Research on Building Energy Consumption Prediction Based on Improved PSO Fusion LSSVM Model
Abstract
1. Introduction
2. Prediction Model Based on IPSO-LSSVM
2.1. LSSVM Method
2.2. PSO Method
2.3. IPSO Method
- Convergence factor is introduced
- 2
- Dynamic adjustment of inertia weight and learning constant
2.4. IPSO-LSSVM Method
- Begin.
- Configure the basic parameters of the IPSO algorithm, such as the velocity and position of the particles.
- The particle swarm’s velocity and position are initialized, and both the initial global and local optimal solutions are identified.
- Calculate each particle’s fitness value within the swarm.
- Update particle velocities and positions using the improved formula.
- Refresh the local (pbest) and global (gbest) optimal solutions within the swarm.
- Check the termination conditions.
- The global optimal solution (gbest) of the output particle swarm.
- End.
3. Experimental Analysis
3.1. Experimental Data
3.1.1. Office Building
3.1.2. Education Building
3.2. Feature Selection
3.3. Evaluation Index
3.4. Experimental Results and Analysis
3.4.1. Analysis of Results for Office Building
3.4.2. Analysis of Results for Science and Education Building
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RF | Random Forest |
BP | Backpropagation |
SVR | Support Vector Regression |
PSO | Particle Swarm Optimization |
IPSO | Improved Particle Swarm Optimization |
LSSVM | Least Squares Support Vector Machine |
References
- Lu, S.; Liu, Y.; Sun, Y.; Yin, S.; Jiang, X. Indoor thermal environmental evaluation of Chinese green building based on new index OTCP and subjective satisfaction. J. Clean. Prod. 2019, 240, 118151. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Xia, H.; Xie, S. A multi-objective optimization framework for building performance under climate change. J. Build. Eng. 2023, 80, 107978. [Google Scholar] [CrossRef]
- Xu, G.; Wang, W. China’s energy consumption in construction and building sectors: An outlook to 2100. Energy 2020, 195, 117045. [Google Scholar] [CrossRef]
- Wu, X.; Li, X.; Qin, Y.; Xu, W.; Liu, Y. Intelligent multiobjective optimization design for NZEBs in China: Four climatic regions. Appl. Energy 2023, 339, 120934. [Google Scholar] [CrossRef]
- Sun, Y.; Haghighat, F.; Fung, B.C.M. A review of the state-of-the-art in data-driven approaches for building energy prediction. Energy Build. 2020, 221, 110022. [Google Scholar] [CrossRef]
- Mobaraki, B.; Pascual, F.J.C.; Lozano-Galant, F.; Lozano-Galant, J.A.; Soriano, R.P. In situ U-value measurement of building envelopes through continuous low-cost monitoring. Case Stud. Therm. Eng. 2023, 43, 102778. [Google Scholar] [CrossRef]
- Mobaraki, B.; Pascual, F.J.C.; García, A.M.; Mascaraque, M.Á.M.; Vázquez, B.F.; Alonso, C. Studying the impacts of test condition and nonoptimal positioning of the sensors on the accuracy of the in-situ U-value measurement. Heliyon 2023, 9, e17282. [Google Scholar] [CrossRef]
- Piras, G.; Muzi, F.; Tiburcio, V.A. Digital Management Methodology for Building Production Optimization through Digital Twin and Artificial Intelligence Integration. Buildings 2024, 14, 2110. [Google Scholar] [CrossRef]
- Muzi, F.; Marzo, R.; Nardi, F. Digital Information Management in the Built Environment: Data-Driven Approaches for Building Process Optimization. In Technological Imagination in the Green and Digital Transition. CONF.ITECH 2022; Arbizzani, E., Cangelli, E., Clemente, C., Cumo, F., Giofrè, F., Giovenale, A.M., Palme, M., Paris, S., Eds.; The Urban Book Series; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- López Gómez, J.; Troncoso Pastoriza, F.; Fariña, E.A.; Oller, P.E.; Álvarez, E.G. Use of a numerical weather prediction model as a meteorological source for the estimation of heating demand in building thermal simulations. Sustain. Cities Soc. 2020, 62, 102403. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, L.; Yuan, H.; Srinivasan, R.S.; Song, X. Principles, research status, and prospects of feature engineering for data-driven building energy prediction: A comprehensive review. J. Build. Eng. 2022, 58, 105028. [Google Scholar] [CrossRef]
- Li, Y.; Tong, Z.; Tong, S.; Westerdahl, D. A data-driven interval forecasting model for building energy prediction using attention-based LSTM and fuzzy information granulation. Sustain. Cities Soc. 2022, 76, 103481. [Google Scholar] [CrossRef]
- Mariano-Hernández, D.; Hernández-Callejo, L.; Solís, M.; Zorita-Lamadrid, A.; Duque-Perez, O.; Gonzalez-Morales, L.; Santos-García, F. A Data-Driven Forecasting Strategy to Predict Continuous Hourly Energy Demand in Smart Buildings. Appl. Sci. 2021, 11, 7886. [Google Scholar] [CrossRef]
- Fang, X.; Gong, G.; Li, G.; Chun, L.; Li, W.; Peng, P. A hybrid deep transfer learning strategy for short term cross-building energy prediction. Energy 2021, 215, 119208. [Google Scholar] [CrossRef]
- Priyadarshini, I.; Sahu, S.; Kumar, R.; Taniar, D. A machine-learning ensemble model for predicting energy consumption in smart homes. Internet Things 2022, 20, 100636. [Google Scholar] [CrossRef]
- Shao, M.; Wang, X.; Bu, Z.; Chen, X.; Wang, Y. Prediction of energy consumption in hotel buildings via support vector machines. Sustain. Cities Soc. 2020, 57, 102128. [Google Scholar] [CrossRef]
- Rahman, S.; Rabiul Alam, M.G.; Mahbubur Rahman, M. Deep Learning based Ensemble Method for Household Energy Demand Forecasting of Smart Home. In Proceedings of the International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 18–20 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, F.; Deb, C.; Lee, S.E.; Yang, J.; Shah, K.W. Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique. Energy Build. 2016, 126, 94–103. [Google Scholar] [CrossRef]
- Culaba, A.B.; Del Rosario, A.J.; Ubando, A.T.; Chang, J.S. Machine learning-based energy consumption clustering and forecasting for mixed-use buildings. Int. J. Energy Res. 2020, 44, 9659–9673. [Google Scholar] [CrossRef]
- Olu-Ajayi, R.; Alaka, H.; Sulaimon, I.; Sunmola, F.; Ajayi, S. Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques. J. Build. Eng. 2022, 45, 103406. [Google Scholar] [CrossRef]
- Elbeltagi, E.; Wefki, H. Predicting energy consumption for residential buildings using ANN through parametric modelling. Energy Rep. 2021, 7, 2534–2545. [Google Scholar] [CrossRef]
- Truong, L.H.M.; Chow, K.H.K.; Luevisadpaibul, R.; Thirunavukkarasu, G.S.; Seyedmahmoudian, M.; Horan, B.; Mekhilef, S.; Stojcevski, A. Accurate Prediction of Hourly Energy Consumption in a Residential Building Based on the Occupancy Rate Using Machine Learning Approaches. Appl. Sci. 2021, 11, 2229. [Google Scholar] [CrossRef]
- Pham, A.-D.; Ngo, N.-T.; Ha Truong, T.T.; Huynh, N.-T.; Truong, N.-S. Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability. J. Clean. Prod. 2020, 260, 121082. [Google Scholar] [CrossRef]
- Hosseini, S.; Fard, R.H. Machine Learning Algorithms for Predicting Electricity Consumption of Buildings. Wirel. Pers. Commun. 2021, 121, 3329–3341. [Google Scholar] [CrossRef]
- Dinmohammadi, F.; Han, Y.; Shafiee, M. Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms. Energies 2023, 16, 3748. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Chen, Q.; Gong, M.; Chen, L. IPSMT: Multi-objective optimization of multipath transmission strategy based on improved immune particle swarm algorithm in wireless sensor networks. Appl. Soft Comput. 2022, 121, 108705. [Google Scholar] [CrossRef]
- Sun, J.; Che, Y.; Yang, T.; Zhang, J.; Cai, Y. Location and Capacity Determination Method of Electric Vehicle Charging Station Based on Simulated Annealing Immune Particle Swarm Optimization. Energy Eng. 2023, 120, 367–384. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, S.; Cao, Y.; Yu, F.; Guan, Q.; Li, J.; Zhang, G.; Xu, T. Study on the classification method of rice leaf blast levels based on fusion features and adaptive-weight immune particle swarm optimization extreme learning machine algorithm. Front. Plant Sci. 2022, 13, 879668. [Google Scholar] [CrossRef] [PubMed]
- Tayab, U.B.; Yang, F.; Metwally, A.S.M.; Lu, J. Solar photovoltaic power forecasting for microgrid energy management system using an ensemble forecasting strategy. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 10045–10070. [Google Scholar] [CrossRef]
- Zhang, L.; Li, K.; Du, D.; Guo, Y.; Fei, M.; Yang, Z. A sparse learning machine for real-time SOC estimation of li-ion batteries. IEEE Access 2020, 8, 156165–156176. [Google Scholar] [CrossRef]
- Xu, G.; Gao, G.; Hu, M. Detecting spammer on micro-blogs base on fuzzy multi-class SVM. In Proceedings of the 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Zhengzhou, China, 18–20 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 24–247. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Q.; Chen, H.; Wang, L.; Deng, T.; Zhang, L.; Wu, X. Multiobjective optimization of building energy consumption based on BIM-DB and LSSVM-NSGA-II. J. Clean. Prod. 2021, 294, 126153. [Google Scholar] [CrossRef]
- Yu, M.; Liu, B.; Tang, E. Remote Sensing Image Classification Based on Improved PSO Support Vector Machine. Spacecr. Recovery Remote Sens. 2018, 39, 133–140. [Google Scholar] [CrossRef]
- Zeng, N.; Hong, Z.; Liu, W. A Switching Delayed PSO Optimized Extreme Learning Machine for Shortern Load Forecasting. Neurocomputing 2017, 240, 175–182. [Google Scholar] [CrossRef]
- Li, D.; Li, L.; Zhang, R. Water Quality pH Value Determination for Visible-Near Infrared Spectroscopy Based on SPA and PSO-LSSVM. Laser Optoelectron. Prog. 2023, 60, 390–395. [Google Scholar] [CrossRef]
- Xie, L.R.; Wang, B.; Bao, H.Y.; Liang, W.; Maimaitireyimu, A. Super-Short-Term Wind Power Forecasting Based On EEMD-WOA-LSSVM. Acta Energiae Solaris Sin. 2021, 43, 94. [Google Scholar] [CrossRef]
Date | Energy Consumption (kgce) | Maximum Temperature (°C) | Minimum Temperature (°C) | Weather | Humidity (hPa) | Wind Speed (M/S) | Date Type |
---|---|---|---|---|---|---|---|
27 February 2020 | 4894.01 | 9.4 | 6.2 | Rain | 82 | 3 | Monday |
14 August 2020 | 6990.29 | 33.4 | 24.7 | Sunny | 74 | 2 | Tuesday |
15 April 2021 | 5405.31 | 28.9 | 15.6 | cloudy | 75 | 1 | Thursday |
22 January 2022 | 5109.71 | 18.5 | 1.3 | Snow | 39 | 4 | Friday |
12 October 2022 | 6047.40 | 32 | 21.5 | Cloudy | 71 | 3 | Saturday |
Date | Energy Consumption (kgce) | Maximum Temperature (°C) | Minimum Temperature (°C) | Weather | Wind Speed (M/S) | Date Type |
---|---|---|---|---|---|---|
29 May 2018 | 744.30 | 18 | 11 | Rain | 3 | Workdays |
16 December 2018 | 6725.04 | −11 | −20 | Sunny | 3 | Workdays |
22 March 2019 | 3866.29 | 2 | 8 | Snow | 2 | Workdays |
8 June 2019 | 783.76 | 23 | 15 | Cloudy | 3 | Holidays |
23 November 2019 | 3733.51 | 3 | −5 | Cloudy | 3 | Holidays |
Form | Original Value | Coded Value |
---|---|---|
Office Building Date Type | Monday | 0000001 |
Tuesday | 0000010 | |
Wednesday | 0000100 | |
Thursday | 0001000 | |
Friday | 0010000 | |
Saturday | 0100000 | |
Sunday | 1000000 | |
Education Building Date Type | Workdays | 01 |
Holidays | 10 | |
Weather | Rain | 00001 |
Sunny | 00010 | |
Snow | 00100 | |
Cloudy | 01000 | |
Cloudy | 10000 |
Models | MAE | MSE | R2 |
---|---|---|---|
RF | 0.115 | 0.020 | 0.556 |
SVR | 0.115 | 0.017 | 0.616 |
BP | 0.110 | 0.017 | 0.621 |
LSSVM | 0.069 | 0.009 | 0.779 |
PSO-LSSVM | 0.069 | 0.005 | 0.907 |
IPSO-LSSVM | 0.055 | 0.003 | 0.940 |
Models | MAE | MSE | R2 |
---|---|---|---|
RF | 0.108 | 0.021 | 0.562 |
SVR | 0.120 | 0.020 | 0.587 |
BP | 0.100 | 0.017 | 0.661 |
LSSVM | 0.092 | 0.015 | 0.716 |
PSO-LSSVM | 0.059 | 0.006 | 0.883 |
IPSO-LSSVM | 0.055 | 0.005 | 0.912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Chang, Y.; Li, H.; You, G. Research on Building Energy Consumption Prediction Based on Improved PSO Fusion LSSVM Model. Energies 2024, 17, 4329. https://doi.org/10.3390/en17174329
Zhang S, Chang Y, Li H, You G. Research on Building Energy Consumption Prediction Based on Improved PSO Fusion LSSVM Model. Energies. 2024; 17(17):4329. https://doi.org/10.3390/en17174329
Chicago/Turabian StyleZhang, Suli, Yiting Chang, Hui Li, and Guanghao You. 2024. "Research on Building Energy Consumption Prediction Based on Improved PSO Fusion LSSVM Model" Energies 17, no. 17: 4329. https://doi.org/10.3390/en17174329
APA StyleZhang, S., Chang, Y., Li, H., & You, G. (2024). Research on Building Energy Consumption Prediction Based on Improved PSO Fusion LSSVM Model. Energies, 17(17), 4329. https://doi.org/10.3390/en17174329