The Advancements and Challenges in Organic Photovoltaic Cells: A Focused and Spotlight Review Using the Proknow-C
Abstract
:1. Introduction
2. Technological Roadmap of Organic Photovoltaic Cells (OPVs)
Description | Ref. | Cit. |
---|---|---|
Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review (Renewable and Sustainable Energy Reviews) | [20] | 876 |
A review of renewable energy utilization in islands (Renewable and Sustainable Energy Reviews) | [1] | 484 |
Power tracking techniques for efficient operation of photovoltaic array in solar applications (Renewable and Sustainable Energy Reviews) | [21] | 236 |
Recent progress in inkjet-printed solar cells (Journal of Materials Chemistry A) | [22] | 140 |
Benzodithiophenedione-based polymers: recent advances in organic photovoltaics (NPG Asia Materials) | [23] | 110 |
The role of physical techniques on the preparation of photoanodes for dye sensitized solar cells (International Journal of Photoenergy) | [24] | 96 |
Overview of high-efficiency organic photovoltaic materials and devices (Renewable and Sustainable Energy Reviews) | [25] | 89 |
A review on emerging barrier materials and encapsulation strategies for flexible perovskite and organic photovoltaics (Advanced Energy Materials) | [26] | 74 |
Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance (RSC Advances) | [27] | 51 |
Metal–organic framework nanosheets for enhanced performance of organic photovoltaic cells (Journal of Materials Chemistry A) | [28] | 41 |
Multistress testing of OPV modules for accurate predictive aging and reliability predictions (IEEE Journal of Photovoltaics) | [19] | 14 |
Thin film solar cells for indoor use (37th IEEE Photovoltaic Specialists Conference) | [14] | 12 |
Mechanism and analysis of thermal burn-in degradation of OPVs induced by evaporated HTL (IEEE Journal of Photovoltaics) | [29] | 12 |
Amorphous indium-zinc-oxide transparent conductors for thin film PV (37th IEEE Photovoltaic Specialists Conference) | [13] | 11 |
Outdoor assessment and performance evaluation of OPV modules (IEEE Journal of Photovoltaics) | [18] | 10 |
Hierarchical modeling of OPV-based crossbar architectures (14th IEEE International Conference on Nanotechnology) | [30] | 7 |
Métodos de aquisição experimental de curvas I-V de arranjos fotovoltaicos: uma revisão (Proceedings of the 11th Seminar on Power Electronics and Control) | [31] | 5 |
Photoluminescence of Electrochemically Etched Porous Silicon (13th International Conference on Transparent Optical Networks) | [12] | 4 |
Estudo e dimensionamento de um conversor para energy harvesting de luminosidade indoor utilizando painel solar fotovoltaico orgânico (Universidade Federal de Minas Gerais) | [32] | 4 |
Optical modelling of semi-transparent OPV devices (2016 International Conference on Numerical Simulation of Optoelectronic Devices) | [33] | 3 |
Selective machining of organic thin film photovoltaic cell by a ultra-short pulse laser (CLEO/Europe and EQEC 2009 Conference Digest) | [16] | 2 |
Novel measurement method of ion impurity in OPV materials (26th International Workshop on Active-Matrix Flat Panel Displays and Devices) | [34] | 2 |
A method to characterize OPV temperature, humidity and irradiance combined degradation-preliminary results (38th IEEE Photovoltaic Specialists Conference) | [35] | 1 |
Forecasting OPV outdoor performance, degradation rates and diurnal performances via machine learning (47th IEEE Photovoltaic Specialists Conference) | [17] | 1 |
Review of maximum power point tracking: history, developments and challenges (International Journal of Electrical, Electronics and Computer Engineering) | [36] | 0 |
Induction of internal capacitance effect of organic photovoltaic device (OPV) by Real-Time One-Sweep Method (RTOSM) in I–V measurement (IEEE 40th Photovoltaic Specialist Conference) | [37] | 0 |
Electrochemical synthesis of transition metal oxides and polymer layers for OPV fabrication (24th Microoptics Conference) | [15] | 0 |
Simulação de um conversor boost com MPPT digital para otimizar a geração de energia de uma linha de um Filme Fotovoltaico Orgânico (OPV) perante mudanças de irradiância (Universidade Federal da Integração Latino-Americana) | [38] | 0 |
Organic Photovoltaic (OPV) with Electronic Protection System: A Systematic Review (Brazilian Archives of Biology and Technology) | [39] | 0 |
3. Spotlight Research
Active Area Materials (w:w) 1 | Deposition Techniques | Area (cm2) | JSC (mA/cm2) | VOC (V) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|---|---|
PM6/PYFT-o (1:1) | spin coating | - | 23.75 | 0.902 | 70.72 | 15.23 | [40] |
PM6:Y6 2 (1:1.2) | spin coating | 0.07 | 25.2 | 0.82 | 76.1 | 15.7 | [47] |
PM6:L8-BO:BTP-eC9 3 (1:0.6:0.6) | spin coating | 1 | 25.67 | 0.86 | 71.40 | 15.71 | [41] |
PM6:Y6:Y7:Y18:N3: BTP-eC9 (1:0.24:0.24:0.24:0.24:0.24) | doctor blade | 0.1 | 28.3 | 0.87 | 73.0 | 17.6 | [43] |
PM7-Thy10:L8-BO (1:1.2) | spin coating | 0.04 | 25.64 | 0.88 | 76 | 17.05 | [48] |
PM6:L8-BO:BTP-eC9 (1:0:65:0.65) | spin coating | 1.05 | 27.98 | 0.88 | 74.53 | 18.41 | [44] |
PM6:BTP-eC9 (1:1.2) | spin coating | ~0.03 | 28.69 | 0.842 | 77.17 | 18.67 | [46] |
PM6:BTP-eC9:L8-BO-F | spin coating | ~0.03 | 28.56 | 0.856 | 77.82 | 19.05 | [46] |
PM6:TAA-1 4 (1:1.2) | spin coating | 0.06 | 27.2 | 0.890 | 80.0 | 19.3 | [42] |
PM6:Y6:2PACz (1:1.2:0.05) | spin coating | 1 | 0.146 5 | 0.720 5 | 77.0 5 | 36.3 5 | [45] |
4. Discussion
5. Conclusions
6. Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuang, Y.; Zhang, Y.; Zhou, B.; Li, C.; Cao, Y.; Li, L.; Zeng, L. A review of renewable energy utilization in islands. Renew. Sustain. Energy Rev. 2016, 59, 504–513. [Google Scholar] [CrossRef]
- Moser, M.; Wadsworth, A.; Gasparini, N.; McCulloch, I. Challenges to the success of commercial organic photovoltaic products. Adv. Energy Mater. 2021, 11, 2100056. [Google Scholar] [CrossRef]
- Worku, M.Y.; Hassan, M.A.; Maraaba, L.S.; Shafiullah, M.; Elkadeem, M.R.; Hossain, M.I.; Abido, M.A. A Comprehensive Review of Recent Maximum Power Point Tracking Techniques for Photovoltaic Systems under Partial Shading. Sustainability 2023, 15, 11132. [Google Scholar] [CrossRef]
- Fazal, M.A.; Rubaiee, S. Progress of PV cell technology: Feasibility of building materials, cost, performance, and stability. Solar Energy 2023, 258, 203–219. [Google Scholar] [CrossRef]
- Carvalho, G.D.G.; Sokulski, C.C.; Silva, W.V.; Carvalho, H.G.; Moura, R.V.; Francisco, A.C.; Veiga, C.P. Bibliometrics and systematic reviews: A comparison between the Proknow-C and the Methodi Ordinatio. J. Informetr. 2020, 14, 101043. [Google Scholar] [CrossRef]
- Ensslin, L.; Ensslin, S.R.; Lacerda, R.T.O.; Tasca, J.E. Processo de Análise Sistêmica. Processo técnico com patente de registro pendente junto ao INPI. 2010. Available online: https://scholar.google.com.br/citations?view_op=view_citation&hl=pt-BR&user=FRhgIxgAAAAJ&citation_for_view=FRhgIxgAAAAJ:qjMakFHDy7sC (accessed on 22 July 2024).
- Maciel, J.N.; Ledesma, J.J.G.; Ando, O.H., Jr. Forecasting solar power output generation: A systematic review with the Proknow-C. IEEE Lat. Am. Trans. 2021, 19, 612–624. [Google Scholar] [CrossRef]
- Regatieri, H.R.; Ando, O.H., Jr.; Salgado, J.R.C. Systematic Review of Lithium-Ion Battery Recycling Literature Using ProKnow-C and Methodi Ordinatio. Energies 2022, 15, 1485. [Google Scholar] [CrossRef]
- de Assis, S.C.; Morgado, D.L.; Scheidt, D.T.; de Souza, S.S.; Cavallari, M.R.; Ando, O.H., Jr.; Carrilho, E. Review of Bacterial Nanocellulose-Based Electrochemical Biosensors: Functionalization, Challenges, and Future Perspectives. Biosensors 2023, 13, 142. [Google Scholar] [CrossRef]
- Silva, E.A.d.; Filho, W.M.C.; Cavallari, M.R.; Ando, O.H., Jr. Self-Powered System Development with Organic Photovoltaic (OPV) for Energy Harvesting from Indoor Lighting. Electronics 2024, 13, 2518. [Google Scholar] [CrossRef]
- Torres, N.N.S.; Ledesma, J.J.G.; Cavallari, M.R.; Ando, O.H., Jr. Amazon Kit: Proposal for an Innovative Energy Generation and Storage Solution for Sustainable Development of Isolated Communities. Sustainability 2024, 16, 6280. [Google Scholar] [CrossRef]
- Łukasiak, Z.; Zawadzka, A.; Plóciennik, P.; Korcala, A.; Bartkiewicz, K. Photoluminescence of electrochemically etched porous silicon coated with small-molecule based thin organic films. In Proceedings of the 13th International Conference on Transparent Optical Networks, Stockholm, Sweden, 26–30 June 2011. [Google Scholar] [CrossRef]
- Perkins, J.; Gennett, T.; Galante, M.; Gillaspie, D.; Ginley, D. Amorphous indium-zinc-oxide transparent conductors for thin film PV. In Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011. [Google Scholar] [CrossRef]
- Yang, P.C.; Chan, I.M.; Lin, C.H.; Chang, Y.L. Thin film solar cells for indoor use. In Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011. [Google Scholar] [CrossRef]
- Charfi, O.; Frericks, M.; Čehovski, M.; Johannes, H.-H.; Kowalsky, W. Electrochemical synthesis of transition metal oxides and polymer layers for OPV fabrication. In Proceedings of the 24th Microoptics Conference (MOC), Toyama, Japan, 17–20 November 2019. [Google Scholar] [CrossRef]
- Ito, Y.; Miyata, D.; Tanabe, R.; Ichihara, M.; Abe, Y.; Matsumoto, E.; Taima, T.; Yoshida, Y.; Masuda, A. Selective machining of organic thin film photovoltaic cell by a ultra-short pulse laser. In Proceedings of the CLEO/Europe and EQEC 2009 Conference Digest, Munich, Germany, 14–19 June 2009. [Google Scholar] [CrossRef]
- David, T.; Amorim, G.; Bagnis, D.; Bristow, N.; Selbach, S.; Kettle, J. Forecasting OPV outdoor performance, degradation rates and diurnal performances via machine learning. In Proceedings of the 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020. [Google Scholar] [CrossRef]
- Dolara, A.; di Fazio, G.; Leva, S.; Manzolini, G.; Simonetti, R.; Terenzi, A. Outdoor assessment and performance evaluation of OPV modules. IEEE J. Photovolt. 2021, 11, 391–399. [Google Scholar] [CrossRef]
- Stoichkov, V.; Kumar, D.; Tyagi, P.; Kettle, J. Multistress testing of OPV modules for accurate predictive aging and reliability predictions. IEEE J. Photovolt. 2018, 8, 1058–1065. [Google Scholar] [CrossRef]
- Reisi, A.R.; Moradi, M.H.; Jamasb, S. Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review. Renew. Sustain. Energy Rev. 2013, 19, 433–443. [Google Scholar] [CrossRef]
- Ahmad, R.; Murtaza, A.F.; Sher, H.A. Power tracking techniques for efficient operation of photovoltaic array in solar applications—A review. Renew. Sustain. Energy Rev. 2019, 101, 82–102. [Google Scholar] [CrossRef]
- Karunakaran, S.K.; Arumugam, G.M.; Yang, W.; Ge, S.; Khan, S.N.; Lin, X.; Yang, G. Recent progress in inkjet-printed solar cells. J. Mater. Chem. A 2019, 7, 13873–13902. [Google Scholar] [CrossRef]
- Zheng, B.; Huo, L.; Li, Y. Benzodithiophenedione-based polymers: Recent advances in organic photovoltaics. NPG Asia Mater. 2020, 12, 3. [Google Scholar] [CrossRef]
- Ahmadi, S.; Asim, N.; Alghoul, M.A.; Hammadi, F.Y.; Saeedfar, K.; Ludin, N.A.; Zaidi, S.H.; Sopian, K. The role of physical techniques on the preparation of photoanodes for dye sensitized solar cells. Int. J. Photoenergy 2014, 2014, 198734. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Tan, S. Overview of high-efficiency organic photovoltaic materials and devices. Renew. Sustain. Energy Rev. 2015, 52, 1527–1538. [Google Scholar] [CrossRef]
- Sutherland, L.J.; Weerasinghe, H.C.; Simon, G.P. A Review on Emerging Barrier Materials and Encapsulation Strategies for Flexible Perovskite and Organic Photovoltaics. Adv. Energy Mater. 2021, 11, 2101383. [Google Scholar] [CrossRef]
- Solak, E.K.; Irmak, E. Advances in organic photovoltaic cells: A comprehensive review of materials, technologies, and performance. RSC Adv. 2023, 13, 12244–12269. [Google Scholar] [CrossRef]
- Sasitharan, K.; Bossanyi, D.G.; Vaenas, N.; Parnell, A.J.; Clark, J.; Iraqi, A.; Lidzey, D.G.; Foster, J.A. Metal–organic framework nanosheets for enhanced performance of organic photovoltaic cells. J. Mater. Chem. A 2020, 8, 6067–6075. [Google Scholar] [CrossRef]
- Sung, Y.-M.; Huang, Y.-C.; Chien, F.S.-S.; Tsao, C.-S. Mechanism and analysis of thermal burn-in degradation of OPVs induced by evaporated HTL. IEEE J. Photovolt. 2019, 9, 694–699. [Google Scholar] [CrossRef]
- Zahir, A.; Mahmoud, A.; Pulimeno, A.; Graziano, M.; Piccinini, G.; Lugli, P. Hierarchical modeling of OPV-based crossbar architectures. In Proceedings of the 14th IEEE International Conference on Nanotechnology, Toronto, ON, Canada, 18–21 August 2014. [Google Scholar] [CrossRef]
- Treter, M.E.; Michels, L. Métodos de aquisição experimental de curvas I-V de arranjos fotovoltaicos: Uma revisão. In Proceedings of the 11th Seminar on Power Electronics and Control (SEPOC 2018), Santa Maria, Brazil, 21–24 October 2018. [Google Scholar]
- Rios, V.H. Estudo e Dimensionamento de um Conversor para Energy Harvesting de Luminosidade Indoor Utilizando Painel Solar Fotovoltaico Orgânico. Bachelor’s Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2020. [Google Scholar]
- Upama, M.B.; Wright, M.; Elumalai, N.K.; Mahmud, M.A.; Wang, D.; Chan, K.H.; Xu, C.; Haque, F.; Uddin, A. Optical modelling of semi-transparent OPV devices. In Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Sydney, Australia, 11–15 July 2016. [Google Scholar] [CrossRef]
- Inoue, M.; Oyabu, N.; Kumoda, Y.; Suenaga, Y.; Ishii, T.; Naito, H. Novel measurement method of ion impurity in OPV materials. In Proceedings of the 26th International Workshop on Active-Matrix Flat Panel Displays and Devices (AM-FPD), Kyoto, Japan, 2–5 July 2019. [Google Scholar] [CrossRef]
- Kam-Lum, E. A method to characterize OPV temperature, humidity and irradiance combined degradation- preliminary results. In Proceedings of the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012. [Google Scholar] [CrossRef]
- Soni, S. Review of maximum power point tracking: History, developments and challenges. Int. J. Electr. Electron. Comput. Eng. 2018, 7, 7–10. [Google Scholar]
- Long, Y.-S.; Hsu, S.-T.; Li, Y.-T.; Wu, T.-C. Induction of internal capacitance effect of organic photovoltaic device (OPV) by Real-Time One-Sweep Method (RTOSM) in I–V measurement. In Proceedings of the IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014. [Google Scholar] [CrossRef]
- Mota, A.C.S. Simulação de um Conversor Boost com MPPT Digital para Otimizar a Geração de Energia de uma Linha de um Filme Fotovoltaico Orgânico (OPV) Perante Mudanças de Irradiância. Bachelor’s Thesis, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil, 2021. [Google Scholar]
- Izidoro, C.L.; Chaves Filho, W.M.; Cavallari, M.R.; Ando, O.H., Jr. Organic photovoltaic (OPV) with electronic protection system: A systematic review. Braz. Arch. Biol. Technol. 2024, 67, e24230786. [Google Scholar] [CrossRef]
- Li, S.; Gao, M.; Zhou, K.; Li, X.; Xian, K.; Zhao, W.; Chen, Y.; He, C.; Ye, L. Achieving record-high stretchability and mechanical stability in organic photovoltaic blends with a dilute-absorber strategy. Adv. Mater. 2024, 36, 2307278. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, X.; Wu, Q.; Han, Y.; Ding, G.; Wang, Y.; Kong, Y.; Chen, T.; Wang, M.; Zhang, Y.; et al. Thorough optimization for intrinsically stretchable organic photovoltaics. Adv. Mater. 2024, 36, 2307280. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; He, C.; Chen, T.; Zheng, J.; Sun, R.; Fang, J.; Chen, Y.; Pan, Y.; Yan, K.; Li, C.-Z.; et al. Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency. Energy Environ. Sci. 2023, 16, 2262–2273. [Google Scholar] [CrossRef]
- Paleti, S.H.K.; Hultmark, S.; Han, J.; Wen, Y.; Xu, H.; Chen, S.; Järsvall, E.; Jalan, I.; Villalva, D.R.; Sharma, A.; et al. Hexanary blends: A strategy towards thermally stable organic photovoltaics. Nat. Commun. 2023, 14, 4608. [Google Scholar] [CrossRef]
- Guan, S.; Li, Y.; Xu, C.; Yin, N.; Xu, C.; Wang, C.; Wang, M.; Xu, Y.; Chen, Q.; Wang, D.; et al. Self-assembled interlayer enables high-performance organic photovoltaics with power conversion efficiency exceeding 20%. Adv. Mater. 2024, 36, 2400342. [Google Scholar] [CrossRef]
- Kim, T.H.; Park, N.W.; Saeed, M.A.; Jeong, S.Y.; Woo, H.Y.; Park, J.H.; Shim, J.W. Record indoor performance of organic photovoltaics with long-term stability enabled by self-assembled monolayer-based interface management. Nano Energy 2023, 112, 108429. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, W.; Liu, S.-C.; Lin, C.-T.; Fan, B.; Li, Y.; Gao, H.; Liu, M.; Lin, F.R.; Jen, A.K. Durable Organic Photovoltaics Enabled by a Morphology-Stabilizing Hole-Selective Self-Assembled Monolayer. Adv. Energy Mater. 2024, 14, 2303354. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Wan, Q.; Seo, S.; Lee, S.-W.; Lee, J.; Jeon, H.; Kim, T.-S.; Kim, B.J.; Thompson, B.C. High-Performance Intrinsically Stretchable Polymer Solar Cell with Record Efficiency and Stretchability Enabled by Thymine-Functionalized Terpolymer. J. Am. Chem. Soc. 2023, 145, 11914–11920. [Google Scholar] [CrossRef]
- Gopikrishna, P.; Rhee, J.; Yoon, S.; Um, D.; Jin, H.; Jun, Y.; Choi, H.; Son, H.J.; Kim, B. Efficient and Scalable Large-area organic solar cells by asymmetric nonfullerene acceptors based on 9H-indeno[1,2-b]pyrazine-2,3,8-tricarbonitrile. Adv. Funct. Mater. 2023, 33, 2305541. [Google Scholar] [CrossRef]
- Liao, Y.-J.; Hsieh, Y.-C.; Chen, J.-T.; Yang, L.-S.; Jian, X.-Z.; Lin, S.-H.; Lin, Y.-R.; Chen, L.-M.; Li, F.; Hsiao, Y.-T.; et al. Large-area nonfullerene organic photovoltaic modules with a high certified power conversion efficiency. ACS Appl. Mater. Interfaces 2023, 15, 7911–7918. [Google Scholar] [CrossRef]
- Shen, Y.-F.; Zhang, H.; Zhang, J.; Tian, C.; Shi, Y.; Qiu, D.; Zhang, Z.; Lu, K.; Wei, Z. In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules. Adv. Mater. 2023, 35, 2209030. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Gumpert, F.; Lohbreier, J.; Morin, P.-O.; Vohra, V.; Liu, Y.; Zhou, Y.; Brabec, C.J.; Egelhaaf, H.-J.; Distler, A. Large-area organic photovoltaic modules with 14.5% certified world record efficiency. Joule 2024, 8, 970–978. [Google Scholar] [CrossRef]
- Jia, Z.; Pan, J.; Chen, X.; Li, X.; Liu, T.; Zhu, H.; Yao, J.; Yanc, B.; Yang, Y. Eco-friendly volatile additive enabling efficient large-area organic photovoltaic module processed with non-halogenated solvent. Energy Environ. Sci. 2024, 17, 3908–3916. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, Y.; Wu, J.; Yi, X.; Zhao, M.; Huang, M.; Liu, J.; Xie, Z. Removable additive assists blade-coated large-area organic solar cell modules fabricated with non-halogenated solvents achieving efficiency over 16%. Adv. Funct. Mater. 2024, 2401558. [Google Scholar] [CrossRef]
Active Area Materials (w:w) 1 | Deposition Techniques | Area (cm2) | JSC (mA/cm2) | VOC (V) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|---|---|
PM6-PBDBT(55):IPC1CN-BBO-IC2Cl (1:1) 2 | blade coating | 58.50 | 2.209 | 8.16 | 63.7 | 11.28 | [49] |
PM6:Y6 2 | blade coating | 216 | 1.90 | 12.75 | 48.5 | 11.72 | [50] |
PM6:Qx-1 (1:1.5) 2 | slot-die coating | 30 | 3.53 | 5.236 | 66 | 12.20 | [51] |
PM6:Y6-C12:PC61BM (1:1.2:0.24) 2 | blade coating | 204 | 0.608 | 31.5 | 76.0 | 15.08 | [52] |
PM6:BO-4Cl (1:1.2) | spin coating | 19.31 | 3.66 | 5.945 | 72.39 | 15.74 | [53] |
PM6/BTP-eC9 3 | blade coating | 28.82 | 1.659 | 13.15 | 73.50 | 16.04 | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leandro, P.G.M.; Salvadori, F.; Izquierdo, J.E.E.; Cavallari, M.R.; Ando Junior, O.H. The Advancements and Challenges in Organic Photovoltaic Cells: A Focused and Spotlight Review Using the Proknow-C. Energies 2024, 17, 4203. https://doi.org/10.3390/en17174203
Leandro PGM, Salvadori F, Izquierdo JEE, Cavallari MR, Ando Junior OH. The Advancements and Challenges in Organic Photovoltaic Cells: A Focused and Spotlight Review Using the Proknow-C. Energies. 2024; 17(17):4203. https://doi.org/10.3390/en17174203
Chicago/Turabian StyleLeandro, Paulo Gabriel Martins, Fabiano Salvadori, José Enrique Eirez Izquierdo, Marco Roberto Cavallari, and Oswaldo Hideo Ando Junior. 2024. "The Advancements and Challenges in Organic Photovoltaic Cells: A Focused and Spotlight Review Using the Proknow-C" Energies 17, no. 17: 4203. https://doi.org/10.3390/en17174203
APA StyleLeandro, P. G. M., Salvadori, F., Izquierdo, J. E. E., Cavallari, M. R., & Ando Junior, O. H. (2024). The Advancements and Challenges in Organic Photovoltaic Cells: A Focused and Spotlight Review Using the Proknow-C. Energies, 17(17), 4203. https://doi.org/10.3390/en17174203