Introduction
2. Background and Related Works
2.1. Background: The Poor Observability of Rooftop Photovoltaic Systems
2.2. Related Works
2.2.1. Regional PV Power Estimation and Forecast
2.2.2. Remote Sensing of Rooftop PV Systems
2.2.3. Estimation of the Power Production of Rooftop PV Systems
3. Data
3.1. Ground Measurement Data: Individual Rooftop-PV-Yield Time Series
3.1.1. Overview
3.1.2. Quality Checks
3.2. PV Registry
3.3. Solar Radiation and Temperature Data
3.3.1. Solar Radiation Data
3.3.2. Temperature Data
4. Methods
4.1. Physically Based Solar-Irradiation-to-Electric-Power Conversion Model
4.1.1. Model Choice
4.1.2. Formalization
4.2. Evaluation Criteria
4.2.1. Evaluation Metrics
Quantitative Metrics
Spatio-Temporal Analysis of the Error
4.2.2. Assessment of the Accuracy and Scalability of Our Proposed Approach
Comparison with the Oracle
Assessment of the Scalability: Behavior of the Error at the Aggregated Level
5. Results
5.1. Our Approach Accurately Estimates the PV Power Production
5.2. Analysis of the Estimation Error
5.2.1. Temporal Trends
5.2.2. Spatial Trends
5.3. Scalability of the Proposed Approach
6. Conclusions and Discussion
6.1. Conclusions
6.2. Limitations and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Details on the Estimation of the PV Power Production Using PV Watts
Appendix A.1. Computation of the POA Irradiance
- A direct component (POA direct or beam irradiance): This is the solar radiation that reaches the surface in a direct line from the sun. It is the sunlight that travels directly through the atmosphere without being scattered or reflected;
- A diffuse component (POA diffuse irradiance): This is the solar radiation that reaches the surface after being scattered by molecules and particles in the atmosphere. It includes the sunlight that comes from all directions other than the direct path from the sun;
- A reflected component (reflected irradiance): the portion of sunlight that is reflected off nearby surfaces, such as the ground or surrounding structures, and reaches the surface of the PV module.
Appendix A.2. Computation of the Module Temperature
Appendix A.3. Computation of the Effective POA Irradiance
Appendix B. Individual Installation Reports Used to Curate the Dataset
Appendix C. Bias Metrics of the Method for Estimating the PV Power Production
Case | Mean Bias Deviation | Mean Absolute Error | Mean Percentage Error | Mean Absolute Percentage Error |
---|---|---|---|---|
[W] | [W] | [%] | [%] | |
Oracle | −73.64 | 137.03 | −2.23 | 4.07 |
−60.07 | 106.72 | −2.02 | 3.67 | |
DeepPVMapper | −26.39 | 158.72 | −1.44 | 4.81 |
−11.92 | 116.88 | −0.43 | 4.04 |
Appendix D. Additional Trends on the Temporal Pattern of the Error
Appendix E. Additional Plots
Appendix E.1. Visualization of Generation Curves Generated with Our Conversion Model
Appendix E.2. Additional Plots on the Geographical Variability in the Estimation Error
References
- Haegel, N.M.; Margolis, R.; Buonassisi, T.; Feldman, D.; Froitzheim, A.; Garabedian, R.; Green, M.; Glunz, S.; Henning, H.M.; Holder, B.; et al. Terawatt-scale photovoltaics: Trajectories and challenges. Science 2017, 356, 141–143. [Google Scholar] [CrossRef] [PubMed]
- IEA. Renewable Energy Statistics 2022; Technical report; IRENA: Abu Dhabi, United Arab Emirates, 2023. [Google Scholar]
- RTE France. Bilan électrique 2023. Available online: https://analysesetdonnees.rte-france.com/bilan-electrique-2023/synthese (accessed on 4 July 2024).
- RTE France; IEA. Conditions and Requirements for the Technical Feasibility of a Power System with a High Share of Renewables in France Towards 2050; Technical report; RTE France: Paris, France, 2021. [Google Scholar]
- Pierro, M.; Liolli, F.R.; Gentili, D.; Petitta, M.; Perez, R.; Moser, D.; Cornaro, C. Impact of PV/Wind Forecast Accuracy and National Transmission Grid Reinforcement on the Italian Electric System. Energies 2022, 15, 9086. [Google Scholar] [CrossRef]
- Malof, J.M.; Hou, R.; Collins, L.M.; Bradbury, K.; Newell, R. Automatic solar photovoltaic panel detection in satellite imagery. In Proceedings of the 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015; pp. 1428–1431. [Google Scholar] [CrossRef]
- Malof, J.M.; Li, B.; Huang, B.; Bradbury, K.; Stretslov, A. Mapping solar array location, size, and capacity using deep learning and overhead imagery. arXiv 2019, arXiv:1902.10895. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, Z.; Majumdar, A.; Rajagopal, R. DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar Deployment Database in the United States. Joule 2018, 2, 2605–2617. [Google Scholar] [CrossRef]
- Frimane, Â.; Johansson, R.; Munkhammar, J.; Lingfors, D.; Lindahl, J. Identifying small decentralized solar systems in aerial images using deep learning. Sol. Energy 2023, 262, 111822. [Google Scholar] [CrossRef]
- Lindahl, J.; Johansson, R.; Lingfors, D. Mapping of decentralised photovoltaic and solar thermal systems by remote sensing aerial imagery and deep machine learning for statistic generation. Energy AI 2023, 14, 100300. [Google Scholar] [CrossRef]
- Kasmi, G.; Dubus, L.; Saint-Drenan, Y.M.; Blanc, P. Towards Unsupervised Assessment with Open-Source Data of the Accuracy of Deep Learning-Based Distributed PV Mapping. In Proceedings of the MACLEAN: MAChine Learning for EArth ObservatioN Workshop Co-Located with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2022), Grenoble, France, 18–22 September 2022; Corpetti, T., Ienco, D., Interdonato, R., Pham, M.T., Lefèvre, S. Available online: https://ceur-ws.org/Vol-3343/paper6.pdf (accessed on 27 August 2024).
- Mayer, K.; Rausch, B.; Arlt, M.L.; Gust, G.; Wang, Z.; Neumann, D.; Rajagopal, R. 3D-PV-Locator: Large-scale detection of rooftop-mounted photovoltaic systems in 3D. Appl. Energy 2022, 310, 118469. [Google Scholar] [CrossRef]
- Freitas, S.; Silva, M.; Silva, E.; Marceddu, A.; Miccoli, M.; Gnatyuk, P.; Marangoni, L.; Amicone, A. An Artificial Intelligence-Based Framework to Accelerate Data-Driven Policies to Promote Solar Photovoltaics in Lisbon. Sol. RRL 2023, 7, 2300597. [Google Scholar] [CrossRef]
- Arnaudo, E.; Blanco, G.; Monti, A.; Bianco, G.; Monaco, C.; Pasquali, P.; Dominici, F. A Comparative Evaluation of Deep Learning Techniques for Photovoltaic Panel Detection from Aerial Images. IEEE Access 2023, 11, 47579–47594. [Google Scholar] [CrossRef]
- Lu, N.; Li, L.; Qin, J. PV Identifier: Extraction of small-scale distributed photovoltaics in complex environments from high spatial resolution remote sensing images. Appl. Energy 2024, 365, 123311. [Google Scholar] [CrossRef]
- Yang, R.; He, G.; Yin, R.; Wang, G.; Zhang, Z.; Long, T.; Peng, Y. Weakly-semi supervised extraction of rooftop photovoltaics from high-resolution images based on segment anything model and class activation map. Appl. Energy 2024, 361, 122964. [Google Scholar] [CrossRef]
- Saint-Drenan, Y.M.; Bofinger, S.; Fritz, R.; Vogt, S.; Good, G.; Dobschinski, J. An empirical approach to parameterizing photovoltaic plants for power forecasting and simulation. Sol. Energy 2015, 120, 479–493. [Google Scholar] [CrossRef]
- Dobos, A. PVWatts Version 5 Manual. Technical Report NREL/TP-6A20-62641, 1158421, NREL. 2014. Available online: https://www.osti.gov/biblio/1158421/ (accessed on 4 July 2024).
- RTE France. Energy Pathways to 2050; Technical Report; RTE France. 2022. Available online: https://www.rte-france.com/analyses-tendances-et-prospectives/bilan-previsionnel-2050-futurs-energetiques (accessed on 4 July 2024).
- République Française. Décret n° 2020-456 du 21 Avril 2020 Relatif à la Programmation Pluriannuelle de L’énergie. Available online: https://www.legifrance.gouv.fr/jorf/article_jo/JORFARTI000041814444 (accessed on 24 August 2024).
- Lorenz, E.; Scheidsteger, T.; Hurka, J.; Heinemann, D.; Kurz, C. Regional PV power prediction for improved grid integration. Prog. Photovoltaics Res. Appl. 2011, 19, 757–771. [Google Scholar] [CrossRef]
- Saint-Drenan, Y.M.; Good, G.; Braun, M.; Freisinger, T. Analysis of the uncertainty in the estimates of regional PV power generation evaluated with the upscaling method. Sol. Energy 2016, 135, 536–550. [Google Scholar] [CrossRef]
- Puttemans, S.; Ranst, W.V.; Goedemé, T. Detecting of photovoltaic installations in RGB aerial imaging: A comparative study. In Proceedings of the GEOBIA 2016: Solutions and synergies, Enschede, The Netherlands, 14–16 September 2016; University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC): Enschede, The Netherlands, 2016. [Google Scholar] [CrossRef]
- de Hoog, J.; Maetschke, S.; Ilfrich, P.; Kolluri, R.R. Using Satellite and Aerial Imagery for Identification of Solar PV: State of the Art and Research Opportunities. In Proceedings of the Eleventh ACM International Conference on Future Energy Systems, Virtual Event, 22–26 June 2020; pp. 308–313. [Google Scholar] [CrossRef]
- Bradbury, K.; Saboo, R.; L Johnson, T.; Malof, J.M.; Devarajan, A.; Zhang, W.; M Collins, L.; G Newell, R. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification. Sci. Data 2016, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Malof, J.M.; Bradbury, K.; Collins, L.M.; Newell, R.G. Automatic detection of solar photovoltaic arrays in high resolution aerial imagery. Appl. Energy 2016, 183, 229–240. [Google Scholar] [CrossRef]
- Malof, J.M.; Collins, L.M.; Bradbury, K.; Newell, R.G. A deep convolutional neural network and a random forest classifier for solar photovoltaic array detection in aerial imagery. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Bermigham, UK, 6–9 November 2016; pp. 650–654. [Google Scholar]
- Li, Q.; Feng, Y.; Leng, Y.; Chen, D. SolarFinder: Automatic Detection of Solar Photovoltaic Arrays. In Proceedings of the 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Sydney, NSW, Australia, 21–24 April 2020; pp. 193–204. [Google Scholar] [CrossRef]
- Wang, M.; Cui, Q.; Sun, Y.; Wang, Q. Photovoltaic panel extraction from very high-resolution aerial imagery using region–line primitive association analysis and template matching. ISPRS J. Photogramm. Remote Sens. 2018, 141, 100–111. [Google Scholar] [CrossRef]
- Devarajan, A.; Kellish, B.; Kido, C.; Newman, A.; Bradbury, K. Automated Rooftop Solar PV Detection and Power Estimation through Remote Sensing. Available online: https://bassconnections.duke.edu/sites/bassconnections.duke.edu/files/documents/automated-rooftop-solar-pv-detection.pdf (accessed on 24 August 2024).
- Golovko, V.; Bezobrazov, S.; Kroshchanka, A.; Sachenko, A.; Komar, M.; Karachka, A. Convolutional neural network based solar photovoltaic panel detection in satellite photos. In Proceedings of the 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, 21–23 September 2017; pp. 14–19. [Google Scholar] [CrossRef]
- Golovko, V.; Kroshchanka, A.; Bezobrazov, S.; Sachenko, A.; Komar, M.; Novosad, O. Development of Solar Panels Detector. In Proceedings of the 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 9–12 October 2018; pp. 761–764. [Google Scholar] [CrossRef]
- Yuan, J.; Yang, H.H.L.; Omitaomu, O.A.; Bhaduri, B.L. Large-scale solar panel mapping from aerial images using deep convolutional networks. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; pp. 2703–2708. [Google Scholar] [CrossRef]
- Huang, B.; Collins, L.M.; Bradbury, K.; Malof, J.M. Deep Convolutional Segmentation of Remote Sensing Imagery: A Simple and Efficient Alternative to Stitching Output Labels. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6899–6902. [Google Scholar] [CrossRef]
- Camilo, J.; Wang, R.; Collins, L.M.; Bradbury, K.; Malof, J.M. Application of a semantic segmentation convolutional neural network for accurate automatic detection and mapping of solar photovoltaic arrays in aerial imagery. arXiv 2018, arXiv:1801.04018. [Google Scholar] [CrossRef]
- Kausika, B.B.; Nijmeijer, D.; Reimerink, I.; Brouwer, P.; Liem, V. GeoAI for detection of solar photovoltaic installations in the Netherlands. Energy AI 2021, 6, 100111. [Google Scholar] [CrossRef]
- Mayer, K.; Wang, Z.; Arlt, M.L.; Neumann, D.; Rajagopal, R. DeepSolar for Germany: A deep learning framework for PV system mapping from aerial imagery. In Proceedings of the 2020 International Conference on Smart Energy Systems and Technologies (SEST), Istanbul, Turkey, 7–9 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Rausch, B.; Mayer, K.; Arlt, M.L.; Gust, G.; Staudt, P.; Weinhardt, C.; Neumann, D.; Rajagopal, R. An Enriched Automated PV Registry: Combining Image Recognition and 3D Building Data. In Proceedings of the Workshop on Tackling Climate Change with Machine Learning at NeurIPS 2020, Online Event, 11 December 2020. [Google Scholar]
- Trémenbert, Y.; Kasmi, G.; Dubus, L.; Saint-Drenan, Y.M.; Blanc, P. PyPVRoof: A Python package for extracting the characteristics of rooftop PV installations using remote sensing data. arXiv 2023, arXiv:2309.07143. [Google Scholar]
- Kasmi, G.; Laurent, D.; Philippe, B.; Saint-Drenan, Y.M. DeepPVMapper. Available online: https://github.com/gabrielkasmi/deeppvmapper/tree/pscc (accessed on 24 August 2024).
- de Hoog, J.; Perera, M.; Bandara, K.; Senanayake, D.; Halgamuge, S. Solar PV Maps for Estimation and Forecasting of Distributed Solar Generation. In Proceedings of the Workshop on Tackling Climate Change with Machine Learning at ICML 2020, Online Event, 23 July 2021. [Google Scholar]
- Perera, M.; De Hoog, J.; Bandara, K.; Halgamuge, S. Multi-resolution, multi-horizon distributed solar PV power forecasting with forecast combinations. Expert Syst. Appl. 2022, 205, 117690. [Google Scholar] [CrossRef]
- Pecan Street. Dataport—Pecan Street Inc. Available online: https://www.pecanstreet.org/dataport/ (accessed on 24 August 2024).
- Walch, A.; Rüdisüli, M.; Castello, R.; Scartezzini, J.L. Quantification of existing rooftop PV hourly generation capacity and validation against measurement data. J. Phys. Conf. Ser. 2021, 2042, 012011. [Google Scholar] [CrossRef]
- Kasmi, G.; Saint-Drenan, Y.M.; Trebosc, D.; Jolivet, R.; Leloux, J.; Sarr, B.; Dubus, L. A crowdsourced dataset of aerial images with annotated solar photovoltaic arrays and installation metadata. Sci. Data 2023, 10, 59. [Google Scholar] [CrossRef]
- BDPV. Rapport D’analyse de Votre Installation Photovoltaïque—Information—BDPV. Available online: https://www.bdpv.fr/fr/rapportPerf-tuto.php (accessed on 24 August 2024).
- Qu, Z.; Oumbe, A.; Blanc, P.; Espinar, B.; Gesell, G.; Gschwind, B.; Klüser, L.; Lefèvre, M.; Saboret, L.; Schroedter-Homscheidt, M.; et al. Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method. Meteorol. Z. 2017, 26, 33–57. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Martin, N.; Ruiz, J.M. Calculation of the PV modules angular losses under field conditions by means of an analytical model. Sol. Energy Mater. Sol. Cells 2001, 70, 25–38. [Google Scholar] [CrossRef]
- Martín, N.; Ruiz, J.M. A new model for PV modules angular losses under field conditions. Int. J. Sol. Energy 2002, 22, 19–31. [Google Scholar] [CrossRef]
- Martín, N.; Ruiz, J.M. Annual angular reflection losses in PV modules. Prog. Photovoltaics: Res. Appl. 2005, 13, 75–84. [Google Scholar] [CrossRef]
- Walch, A.; Castello, R.; Mohajeri, N.; Scartezzini, J.L. Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty. Appl. Energy 2020, 262, 114404. [Google Scholar] [CrossRef]
- Lopes, F.M.; Silva, H.G.; Salgado, R.; Cavaco, A.; Canhoto, P.; Collares-Pereira, M. Short-term forecasts of GHI and DNI for solar energy systems operation: Assessment of the ECMWF integrated forecasting system in southern Portugal. Sol. Energy 2018, 170, 14–30. [Google Scholar] [CrossRef]
- Holmgren, W.; Hansen, C.; Mikofski, M. pvlib python: A python package for modeling solar energy systems. J. Open Source Softw. 2018, 3, 884. [Google Scholar] [CrossRef]
- Ross, R. Design Techniques for Flat-Plate Photovoltaic Arrays. In Proceedings of the 15th Photovoltaic Specialists Conference, Orlando, FL, USA, 12–15 May 1981; pp. 1126–1132. [Google Scholar]
Observed | Not Observed | |||
---|---|---|---|---|
Power Class | Installed Capacity | Number of Installations | Installed Capacity | Number of Installations |
[kWp] | [MWp] | [-] | [MWp] | [-] |
≤36 | 14.8 | 405 | 3030 | 658,218 |
(%) | 0.5 | 0.1 | 99.5 | 99.9 |
36–250 | 4438 | 40,054 | 340 | 2897 |
(%) | 92.9 | 93.3 | 7.1 | 6.7 |
250–1000 | 435 | 748 | 23.5 | 47 |
(%) | 94.9 | 94.1 | 5.1 | 5.9 |
≥1000 (DN) | 7586 | 1531 | 377 | 79 |
(%) | 95.3 | 95.1 | 4.7 | 4.9 |
≥1000 (TN) | 827 | 20 | 0 | 0 |
(%) | 100 | 100 | 0 | 0 |
Total | 13,301 | 42,758 | 3771 | 661,241 |
(%) | 77.9 | 6.1 | 22.1 | 93.9 |
Variable | Unit | Min | Max | Mean | Median | n |
---|---|---|---|---|---|---|
Installed capacity | [] | 1.29 | 38.84 | 3.12 | 2.68 | 276 |
Tilt angle | [°] | 11.88 | 51.63 | 26.83 | 26.12 | 276 |
Azimuth angle | [°] | −90.00 | 90.00 | 4.23 | 0.00 | 276 |
Field | Unit | Default Value |
---|---|---|
System size | kW | 4 |
Module type | {standard, premium, thin film} | Standard |
System losses | % | 14 |
Array type | {Fixed open rack, fixed roof mount, | Fixed open rack |
1 axis, backtracked 1 axis, 2 axis} | Fixed open rack | |
Tilt angle | degrees | Site latitude |
Azimuth angle | degrees | 180° (Northern Hemisphere), |
0° (Southern Hemisphere) | ||
DC/AC ratio | ratio | 1.1 |
Inverter efficiency | % | 96 |
Ground coverage ratio (1 axis only) | fraction | 0.4 |
Case | Min | Max | Mean | Median | n |
---|---|---|---|---|---|
Oracle | 114.61 | 2137.82 | 281.53 | 223.06 | 255 |
(3.90) | (26.49) | (8.36) | (7.66) | ||
DeepPVMapper | 119.56 | 3001.42 | 332.57 | 245.33 | 255 |
(4.15) | (43.39) | (10.10) | (8.18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasmi, G.; Touron, A.; Blanc, P.; Saint-Drenan, Y.-M.; Fortin, M.; Dubus, L. Remote-Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using Physical Conversion Models and Weather Data. Energies 2024, 17, 4353. https://doi.org/10.3390/en17174353
Kasmi G, Touron A, Blanc P, Saint-Drenan Y-M, Fortin M, Dubus L. Remote-Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using Physical Conversion Models and Weather Data. Energies. 2024; 17(17):4353. https://doi.org/10.3390/en17174353
Chicago/Turabian StyleKasmi, Gabriel, Augustin Touron, Philippe Blanc, Yves-Marie Saint-Drenan, Maxime Fortin, and Laurent Dubus. 2024. "Remote-Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using Physical Conversion Models and Weather Data" Energies 17, no. 17: 4353. https://doi.org/10.3390/en17174353
APA StyleKasmi, G., Touron, A., Blanc, P., Saint-Drenan, Y.-M., Fortin, M., & Dubus, L. (2024). Remote-Sensing-Based Estimation of Rooftop Photovoltaic Power Production Using Physical Conversion Models and Weather Data. Energies, 17(17), 4353. https://doi.org/10.3390/en17174353