Identification of the Problem in Controlling the Air–Fuel Mixture Ratio (Lambda Coefficient λ) in Small Spark-Ignition Engines for Positive Pressure Ventilators
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szymlet, N.; Kamińska, M.; Ziółkowski, A.; Sobczak, J. Analysis of Non-Road Mobile Machinery Homologation Standards in Relation to Actual Exhaust Emissions. Energies 2024, 17, 3624. [Google Scholar] [CrossRef]
- Warguła, Ł.; Lijewski, P.; Kukla, M. Influence of Non-Commercial Fuel Supply Systems on Small Engine SI Exhaust Emissions in Relation to European Approval Regulations. Environ. Sci. Pollut. Res. 2022, 29, 55928–55943. [Google Scholar] [CrossRef]
- Waluś, K.J.; Warguła, Ł.; Krawiec, P.; Adamiec, J.M. Legal Regulations of Restrictions of Air Pollution Made by Non-Road Mobile Machinery—The Case Study for Europe: A Review. Environ. Sci. Pollut. Res. 2018, 25, 3243–3259. [Google Scholar] [CrossRef] [PubMed]
- Bie, P.; Ji, L.; Cui, H.; Li, G.; Liu, S.; Yuan, Y.; He, K.; Liu, H. A Review and Evaluation of Nonroad Diesel Mobile Machinery Emission Control in China. J. Environ. Sci. 2023, 123, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Sparrevik, M.; Qiu, X.; Stokke, R.A.; Borge, I.; de Boer, L. Investigating the Potential for Reduced Emissions from Non-Road Mobile Machinery in Construction Activities through Disruptive Innovation. Environ. Technol. Innov. 2023, 31, 103187. [Google Scholar] [CrossRef]
- Warguła, Ł.; Waluś, K.J.; Wieczorek, B.; Zakaria, R. The Impact of the Modernization of the Ignition and Injection System in the Dniepr MT 11 Motorcycle on the Frequency of Service Operations. Mater. Mech. Eng. Technol. 2023, 2023, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Simsek, S.; Uslu, S.; Simsek, H.; Uslu, G. Improving the Combustion Process by Determining the Optimum Percentage of Liquefied Petroleum Gas (LPG) via Response Surface Methodology (RSM) in a Spark Ignition (SI) Engine Running on Gasoline-LPG Blends. Fuel Process. Technol. 2021, 221, 106947. [Google Scholar] [CrossRef]
- Caban, J.; Seńko, J.; Słowik, T.; Dowkontt, S.; Górnicka, D. Analysis of the Influence of Fuel Dose on the Electrical Parameters of the Starting Process of a Single-Cylinder Diesel Engine. Adv. Sci. Technol. Res. J. 2024, 18, 55–65. [Google Scholar] [CrossRef]
- Warguła, Ł.; Lijewski, P.; Kukla, M. Effects of Changing Drive Control Method of Idling Wood Size Reduction Machines on Fuel Consumption and Exhaust Emissions. Croat. J. For. Eng. 2023, 44, 137–151. [Google Scholar] [CrossRef]
- Warguła, Ł.; Krawiec, P.; Waluś, K.J.; Kukla, M. Fuel Consumption Test Results for a Self-Adaptive, Maintenance-Free Wood Chipper Drive Control System. Appl. Sci. 2020, 10, 2727. [Google Scholar] [CrossRef]
- Triwiyatno, A.; Sinuraya, E.W.; Setiawan, J.D.; Munahar, S. Smart Controller Design of Air to Fuel Ratio (AFR) and Brake Control System on Gasoline Engine. In Proceedings of the 2015 2nd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 16–18 October 2015; pp. 233–238. [Google Scholar]
- Meyer, J.; Yurkovich, S.; Midlam-Mohler, S. Air-to-Fuel Ratio Switching Frequency Control for Gasoline Engines. IEEE Trans. Control Syst. Technol. 2013, 21, 636–648. [Google Scholar] [CrossRef]
- Chang, C.-F.; Fekete, N.P.; Amstutz, A.; Powell, J.D. Air-Fuel Ratio Control in Spark-Ignition Engines Using Estimation Theory. IEEE Trans. Control Syst. Technol. 1995, 3, 22–31. [Google Scholar] [CrossRef]
- Almaleki, A.; Hellier, P.; Ladommatos, N.; Talibi, M.; Khan, Z. Effects of Fuel Composition at Varying Air-Fuel Ratio on Knock Resistance during Spark-Ignition Combustion. Fuel 2023, 344, 128015. [Google Scholar] [CrossRef]
- Odunlami, O.A.; Oderinde, O.K.; Akeredolu, F.A.; Sonibare, J.A.; Obanla, O.R.; Ojewumi, M.E. The Effect of Air-Fuel Ratio on Tailpipe Exhaust Emission of Motorcycles. Fuel Commun. 2022, 11, 100040. [Google Scholar] [CrossRef]
- Flamarz Al-Arkawazi, S.A. The Gasoline Fuel Quality Impact on Fuel Consumption, Air-Fuel Ratio (AFR), Lambda (λ) and Exhaust Emissions of Gasoline-Fueled Vehicles. Cogent Eng. 2019, 6, 1616866. [Google Scholar] [CrossRef]
- Wu, C.-W.; Chen, R.-H.; Pu, J.-Y.; Lin, T.-H. The Influence of Air–Fuel Ratio on Engine Performance and Pollutant Emission of an SI Engine Using Ethanol–Gasoline-Blended Fuels. Atmos. Environ. 2004, 38, 7093–7100. [Google Scholar] [CrossRef]
- Al-Arkawazi, S.A.F. Analyzing and Predicting the Relation between Air–Fuel Ratio (AFR), Lambda (λ) and the Exhaust Emissions Percentages and Values of Gasoline-Fueled Vehicles Using Versatile and Portable Emissions Measurement System Tool. SN Appl. Sci. 2019, 1, 1370. [Google Scholar] [CrossRef]
- Szpica, D. Fuel Dosage Irregularity of LPG Pulse Vapor Injectors at Different Stages of Wear. Mechanics 2016, 22, 44–50. [Google Scholar] [CrossRef]
- Piancastelli, L. Powerplant Reliability Issues and Wear Monitoring in Aircraft Piston Engines. Part II: Engine Diagnostic. Drones 2018, 2, 10. [Google Scholar] [CrossRef]
- Dziubak, T.; Dziubak, S.D. A Study on the Effect of Inlet Air Pollution on the Engine Component Wear and Operation. Energies 2022, 15, 1182. [Google Scholar] [CrossRef]
- Sahoo, B.B.; Sahoo, N.; Saha, U.K. Effect of Engine Parameters and Type of Gaseous Fuel on the Performance of Dual-Fuel Gas Diesel Engines—A Critical Review. Renew. Sustain. Energy Rev. 2009, 13, 1151–1184. [Google Scholar] [CrossRef]
- Mera, Z.; Fonseca, N.; Casanova, J.; López, J.-M. Influence of Exhaust Gas Temperature and Air-Fuel Ratio on NOx Aftertreatment Performance of Five Large Passenger Cars. Atmos. Environ. 2021, 244, 117878. [Google Scholar] [CrossRef]
- Meng, L.; Wang, X.; Zeng, C.; Luo, J. Adaptive Air-Fuel Ratio Regulation for Port-Injected Spark-Ignited Engines Based on a Generalized Predictive Control Method. Energies 2019, 12, 173. [Google Scholar] [CrossRef]
- Kaczmarzyk, P.; Warguła, Ł.; Janik, P.; Krawiec, P. Influence of Measurement Methodologies for the Volumetric Air Flow Rate of Mobile Positive Pressure Fans on Drive Unit Performance. Energies 2022, 15, 3953. [Google Scholar] [CrossRef]
- Kaczmarzyk, P.; Małozięć, D.; Burdzy, T.; Ziegler, B.; Krawiec, P.; Dziechciarz, A.; Warguła, Ł. Analysis of the Air Stream Flow Parameters Generated by the Positive Pressure Ventilator—Full Scale Experiment and CFD Simulation. Sci. Rep. 2024, 14, 6852. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kaczmarzyk, P. Legal Regulations of Restrictions of Air Pollution Made by Mobile Positive Pressure Fans—The Case Study for Europe: A Review. Energies 2022, 15, 7672. [Google Scholar] [CrossRef]
- Pettinen, R.; Kaario, O.; Larmi, M. Dual-Fuel Combustion Characterization on Lean Conditions and High Loads; SAE International: Warrendale, PA, USA, 2017. [Google Scholar]
- Kaczmarzyk, P.; Małozięć, D.; Warguła, Ł.; Krawiec, P. Comparative Analysis of Tests under Real Conditions and CFD Model for Selected Operation Parameters of a Mobile Fan Used by Fire Protection Units. MATEC Web Conf. 2022, 357, 02011. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kaczmarzyk, P.; Lijewski, P.; Fuć, P.; Markiewicz, F.; Małozięć, D.; Wieczorek, B. Effect of the Volumetric Flow Rate Measurement Methodology of Positive Pressure Ventilators on the Parameters of the Drive Unit. Energies 2023, 16, 4515. [Google Scholar] [CrossRef]
- Herner, H.; Riehl, H.-J. Electrical Engineering and Electronics in Motor Vehicles, Original Title in Polish: Elektrotechnika i Elektronika w Pojazdach Samochodowych; WKŁ: Warszawa, Poland, 2013; ISBN 978-83-206-1921-8. [Google Scholar]
- Warguła, Ł.; Dobrzyński, M.; Kaczmarzyk, P.; Markiewicz, F.; Wieczorek, B.; Dimitrov, D.; Lijewski, P. The Concentration of CO2, CO, CH, NOx, and PM10 in the Exhaust Gases of Combustion Engines Driving Positive Pressure Fans. Mech. Technol. Struct. Mater. 2024. in print. [Google Scholar]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption. Energies 2020, 13, 6709. [Google Scholar] [CrossRef]
- Warguła, Ł.; Waluś, K.J.; Krawiec, P. Working conditions of mobile wood chipping machines in the aspect of innovative drive control systems. Sylwan 2019, 163, 765–772. [Google Scholar]
- Beik, Y.; Dziewiątkowski, M.; Szpica, D. Exhaust Emissions of an Engine Fuelled by Petrol and Liquefied Petroleum Gas with Control Algorithm Adjustment. SAE Int. J. Engines 2020, 13, 739–760. [Google Scholar] [CrossRef]
- Abd Rahman, M.K.F.; Shahriman, A.B.; Desa, H.; Daud, R.; Razlan, Z.M.; Khairunizam, W.; Cheng, E.M.; Afendi, M. Comparative Study of Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment (REBA) between Conventional and Machine Assisted Napier Grass Harvest Works. Appl. Mech. Mater. 2015, 786, 275–280. [Google Scholar] [CrossRef]
- Savickas, D.; Steponavičius, D.; Špokas, L.; Saldukaitė, L.; Semenišin, M. Impact of Combine Harvester Technological Operations on Global Warming Potential. Appl. Sci. 2021, 11, 8662. [Google Scholar] [CrossRef]
- Savickas, D.; Steponavičius, D.; Domeika, R. Analysis of Telematics Data of Combine Harvesters and Evaluation of Potential to Reduce Environmental Pollution. Atmosphere 2021, 12, 674. [Google Scholar] [CrossRef]
- Lijewski, P.; Merkisz, J.; Fuć, P. Research of Exhaust Emissions from a Harvester Diesel Engine with the Use of Portable Emission Measurement System. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2013, 34, 113–122. [Google Scholar]
- Lijewski, P.; Merkisz, J.; Fuć, P.; Ziółkowski, A.; Rymaniak, Ł.; Kusiak, W. Fuel Consumption and Exhaust Emissions in the Process of Mechanized Timber Extraction and Transport. Eur. J. For. Res. 2017, 136, 153–160. [Google Scholar] [CrossRef]
- Rymaniak, Ł.; Lijewski, P.; Kamińska, M.; Fuć, P.; Kurc, B.; Siedlecki, M.; Kalociński, T.; Jagielski, A. The Role of Real Power Output from Farm Tractor Engines in Determining Their Environmental Performance in Actual Operating Conditions. Comput. Electron. Agric. 2020, 173, 105405. [Google Scholar] [CrossRef]
- Regulation (EU). On Requirements for Emission Limit Values of Gaseous and Particulate Pollutants and Type-Approval with Respect to Internal Combustion Engines for Mobile Machines Non-Road. Amending Regulations (EU) No 1024/2012 and (EU) No 167/2013 and Amending and Repealing Directive 97/68/WE. No 2016/1628 of the European Parliament and of the Council of 14 September 2016. Off. J. Eur. Union. 2016, 252, 53–117. [Google Scholar]
- Warguła, Ł.; Krawiec, P.; Waluś, K.; Polasik, J. Electronic Control Injection-Ignition Systems in Propulsion of Non-Road Mobile Machinery. J. Mech. Transp. Eng. 2018, 70, 61–78. [Google Scholar] [CrossRef]
- Warguła, Ł.; Waluś, K.J.; Krawiec, P. Small Engines Spark Ignited (SI) for Non-Road Mobile Machinery-Review. In Transport Means 2018: Proceedings of the 22nd International Scientific Conference, Trakai, Lithuania, 3–5 October 2018, Part 2; Kaunas University of Technology: Kaunas, Lithuania, 2018; pp. 585–591. [Google Scholar]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas. Energies 2020, 13, 3330. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs. Energies 2020, 13, 5773. [Google Scholar] [CrossRef]
- Lijewski, P.; Szymlet, N.; Fuć, P.; Domowicz, A.; Rymaniak, Ł. The Effect of Start-Stop Systems on Scooter Exhaust Emissions. Transp. Res. Part Transp. Environ. 2021, 91, 102684. [Google Scholar] [CrossRef]
- Murena, F.; Prati, M.V.; Costagliola, M.A. Real Driving Emissions of a Scooter and a Passenger Car in Naples City. Transp. Res. Part Transp. Environ. 2019, 73, 46–55. [Google Scholar] [CrossRef]
- Szymlet, N.; Rymaniak, Ł.; Lijewski, P. Two-Wheeled Urban Vehicles—A Review of Emissions Test Regulations and Literature. Energies 2024, 17, 586. [Google Scholar] [CrossRef]
- Szymlet, N.; Lijewski, P.; Rymaniak, Ł.; Sokolnicka, B.; Siedlecki, M. Comparative Analysis of Exhaust Emissions from Passenger Cars and Motorcycles. Combust. Engines 2019, 177, 19–22. [Google Scholar] [CrossRef]
- Kittler, M.J. A Non-Icing Fully Maneuverable Aircraft Carburetor. SAE Trans. 1939, 34, 357–364. [Google Scholar]
- Mock, F. AIRCRAFT CARBURETOR AIRSCOOPS on FUEL-AIR and Their Effect METERING in Flight. SAE Tech. Pap. 1942, 420087. Available online: https://www.sae.org/publications/technical-papers/content/420087/ (accessed on 1 August 2024).
- Waluś, K.J.; Warguła, Ł.; Krawiec, P.; Adamiec, J.M. The impact of the modernization of the injection-ignition system on the parameters of motion of the motorcycle. Procedia Eng. 2017, 177, 393–398. [Google Scholar] [CrossRef]
Fan | W1 | W2 | W3 | W4 |
---|---|---|---|---|
Fan model | GX350 | FOGO MW 22 | GF210-20” | GX500 |
Manufacturer (city, country) | Ramfan (Spring Valley, NY, USA) | FOGO Sp. z o.o. (Wilkowice, Poland) | Taizhou Lion King Signal Co., Ltd. (Taizhou, China) | Ramfan (Spring Valley, NY, USA) |
Power of the drive unit | 4.1 kW | 4.4 kW | 5.1 kW | 6.3 kW |
Quantity of rotor blades | 9 | 8 | 9 | 7 |
Flow straightener on the fan impeller | yes | no | yes | yes |
Fan | W1 | W2 | W3 | W4 |
---|---|---|---|---|
Engine model | GX160 | 750 series 163cc | GX270 | GX270 |
Manufacturer (city, country) | Honda Motor Co., Ltd., Kumamoto Factory, (Kumamoto, Japan) | Briggs & Stratton Corporation, (Milwaukee, WI, USA) | Honda Motor Co., Ltd., Kumamoto Factory, (Kumamoto, Japan) | Honda Motor Co., Ltd., Kumamoto Factory, (Kumamoto, Japan) |
Power of the drive unit | 4.1 kW | 4.4 kW | 5.1 kW | 6.3 kW |
Displacement | 163 cm3 | 163 cm3 | 196 cm3 | 270 cm3 |
Measured Parameter | Range | Resolution | Measurement Error |
---|---|---|---|
CO | 0–10% vol | 0.01% vol | 0.03% vol |
CO2 | 0–20% vol | 0.01% vol | 0.5% vol |
HC | 12–2000 ppm vol | 1 ppm vol | 10 ppm vol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warguła, Ł.; Kaczmarzyk, P.; Wieczorek, B.; Gierz, Ł.; Małozięć, D.; Góral, T.; Kostov, B.; Stambolov, G. Identification of the Problem in Controlling the Air–Fuel Mixture Ratio (Lambda Coefficient λ) in Small Spark-Ignition Engines for Positive Pressure Ventilators. Energies 2024, 17, 4241. https://doi.org/10.3390/en17174241
Warguła Ł, Kaczmarzyk P, Wieczorek B, Gierz Ł, Małozięć D, Góral T, Kostov B, Stambolov G. Identification of the Problem in Controlling the Air–Fuel Mixture Ratio (Lambda Coefficient λ) in Small Spark-Ignition Engines for Positive Pressure Ventilators. Energies. 2024; 17(17):4241. https://doi.org/10.3390/en17174241
Chicago/Turabian StyleWarguła, Łukasz, Piotr Kaczmarzyk, Bartosz Wieczorek, Łukasz Gierz, Daniel Małozięć, Tomasz Góral, Boris Kostov, and Grigor Stambolov. 2024. "Identification of the Problem in Controlling the Air–Fuel Mixture Ratio (Lambda Coefficient λ) in Small Spark-Ignition Engines for Positive Pressure Ventilators" Energies 17, no. 17: 4241. https://doi.org/10.3390/en17174241