Array of Active Shielding Coils for Magnetic Field Mitigation in Automotive Wireless Power Transfer Systems
Abstract
:1. Introduction
2. Materials and Methods
- -
- One primary coil, known in the SAE standard as the ground assembly (GA) coil, represented by the self-inductance L1 and self-resistance R1;
- -
- One secondary coil, known as the vehicle assembly (VA) coil, represented by the self-inductance L2 and self-resistance R2;
- -
- N − 2 active shielding coils. All N coils can be modeled with a self-inductance Li and self-resistance Ri and are inductively coupled.
- -
- Wik’ is the magnetic field energy obtained, assuming Ii and Ik are flowing in the i-th and k-th coils, respectively, while in the remaining coils, Ih = 0, with h ≠ i and h ≠ k;
- -
- Wik” is the magnetic field energy obtained, assuming the same current, Ii, is flowing in the i-th coil but an opposite current, -Ik, is flowing in the k-th coil, with no current applied to the other coils, Ih = 0, with h ≠ i and h ≠ k.
3. Applications
3.1. WPT Systems
3.2. Electrical Performances
3.3. Magnetic Field Mitigation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Covic, G.A.; Boys, J.T. Inductive Power Transfer. Proc. IEEE 2013, 101, 1276–1289. [Google Scholar] [CrossRef]
- Wang, C.-S.; Covic, G.A.; Stielau, O.H. Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems. Trans. Ind. Electron. 2004, 51, 148–157. [Google Scholar] [CrossRef]
- Ahmad, A.; Alam, M.S.; Chabaan, R.A. Comprehensive Review of Wireless Charging Technologies for Electric Vehicles. Trans. Transport. Electrific. 2018, 4, 38–63. [Google Scholar] [CrossRef]
- Feliziani, M.; Campi, T.; Cruciani, S.; Maradei, F. Wireless Power Transfer for E-Mobility, 1st ed.; Elsevier-Academic Press: Cambridge, MA, USA, 2023; ISBN 9780323995238. [Google Scholar]
- Laporte, S.; Coquery, G.; Deniau, V.; De Bernardinis, A.; Hautière, N. Dynamic wireless power transfer charging infrastructure for future evs: From experimental track to real circulated roads demonstrations. World Electr. Veh. J. 2019, 10, 84. [Google Scholar] [CrossRef]
- Buja, G.; Rim, C.T.; Mi, C.C. Dynamic Charging of Electric Vehicles by Wireless Power Transfer. IEEE Trans. Ind. Electron. 2016, 63, 6530–6532. [Google Scholar] [CrossRef]
- Grazian, F.; Shi, W.; Soeiro, T.B.; Dong, J.; van Duijsen, P.; Bauer, P. Compensation Network for a 7.7 kW Wireless Charging System that Uses Standardized Coils. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Pahlavan, S.; Ashtiani, S.J. Rotation-Tolerant Wireless Power Transmission Scheme with Smart Positioning for Cognitive Research on Moving Animals. IEEE Trans. Biomed. Circuits Syst. 2024, 18, 123–130. [Google Scholar] [CrossRef] [PubMed]
- De Santis, V.; Campi, T.; Cruciani, S.; Laakso, I.; Feliziani, M. Assessment of the Induced Electric Fields in a Carbon-Fiber Electrical Vehicle Equipped with a Wireless Power Transfer System. Energies 2018, 11, 684. [Google Scholar] [CrossRef]
- Ding, P.; Bernard, L.; Pichon, L. Evaluation of Electromagnetic Field in Human Body Exposed to Wireless Inductive Charging System. IEEE Trans. Magn. 2014, 50, 1037–1040. [Google Scholar] [CrossRef]
- Laakso, I.; Hirata, A. Evaluation of the induced electric field and compliance procedure for a wireless power transfer system in an electrical vehicle. Phys. Med. Biol. 2013, 58, 7583. [Google Scholar] [CrossRef]
- Kim, J.; Kong, S.; Kim, H.; Suh, I.-S.; Suh, N.P.; Cho, D.-H.; Kim, J.; Ahn, S. Coil Design and Shielding Methods for a Magnetic Resonant Wireless Power Transfer System. Proc. IEEE 2013, 101, 1332–1342. [Google Scholar] [CrossRef]
- Campi, T.; Cruciani, S.; Feliziani, M. Magnetic Shielding of Wireless Power Transfer Systems. In Proceedings of the 2014 International Symposium on Electromagnetic Compatibility (EMC’14), Tokyo, Japan, 12–16 May 2014; pp. 422–425. [Google Scholar]
- Kim, S.; Park, H.-H.; Kim, J.; Kim, J.; Ahn, S. Design and Analysis of a Resonant Reactive Shield for a Wireless Power Electric Vehicle. IEEE Trans. Microw. Theory Techn. 2014, 62, 1057–1066. [Google Scholar] [CrossRef]
- Ishida, M.; Watanabe, T. Magnetic Field Canceling Coil for Wireless Power Transfer System. In Proceedings of the 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, USA, 13–15 May 2015; pp. 1–4. [Google Scholar]
- Park, J.; Kim, D.; Hwang, K.; Park, H.H.; Kwak, S.I.; Kwon, J.H.; Ahn, S. A Resonant Reactive Shielding for Planar Wireless Power Transfer System in Smartphone Application. IEEE Trans. Electromagn. Compat. 2017, 59, 695–703. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, Y.; Guo, Y.; Liao, C.; Wang, L.; Wang, L. Null-Coupled Electromagnetic Field Canceling Coil for Wireless Power Transfer System. IEEE Trans. Transp. Electrific. 2017, 3, 464–473. [Google Scholar] [CrossRef]
- Mohammad, M.; Wodajo, E.T.; Choi, S.; Elbuluk, M.E. Modeling and Design of Passive Shield to Limit EMF Emission and to Minimize Shield Loss in Unipolar Wireless Charging System for EV. IEEE Trans. Power Electron. 2019, 34, 12235–12245. [Google Scholar] [CrossRef]
- Cruciani, S.; Campi, T.; Maradei, F.; Feliziani, M. Active Shielding Design for Wireless Power Transfer Systems. IEEE Trans. Electromagn. Compat. 2019, 61, 1953–1960. [Google Scholar] [CrossRef]
- Campi, T.; Cruciani, S.; Maradei, F.; Feliziani, M. Magnetic Field Mitigation by Multicoil Active Shielding in Electric Vehicles Equipped with Wireless Power Charging System. IEEE Trans. Electromagn. Compat. 2020, 62, 1398–1405. [Google Scholar] [CrossRef]
- Scher, A.D.; Mohammad, M.; Ozpineci, B.; Onar, O. Design and Optimization of Cancellation Coil Topologies for a Ferrite-Less Wireless EV Charging Pad. In Proceedings of the 2021 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 21–25 June 2021; pp. 1–7. [Google Scholar]
- Qin, R.; Li, J.; Sun, J.; Costinett, D. Shielding Design for High-Frequency Wireless Power Transfer System for EV Charging with Self-Resonant Coils. IEEE Trans. Power Electron. 2023, 38, 7900–7912. [Google Scholar] [CrossRef]
- Cruciani, S.; Campi, T.; Maradei, F.; Feliziani, M. Active Shielding Applied to an Electrified Road in a Dynamic Wireless Power Transfer (WPT) System. Energies 2020, 13, 2522. [Google Scholar] [CrossRef]
- Cruciani, S.; Campi, T.; Maradei, F.; Feliziani, M. Active Shielding Design and Optimization of a Wireless Power Transfer (WPT) System for Automotive. Energies 2020, 13, 5575. [Google Scholar] [CrossRef]
- Kim, H.; Song, C.; Kim, D.H.; Jung, D.H.; Kim, I.M.; Kim, Y.I.; Kim, J.; Ahn, S.; Kim, J. Coil design and measurements of automotive magnetic resonant wireless charging system for high-efficiency and low magnetic field leakage. IEEE Trans. Microw. Theory Tech. 2016, 64, 383–400. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Cheng, Z. Double-Coil Dynamic Shielding Technology for Wireless Power Transmission in Electric Vehicles. Energies 2021, 14, 5271. [Google Scholar] [CrossRef]
- Tan, L.; Elnail, K.E.I.; Ju, M.; Huang, X. Comparative Analysis and Design of the Shielding Techniques in WPT Systems for Charging EVs. Energies 2019, 12, 2115. [Google Scholar] [CrossRef]
- Choi, S.Y.; Gu, B.W.; Lee, S.W.; Lee, W.Y.; Huh, J.; Rim, C.T. Generalized Active EMF Cancel Methods for Wireless Electric Vehicles. IEEE Trans. Power Electron. 2013, 29, 5770–5783. [Google Scholar] [CrossRef]
- SAE J2954; Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology. Society of Automotive Engineers (SAE): Warrendale, PA, USA, 2022.
- Available online: https://www.packlitzwire.com/products/litz-wires/rupalit-classic/ (accessed on 4 January 2024).
- International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time-varying electric and magnetic fields for low frequencies (1 Hz–100 kHz). Health Phys. 2010, 99, 818–836. [Google Scholar] [CrossRef]
- ISO 14117:2019; Active Implantable Medical Devices—Electromagnetic Compatibility—EMC Test Protocols for Implantable Cardiac Pacemakers, Implantable Cardioverter Defibrillators and Cardiac Resynchronization Devices. ISO: Geneva, Switzerland, 2019.
L1 (μH) | L2 (μH) | M12 (μH) | R1 (mΩ) | R2 (mΩ) |
---|---|---|---|---|
47.86 | 39.93 | 4.00 | 22.22 | 31.51 |
αSH | |
2 active shielding coils | −1.9091 × 10−3 + j12.7359 × 10−3 |
−1.6459 × 10−3 + j1.6536 × 10−3 | |
4 active shielding coils | −1.0114 × 10−3 + j3.0928 × 10−3 |
−8.0523 × 10−6 + j705.1594 × 10−6 | |
2.8947 × 10−3 + j6.0339 × 10−3 | |
1.7971 × 10−3 + j16.3283 × 10−3 | |
6 active shielding coils | 1.2087 × 10−3 + j1.2649 × 10−3 |
−1.8118 × 10−3 + j5.1854 × 10−3 | |
1.2390 × 10−3 − j1.4751 × 10−3 | |
5.7300 × 10−3 − j4.8383 × 10−3 | |
3.4344 × 10−3 + j22.8283 × 10−3 | |
8.4429 × 10−3 + j7.4163 × 10−3 |
|I1| (A) | |I2| (A) | Ƞ (%) | |
---|---|---|---|
Without active shielding | 94.52 | 55.00 | 96.3 |
2 active shielding coils | 94.22 | 55.00 | 96.1 |
4 active shielding coils | 94.19 | 55.00 | 96.0 |
6 active shielding coils | 94.23 | 55.00 | 95.8 |
Maximum B (µT) | Average B (µT) | |||
---|---|---|---|---|
Left Volume | Right Volume | Left Volume | Right Volume | |
No shielding coil | 16.635 | 17.536 | 2.286 | 1.818 |
2 shielding coils | 8.198 | 12.025 | 1.673 | 1.473 |
4 shielding coils | 8.640 | 12.140 | 1.571 | 1.421 |
6 shielding coils | 7.783 | 9.124 | 1.467 | 1.305 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruciani, S.; Campi, T.; Maradei, F.; Feliziani, M. Array of Active Shielding Coils for Magnetic Field Mitigation in Automotive Wireless Power Transfer Systems. Energies 2024, 17, 4233. https://doi.org/10.3390/en17174233
Cruciani S, Campi T, Maradei F, Feliziani M. Array of Active Shielding Coils for Magnetic Field Mitigation in Automotive Wireless Power Transfer Systems. Energies. 2024; 17(17):4233. https://doi.org/10.3390/en17174233
Chicago/Turabian StyleCruciani, Silvano, Tommaso Campi, Francesca Maradei, and Mauro Feliziani. 2024. "Array of Active Shielding Coils for Magnetic Field Mitigation in Automotive Wireless Power Transfer Systems" Energies 17, no. 17: 4233. https://doi.org/10.3390/en17174233
APA StyleCruciani, S., Campi, T., Maradei, F., & Feliziani, M. (2024). Array of Active Shielding Coils for Magnetic Field Mitigation in Automotive Wireless Power Transfer Systems. Energies, 17(17), 4233. https://doi.org/10.3390/en17174233