Disentangling the Intelligentization–Carbon Emission Nexus within China’s Logistics Sector: An Econometric Approach
Abstract
:1. Introduction
2. Literature Review
3. Assessing the Intelligence Level of Logistics Industry
3.1. Indicator System
3.2. Evaluation Method
3.3. Analysis of China’s Logistics Intelligentization Level
4. Model Specification
4.1. Theoretical Model
4.2. Variable Selection and Data Processing
4.3. Endogenous Issues Discussion
- Quantity of intelligent logistics policy documents
- 2.
- The intelligentization level of adjacent provinces
- 3.
- The number of post mails in 1979–1992
- 4.
- The interaction item of the topography feature and internet use scale
4.4. Estimation Methods
5. Empirical Results Analysis
5.1. Regression Results of Basic Model
5.2. Regression Results with Instrumental Variables
5.3. Robustness Test
- Re-measure intelligentization level
- 2.
- Replacement of explanatory variables
- 3.
- Regional heterogeneity analysis
- 4.
- Quantile regression
5.4. Mediating Pathways Analysis
5.5. Moderating Mechanisms Analysis
6. Conclusions and Policy Recommendation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldfarb, A.; Tucker, C. Digital Economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Pu, S.; Lam Jasmine, S.L. Greenhouse gas impact of digitalizing shipping documents: Blockchain vs. centralized system. Transp. Res. Part E Logist. Transp. Rev. 2021, 97, 102942. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Dong, X.; Taghizadeh-Hesary, F. Assessing the Digital Economy and its Carbon-Mitigation Effects: The case of China. Energy Econ. 2022, 113, 106198. [Google Scholar] [CrossRef]
- Nikhil, J.; Hendrik, W.J.; Ernst, W.; Marko, H. How key-enabling technologies’ regimes influence sociotechnical transitions: The impact of artificial intelligence on decarbonization in the steel industry. J. Clean. Prod. 2022, 370, 133624. [Google Scholar]
- Magazzino, C.; Mele, M.; Morelli, G.; Schneider, N. The Nexus between Information Technology and Environmental Pollution: Application of a New Machine Learning Algorithm to OECD Countries. Util. Policy 2021, 72, 101256. [Google Scholar] [CrossRef]
- He, N.; Jian, M.; Liu, S.; Wu, J.; Chen, X. Do publicly developed logistics parks cause carbon emission transfer? Evidence from Chengdu. Transp. Res. Part D Transp. Environ. 2023, 125, 103988. [Google Scholar] [CrossRef]
- Lin, J.Y.; Nowak, A.Z. New Structural Economics for Less Advanced Countries; University of Warsaw Faculty of Management Press: Warsaw, Poland, 2017. [Google Scholar]
- Liu, W.; Wang, S.; Lin, Y.; Xie, D.; Zhang, J. Effect of Intelligent Logistics Policy on Shareholder Value: Evidence from Chinese Logistics Companies. Transp. Res. Part E Logist. Transp. Rev. 2020, 137, 101928. [Google Scholar] [CrossRef]
- Saidi, S.; Mani, V.; Mefteh, H.; Shahbaz, M.; Akhtar, P. Dynamic Linkages Between Transport, Logistics, Foreign Direct Investment, and Economic Growth: Empirical Evidence from Developing Countries. Transp. Res. Part A Policy Pract. 2020, 141, 277–293. [Google Scholar] [CrossRef]
- Kos-Labedowicz, J.; Urbanek, A. Do information and communications technologies influence transport demand? An exploratory study in the European Union. Transp. Res. Procedia 2017, 25, 2664–2680. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and Energy: How does Internet Development Affect China’s Energy Consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, J.; Wu, L.; Ma, C.; Zou, C.; Wei, N.; Mao, H. Speed-guided intelligent transportation system helps achieve low-carbon and green traffic: Evidence from real-world measurements. J. Clean. Prod. 2020, 268, 122230. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, K.; Dong, X.; Dong, K. Is smart transportation associated with reduced carbon emissions? The case of China. Energy Econ. 2022, 105, 105715. [Google Scholar] [CrossRef]
- Kirch, M.; Poenicke, O.; Richter, K. RFID in logistics and production-applications, research and visions for smart logistics zones. Procedia Eng. 2017, 178, 526–533. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Shi, Y.; Lee Paul, T.W.; Liang, Y. Intelligent logistics transformation problems in efficient commodity distribution. Transp. Res. Part E Logist. Transp. Rev. 2022, 163, 102735. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Fabian, L.; Coiacetto, E. Challenges to urban transport sustainability and smart transport in a tourist city: The Gold Coast. Open Transp. J. 2008, 2, 29–46. [Google Scholar] [CrossRef]
- Song, Y.; Yu, F.R.; Zhou, L.; Yang, X.; He, Z. Applications of the internet of things(IoT)in smart logistics:a comprehensive survey. IEEE Internet Things J. 2021, 6, 250–274. [Google Scholar]
- Dong, F. Key problems and countermeasures of smart logistics industry development under the New development pattern. Econ. Rev. J. 2021, 10, 77–84. [Google Scholar]
- Barbara, J.K. Intelligent Transportation Systems: An Economic and Environmental Policy Assessment. Transp. Res. Part A Policy Pract. 1996, 30, 1–10. [Google Scholar]
- Banister, D. Impact of information and communications technology on transport. Transp. Rev. 2004, 4, 611–632. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Li, W.; Ma, R. Carbon emission measurement of island cities and its influencing factors: A case study of Zhoushan city, Zhejiang province. Geogr. Res. 2018, 05, 1023–1033. [Google Scholar]
- Lau, C.K.; Gozgor, G.; Mahalik, M.K.; Patel, G.; Li, J. Introducing a new measure of energy transition: Green quality of energy mix and its impact on CO2 emissions. Energy Econ. 2023, 122, 106702. [Google Scholar] [CrossRef]
- Sun, X.; Xiao, S.; Ren, V.; Xu, B. Time-varying impact of information and communication technology on carbon emissions. Energy Econ. 2023, 118, 106492. [Google Scholar] [CrossRef]
- Chen, L.; Wang, K. The spatial spillover effect of low-carbon city pilot scheme on green efficiency in China’s cities: Evidence from a quasi-natural experiment. Energy Econ. 2022, 110, 106018. [Google Scholar] [CrossRef]
- Bai, D.; Dong, Q.; Khan, S.A.R.; Li, J.; Wang, D.; Chen, Y.; Wu, J. Spatio-temporal heterogeneity of logistics CO2 emissions and their influencing factors in China: An analysis based on spatial error model and geographically and temporally weighted regression model. Environ. Technol. Innov. 2022, 28, 102791. [Google Scholar] [CrossRef]
- Hu, S.; Yang, J.; Jiang, Z.; Ma, M.; Cai, W. CO2 emission and energy consumption from automobile industry in China: Decomposition and analyses of driving forces. Processes 2021, 9, 810. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, J.; Liu, C. Spatial effects of digital economy development on urban carbon emissions. Geogr. Res. 2022, 41, 111–129. [Google Scholar]
- Chen, C.; Luo, Y.; Zou, H.; Huang, J. Understanding the driving factors and finding the pathway to mitigating carbon emissions in China’s Yangtze River Delta region. Energy 2023, 278, 127897. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 4th ed.; The Free Press: New York, NY, USA, 2010. [Google Scholar]
- Bunker, D.; Kautz, K.-H.; Nguyen, A.L.T. Role of value compatibility in it adoption. J. Inf. Technol. 2007, 22, 69–78. [Google Scholar] [CrossRef]
- Oliveira, T.; Thomas, M.; Baptista, G.; Campos, F. Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Comput. Hum. Behav. 2016, 61, 404–414. [Google Scholar] [CrossRef]
- Charfeddine, L.; Kahia, M. Do information and communication technology and renewable energy use matter for carbon dioxide emissions reduction? Evidence from the Middle East and North Africa region. J. Clean. Prod. 2021, 327, 129410. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Ramsey, T.S.; Hewings, G.J. Will researching digital technology really empower green development? Technol. Soc. 2021, 66, 101638. [Google Scholar] [CrossRef]
- Charfeddine, L.; Hussain, B.; Montassar, K. Analysis of the Impact of Information and Communication Technology, Digitalization, Renewable Energy and Financial Development on Environmental Sustainability. Renew. Sustain. Energy Rev. 2024, 201, 114609. [Google Scholar] [CrossRef]
- Liang, H.; Lin, S.; Wang, J. Impact of technological innovation on carbon emissions in China’s logistics industry: Based on the rebound effect. J. Clean. Prod. 2022, 377, 134371. [Google Scholar] [CrossRef]
- Pan, X.; Li, M.; Wang, M.; Zong, T.; Song, M. The effects of a smart logistics policy on carbon emissions in China: A difference-in-differences analysis. Transp. Res. Part E 2020, 137, 101939. [Google Scholar] [CrossRef]
- Ding, H.; Liu, C. Carbon Emission Efficiency of China’s Logistics Industry: Measurement, Evolution Mechanism, and Promotion Countermeasures. Energy Econ. 2024, 129, 107221. [Google Scholar] [CrossRef]
- Kostrzewski, M.; Kosacka-Olejnik, M.; Werner-Lewandowska, K. Assessment of innovativeness level for chosen solutions related to Logistics 4.0. Procedia Manuf. 2019, 38, 621–628. [Google Scholar] [CrossRef]
- Xu, K. The influence factors and mechanism of intelligent logistics on rural industry integration development. J. Commer. Econ. 2022, 16, 110–112. [Google Scholar]
- Zheng, Y.M.; Lv, Q.; Wang, Y.D. Economic Development, Technological Progress, and Provincial Carbon Emissions Intensity: Empirical Research Based on the Threshold Panel Model. Appl. Econ. 2022, 54, 3495–3504. [Google Scholar] [CrossRef]
- Dietz, T.; Rose, E.A. Rethinking the environmental impact of population affluence and technology. Hum. Ecol. Rev. 1994, 1, 277–300. [Google Scholar]
- Xing, L.; Khan, Y.A.; Arshed, N.; Iqbal, M. Investigating the Impact of Economic Growth on Environment Degradation in Developing Economies Through STIRPAT Model Approach. Renew. Sustain. Energy Rev. 2023, 182, 113365. [Google Scholar] [CrossRef]
- Wang, S.; Hua, G.; Li, C. Urbanization, Air Quality, and the Panel Threshold Effect in China Based on Kernel Density Estimation. Emerg. Mark. Financ. Trade 2019, 55, 3575–3590. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, T.; Li, R. Economic Complexity and Ecological Footprint: The Role of Energy Structure, Industrial Structure, and Labor Force. J. Clean. Prod. 2023, 412, 137389. [Google Scholar] [CrossRef]
- Yeh, J.C.; Liao, C.H. Impact of population and economic growth on carbon emissions in Taiwan using an analytic tool STIRPAT. Sustain. Environ. Res. 2016, 2, 41–48. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, S.; Ma, W.; Liu, X.; Cai, B.; Liu, J.; Jia, X.; Zhang, M.; Chen, Y.; Xu, L. Analysis of influencing factors of carbon dioxide emission in cities above prefecture level in China: Based on extended STIRPAT model. China Popul. Resour. Environ. 2018, 28, 45–54. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IGES: Tokyo, Japan, 2006. [Google Scholar]
- Lewbel, A. Using heteroscedasticity to identify and Estimate Mismeasured and Endogenous Regressor Models. J. Bus. Econ. Stat. 2012, 30, 67–80. [Google Scholar] [CrossRef]
- Joshua, A.; Jörn-Steffen, P. Mastering Mostly Harmless Econometrics, 1st ed.; Lang, J.; Li, J., Translators; Truth & Wisdom Press: Shanghai, China, 2012. [Google Scholar]
- Chen, Z.; Kahn, M.E.; Liu, Y.; Wang, Z. The Consequences of Spatially Differentiated Water Pollution Regulation in China. Natl. Bur. Econ. Res. 2016, 88, 22507. [Google Scholar]
- Jefferson, G.H.; Tanaka, S.; Yin, W. Environmental Regulation and Industrial Performance: Evidence from Unexpected Externalities in China. In SSRN Working Papers; SSRN: Rochester, NY, USA, 2013. [Google Scholar]
- Hering, L.; Poncet, S. Environmental Policy and Exports: Evidence from Chinese Cities. J. Environ. Econ. Manag. 2014, 68, 296–318. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data; Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment rest rictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Girma, S. A Quasi-Differencing Approach to Dynamic Modelling from a Time Series of Independent Cross-Sections. J. Econom. 2000, 98, 365–383. [Google Scholar] [CrossRef]
- Windmeijer, F. A Finite Sample Correction for The Variance of Linear Efficient Two-Step GMM Estimators. J. Econom. 2005, 126, 25–51. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Bera, A.K.; Galvao, A.F.; Montes-Rojas, G.V.; Park, S.Y. Asymmetric laplace regression: Maximum likelihood, maximum entropy and quantile regression. J. Econ. Methods 2016, 5, 79–101. [Google Scholar] [CrossRef]
- Sherwood, B.; Wang, L. Partially linear additive quantile regression in ultrahigh dimension. Annu. Stat. 2016, 44, 288–317. [Google Scholar] [CrossRef]
- Karami, Z.; Kashef, R. ST planning: Data, models, and algorithms. Transp. Eng. 2020, 2, 100013. [Google Scholar] [CrossRef]
- Sobel, M.E. Asymptotic confidence intervals for indirect effects in structural equation models. In Sociological Methodology; Leinhardt, S., Ed.; American Sociological Association: Washington, DC, USA, 1982; pp. 290–312. [Google Scholar]
- MacKinnon, D.P.; Lockwood, C.M.; Hoffman, J.M.; West, S.G.; Sheets, V. A comparison of methods to test mediation and other intervening variable effects. Psychol. Methods 2002, 7, 83–104. [Google Scholar] [CrossRef]
- Judd, C.M.; Kenny, D.A. Process Analysis: Estimating Mediation in Treatment Evaluations. Eval. Rev. 1981, 5, 602–619. [Google Scholar] [CrossRef]
- Judd, C.M.; Kenny, D.A. Estimating the Effects of Social Interventions; Cambridge University Press: New York, NY, USA, 1981. [Google Scholar]
- Dippel, C.; Ferrara, A.; Heblich, S. Causal mediation analysis in instrumental-variables regressions. Stata J. 2020, 20, 613–626. [Google Scholar] [CrossRef]
Impact on Carbon Emission | Technology Mechanism | Structure Mechanism | Scale Mechanism | China | Logistics | |
---|---|---|---|---|---|---|
Wang et al. [33] | positive | - | - | ✓ | ✓ | |
Wang et al. [3] | positive | - | - | + | 🗴 | ✓ |
Nikhi et al. [4] | positive | - | ✓ | ✓ | ||
Goldfarb et al. [1] | negative | - | ✓ | ✓ | ||
Yang et al. [12] | negative | - | ✓ | 🗴 | ||
Pu & Lam [2] | negative | + | ✓ | 🗴 | ||
Ren et al. [12] | negative | - | + | 🗴 | ✓ | |
Zhao et al. [13] | negative | - | - | + | 🗴 | 🗴 |
Kos-Labedowicz & Urbanek [10] | mixed | - | + | ✓ | ✓ | |
Magazzino et al. [5] | mixed | + | + | ✓ | ✓ | |
Chen et al. [28] | mixed | - | - | 🗴 | ✓ | |
Charfeddine et al. [34] | mixed | - | + | 🗴 | 🗴 | |
Liang et al. [35] | rebound effect | - | 🗴 | 🗴 | ||
Sun et al. [23] | rebound effect | - | + | ✓ | ✓ | |
Pan et al. [36] | not mentioned | + | 🗴 | 🗴 | ||
Liu et al. [15] | not mentioned | + | 🗴 | 🗴 | ||
Ding & Liu [37] | not mentioned | - | - | + | 🗴 | 🗴 |
Dimension | Specific Indicators | Indicator Description | Reference |
---|---|---|---|
Input level | Intelligent human capital investment | Proportion of people with higher education multiplied by logistics employees | Kos-Labedowicz & Urbanek [10] Dong [18] Sun [23] |
Intelligent equipment investment | Proportion of social fixed investment in information transmission, computer service and software industry to added value of logistics industry | ||
Interoperability level | Internet informatization level | Internet penetration | Kostrzewski et al. [38] Yang et al. [12] Zheng et al. [40] Liu et al. [15] Liang et al. [8] Xu et al. [27] |
Information resource acquisition ability | Mobile phone penetration rate | ||
Data processing and storage capacity | Proportion of information technology and data service income to added value of logistics industry | ||
Platform operation and service capability | Proportion of system integration and support service income to added value of logistics industry | ||
Software popularization and application | Proportion of software product income to added value of logistics industry | ||
Output level | Economic benefits | Per capita added value of logistics industry for logistics employees | Kanninen [19] Banister [20] Dong [18] |
Variable | Symbol | Unit | Variable Declaration |
---|---|---|---|
Logistics carbon emissions | LCO2 | Million tons | Carbon emission of transportation, warehousing and postal services |
The logistics industry intelligence level | LIL | — | The comprehensive intelligent logistics index |
Population scale | P | Million people | The number of permanent residents |
The scale of the industry | Lsca | Hundred million RMB | The added value of transportation, warehousing and postal services |
Energy consumption of logistics industry | Ee | Ton standard coal equivalent | Energy consumption × added value of transportation, warehousing and postal services/GDP |
Variable | Symbol | N | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
Logistics carbon emissions | LCO2 | 406 | 20.068 | 12.803 | 2.497 | 70.152 |
Comprehensive intelligent logistics index | LIL | 406 | 0.124 | 0.101 | 0.025 | 0.844 |
Population scale | P | 406 | 4647.837 | 2704.264 | 604.000 | 12,489.000 |
The scale of the industry | Lsca | 406 | 436.285 | 297.849 | 52.323 | 1276.070 |
Energy consumption of logistics industry | Ee | 406 | 466.239 | 378.110 | 37.118 | 2431.898 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Pooled OLS | Province FE | Time FE | Two-Step DIF-GMM | Two-Step SYS-GMM | |
L.lnLCO2 | 0.356 *** | 0.538 *** | |||
(10.124) | (17.901) | ||||
L2.lnLCO2 | 0.166 *** | 0.122 *** | |||
(15.911) | (4.779) | ||||
lnLIL | 0.420 *** | 0.272 *** | 0.308 *** | 0.146 *** | 0.042 *** |
(9.929) | (5.459) | (6.321) | (6.898) | (3.261) | |
Control variables | yes | yes | yes | yes | yes |
Constant | yes | yes | yes | yes | yes |
N | 406 | 406 | 406 | 319 | 348 |
R2 | 0.724 | 0.940 | 0.738 | ||
F | 361.614 | 147.067 | 234.858 | ||
Wald | 1425.40 | 23,241.12 | |||
AR1 (p) | 0.024 | 0.016 | |||
AR2 (p) | 0.963 | 0.382 | |||
Sargan (p) | 0.230 | 0.980 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
Lewbel | Policy | nei_LIL | Letter | land_LIP | IV×3 | IV×2 | |
lnLIL | 0.420 *** | 0.564 *** | 0.811 *** | 1.667 *** | 0.837 *** | 0.793 *** | 0.819 *** |
(9.929) | (4.271) | (9.084) | (3.394) | (8.304) | (9.231) | (9.323) | |
Control variables | yes | yes | yes | Yes | Yes | yes | yes |
Fixed effect | yes | yes | Yes | Yes | yes | yes | |
Constant | yes | ||||||
N | 406 | 406 | 406 | 378 | 406 | 406 | 406 |
R2 | 0.986 | 0.576 | 0.490 | −0.202 | 0.479 | 0.4985 | 0.4872 |
Underidentification test (p) | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.0000 | 0.0000 |
Cragg–Donald F | 67.898 | 254.038 | 12.093 | 179.962 | 93.629 | 135.813 | |
Sargan (p) | exactly identified | exactly identified | exactly identified | exactly identified | 0.1167 | 0.6949 | |
Hansen J (p) | exactly identified |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Mixed OLS | Province FE | Time FE | Two-Step DIF-GMM | Two-Step SYS-GMM | |
L.lnLCO2 | 0.345 *** | 0.504 *** | |||
(6.656) | (15.354) | ||||
L2.lnLCO2 | 0.187 *** | 0.090 *** | |||
(8.649) | (7.545) | ||||
lnScore | 0.417 *** | 0.341 *** | 0.325 *** | 0.146 *** | 0.046 ** |
(10.032) | (7.297) | (7.489) | (3.051) | (2.393) | |
Control variables | yes | yes | yes | yes | yes |
Constant | yes | yes | yes | ||
N | 377 | 377 | 377 | 290 | 319 |
R2 | 0.718 | 0.943 | 0.742 | ||
F | 236.493 | 140.658 | 223.394 | ||
Wald | 1732.60 | 59,295.63 | |||
AR1 (p) | 0.027 | 0.021 | |||
AR2 (p) | 0.479 | 0.134 | |||
Sargan ((p) | 0.174 | 0.9997 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
FE | Two-Step DIF-GMM | Two-Step SYS-GMM | FE | Two-Step DIF-GMM | Two-Step SYS-GMM | |
L.lnLCO2 | 0.113 *** | 0.406 *** | 0.186 *** | 0.381 *** | ||
(2.859) | (11.373) | (7.984) | (8.378) | |||
L2.lnLCO2 | 0.140 *** | 0.119 *** | 0.064 *** | 0.061 *** | ||
(11.108) | (4.695) | (5.810) | (4.171) | |||
lnT | 0.221 *** | 0.149 *** | 0.080 *** | |||
(11.194) | (11.493) | (5.422) | ||||
lnIPN | 0.201 *** | 0.141 *** | 0.115 *** | |||
(10.440) | (8.932) | (9.565) | ||||
Control variables | yes | yes | yes | yes | yes | yes |
Fixed effect | yes | yes | yes | yes | yes | yes |
Constant | yes | yes | yes | |||
N | 406 | 319 | 348 | 406 | 319 | 348 |
R2 | 0.952 | 0.950 | ||||
F | 204.050 | 194.312 | ||||
Wald | 6095.67 | 6740.23 | 4881.82 | 10,819.53 | ||
AR1 (p) | 0.050 | 0.025 | 0.042 | 0.020 | ||
AR2 (p) | 0.600 | 0.493 | 0.424 | 0.255 | ||
Sargan (p) | 0.161 | 0.983 | 0.960 | 0.965 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
North (FE) | North (IV) | South (FE) | South (IV) | |
lnLIL | 0.343 *** | 0.831 *** | 0.205 *** | 0.927 *** |
(4.644) | (6.128) | (3.265) | (6.110) | |
Control variables | yes | yes | yes | yes |
Fixed effect | yes | yes | yes | yes |
Constant | yes | yes | ||
N | 196 | 196 | 210 | 210 |
R2 | 0.931 | 0.329 | 0.953 | 0.587 |
F | 38.079 | 35.647 | 148.188 | 95.248 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
East (FE) | East (IV) | Middle (FE) | Center (IV) | West (FE) | West (IV) | |
lnLIL | 0.145 ** | 0.626 *** | 0.338 *** | 1.133 *** | 0.269 *** | 0.746 *** |
(2.412) | (4.253) | (2.767) | (4.310) | (2.676) | (4.137) | |
Control variables | yes | yes | yes | yes | yes | yes |
Fixed effect | yes | yes | Yes | yes | yes | yes |
Constant | yes | Yes | yes | |||
N | 154 | 154 | 140 | 140 | 112 | 112 |
R2 | 0.968 | 0.401 | 0.809 | 0.503 | 0.938 | 0.609 |
F | 50.233 | 37.815 | 53.253 | 43.050 | 53.259 | 46.308 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Low | Low-IV | High | High-IV | |
lnLIL | 0.415 *** | 0.479 *** | 0.112 | 13.43 |
(4.89) | (4.75) | (1.92) | (0.32) | |
Control variables | yes | yes | yes | yes |
Fixed effect | yes | yes | Yes | yes |
Constant | yes | Yes | ||
N | 196 | 196 | 210 | 210 |
R2 | 0.902 | 0.612 | 0.955 | 0.637 |
F | 78.29 | 59.75 | 84.12 | 0.57 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
10th | 25th | 50th | 75th | 90th | OLS | |
lnLIL | 0.411 *** | 0.368 *** | 0.392 *** | 0.378 *** | 0.476 *** | 0.378 *** |
(6.235) | (9.606) | (6.156) | (5.615) | (9.904) | (5.615) | |
lnP | 0.427 *** | 0.511 *** | 0.553 *** | 0.247 *** | −0.009 | 0.247 *** |
(5.776) | (11.863) | (7.739) | (3.267) | (−0.175) | (3.267) | |
lnLsca | 0.277 ** | 0.288 *** | 0.162 | 0.345 *** | 0.415 *** | 0.345 *** |
(2.494) | (4.464) | (1.513) | (3.050) | (5.135) | (3.050) | |
lnEe | −0.125 | −0.186 *** | −0.021 | 0.060 | 0.073 | 0.060 |
(−1.569) | (−4.004) | (−0.267) | (0.731) | (1.263) | (0.731) | |
Constant | −1.055 *** | −1.383 *** | −1.727 *** | −0.461 | 1.588 *** | −0.461 |
(−2.799) | (−6.308) | (−4.743) | (−1.195) | (5.783) | (−1.195) |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Freight | INDS | ES | TS | TE | |
Total effect | 1.822 *** | 1.822 *** | 1.822 *** | 1.822 *** | 1.822 *** |
Direct effect | 0.314 *** | 0.809 *** | 0.230 *** | 0.557 *** | 0.375 *** |
Indirect effect | 1.508 *** | 1.013 * | 1.592 *** | 1.264 ** | 1.447 ** |
Proportion of mediating effect | 82.78% | 55.60% | 87.38% | 69.40% | 79.43% |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Freight | INDS | ES | TS | TE | |
lnLIL | 0.604 *** | 0.185 *** | 0.912 *** | 0.050 *** | 0.334 *** |
(9.705) | (6.172) | (13.509) | (2.638) | (5.585) | |
Control variables | yes | yes | yes | yes | yes |
Fixed effect | yes | yes | yes | yes | yes |
N | 406 | 406 | 406 | 406 | 406 |
R2 | 0.934 | 0.924 | 0.941 | 0.899 | 0.923 |
F | 162.122 | 229.126 | 48.788 | 6.549 | 63.840 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Two-Step DIF-GMM | Two-Step SYS-GMM | Two-Step DIF-GMM | Two-Step SYS-GMM | Two-Step DIF-GMM | TWO-STEP SYS-GMM | |
L.lnLCO2 | 0.171 ** | 0.416 *** | 0.344 *** | 0.502 *** | 0.225 *** | 0.542 *** |
(2.506) | (8.911) | (12.889) | (12.961) | (5.703) | (16.351) | |
L2.lnLCO2 | 0.049 *** | 0.079 *** | 0.161 *** | 0.084 *** | 0.121 *** | 0.070 ** |
(3.529) | (4.899) | (20.634) | (4.843) | (11.700) | (2.238) | |
lnLIL | 5.897 *** | 5.923 *** | 0.078 *** | 0.028 ** | 0.129 *** | 0.035 ** |
(3.856) | (3.606) | (5.440) | (2.505) | (8.125) | (2.037) | |
interaction terms | −0.463 *** | −0.467 *** | −0.022 *** | −0.018 ** | −0.079 *** | −0.157 ** |
(−3.822) | (−3.600) | (−2.604) | (−2.296) | (−3.241) | (−2.376) | |
Control variables | yes | yes | yes | yes | yes | yes |
Constant | yes | yes | yes | yes | yes | yes |
N | 319 | 348 | 319 | 348 | 319 | 348 |
Wald | 6309.42 | 12,293.44 | 9759.97 | 13,546.82 | 7566.66 | 8419.91 |
AR1 (p) | 0.054 | 0.033 | 0.025 | 0.021 | 0.034 | 0.008 |
AR2 (p) | 0.180 | 0.210 | 0.939 | 0.251 | 0.828 | 0.087 |
Sargan (p) | 0.990 | 0.994 | 0.181 | 0.9998 | 0.189 | 0.993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, Z.; Yu, N.; Wu, X. Disentangling the Intelligentization–Carbon Emission Nexus within China’s Logistics Sector: An Econometric Approach. Energies 2024, 17, 4131. https://doi.org/10.3390/en17164131
Jiao Z, Yu N, Wu X. Disentangling the Intelligentization–Carbon Emission Nexus within China’s Logistics Sector: An Econometric Approach. Energies. 2024; 17(16):4131. https://doi.org/10.3390/en17164131
Chicago/Turabian StyleJiao, Zhilun, Ningning Yu, and Xiaofan Wu. 2024. "Disentangling the Intelligentization–Carbon Emission Nexus within China’s Logistics Sector: An Econometric Approach" Energies 17, no. 16: 4131. https://doi.org/10.3390/en17164131
APA StyleJiao, Z., Yu, N., & Wu, X. (2024). Disentangling the Intelligentization–Carbon Emission Nexus within China’s Logistics Sector: An Econometric Approach. Energies, 17(16), 4131. https://doi.org/10.3390/en17164131