Modeling Snap-Off during Gas–Liquid Flow by Using Lattice Boltzmann Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis on Mechanisms and Factors of Snap-Off
2.2. Lattice Boltzmann Method
3. Model Verification
3.1. Verification of Thermodynamic Consistency
3.2. Verification of Interfacial Tension
3.3. Verification of Static Contact Angle
3.4. Characteristics of Corner Liquid Retention
3.5. Grid Independence Test
4. Discussion
4.1. Simulation of Snap-Off Phenomenon
4.2. Influence of Cappillary Number Ca
4.3. Influence of Pore–Throat Length Ratio
4.4. Influence of Pore–Throat Width Ratio
5. Conclusions
- (1)
- The basic reason for the phase interface snap-off is that the liquid phase (wetting phase) retained in displacement gradually flows back over time due to unbalanced pore–throat capillary pressure. However, a large amount of retained liquid is observed in the pore corner and throat wall, which leads to the static criterion based on the assumption of the angular flow, which overestimates the radius of curvature of the bubbles on the right side of the throat and thus underestimates the conditions for the occurrence of the snap-off.
- (2)
- Revealing the influence of displacement pressure (capillary numbers) on gas–liquid two-phase displacement. In the non-gradual pore–throat system, only when displacement pressure is in a certain range, the snap-off will occur. If the upper limit of the capillary number is exceeded, even if the static condition is satisfied, the snap-off will be inhibited. Below this lower boundary, displacement cannot be completed. Meanwhile, the increase in capillary number makes the location of the snap-off move towards the outlet end of the throat.
- (3)
- Revealing the influence law of pore–throat length ratio on gas–liquid two-phase displacement. For the pore–throat system with a fixed width, a sufficiently long throat can promote the occurrence of the snap-off even if it does not meet the pore–throat width ratio (R* ≤ 0.53) for static criterion. The range of displacement pressure for the occurrence of the snap-off expends with the increase in throat length. In addition, there is a critical throat length, so that no matter how the displacement pressure changes, non-snap-off will happen in the throat. For the model in this paper, the critical pore–throat length ratio L* = 0.08.
- (4)
- Revealing the influence law of the pore–throat width ratio on gas–liquid two-phase displacement. For the pore–throat system with a fixed length, the larger the throat width, the smaller the displacement pressure range. There is a critical throat width so that no snap-off occurs in the throat, regardless of the displacement pressure. In this paper, the critical throat width ratio R* = 0.68. And it will underestimate by 28.3% if the static criterion is used to predict the condition of the model.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yun, W.; Kovscek, A.R. Microvisual investigation of polymer retention on the homogeneous pore network of a micromodel. J. Pet. Sci. Eng. 2015, 128, 115–127. [Google Scholar] [CrossRef]
- Liu, Z.; Zhuang, Z.; Meng, Q.; Zhan, S.; Huang, K.-C. Problems and challenges of mechanics in shale gas efficient exploitation. Chin. J. Theor. Appl. Mech. 2017, 49, 507–516. [Google Scholar]
- Yuan, S.; Wang, Q.; Li, J.; Han, H. Technology progress and prospects of enhanced oil recovery by gas injection. Acta Pet. Sincia 2020, 41, 1623–1632. [Google Scholar]
- Gao, Y.; Zhao, M.; Wang, J.; Zong, C. Performance and gas breakthrough during CO2 immiscible flooding in ultra-low permeability reservoirs. Pet. Explor. Dev. 2014, 41, 79–85. [Google Scholar] [CrossRef]
- Kong, D.; Gao, Y.; Sarma, H.; Li, Y. Experimental investigation of immiscible water-alternating-gas injection in ultra-high water-cut stage reservoir. Adv. Geo-Energy Res. 2021, 5, 139–152. [Google Scholar] [CrossRef]
- Roof, J.G. Snap-off of oil droplets in water-wet pores. Soc. Pet. Eng. J. 1970, 10, 85–90. [Google Scholar] [CrossRef]
- Gauglitz, P.A.; St Laurent, C.M.; Radke, C.J. Experimental determination of gas-bubble breakup in a constricted cylindrical capillary. Ind. Eng. Chem. Res. 1988, 27, 1282–1291. [Google Scholar] [CrossRef]
- Ransohoff, T.C.; Gauglitz, P.A.; Radke, C.J. Snap-off of gas bubbles in smoothly constricted noncircular capillaries. AIChE J. 1987, 33, 753–765. [Google Scholar] [CrossRef]
- Tsai, T.M.; Miksis, M.J. Dynamics of a drop in a constricted capillary tube. J. Fluid Mech. 2016, 274, 197–217. [Google Scholar] [CrossRef]
- Deng, W.; Cardenas, M.B.; Bennett, P.C. Extended Roof snap-off for a continuous nonwetting fluid and an example case for supercritical CO2. Adv. Water Resour. 2014, 64, 34–46. [Google Scholar] [CrossRef]
- Deng, W.; Balhoff, M.; Cardenas, M.B. Influence of dynamic factors on nonwetting fluid snap-off in pores. Water Resour. Res. 2015, 51, 9182–9189. [Google Scholar] [CrossRef]
- Tian, J.; Kang, Y.; Xi, Z.; Jia, N.; You, L.; Luo, P. Real-time visualization and investigation of dynamic gas snap-off mechanisms in 2-D micro channels. Fuel 2020, 279, 118232. [Google Scholar] [CrossRef]
- Cha, L.M.; Xie, C.Y.; Feng, Q.H.; Balhoff, M. Geometric Criteria for the Snap-Off of a Non-Wetting Droplet in Pore-Throat Channels with Rectangular Cross-Sections. Water Resour. Res. 2021, 57, e2020WR029476. [Google Scholar] [CrossRef]
- Tetteh, J.T.; Cudjoe, S.E.; Aryana, S.A.; Ghahfarokhi, R.B. Investigation into fluid-fluid interaction phenomena during low salinity waterflooding using a reservoir-on-a-chip microfluidic model. J. Pet. Sci. Eng. 2021, 196, 108074. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, S.; Dai, C.; Sun, Y.; Fang, J.; Liu, Y.; He, L. Investigation on bubble snap-off in 3-D pore-throat micro-structures. J. Ind. Eng. Chem. 2017, 54, 69–74. [Google Scholar] [CrossRef]
- Xiong, Q.R.; Baychev, T.G.; Jivkov, A.P. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. J. Contam. Hydrol. 2016, 192, 101–117. [Google Scholar] [CrossRef]
- Monaghan, J.J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 1992, 30, 543–574. [Google Scholar] [CrossRef]
- Armstrong, R.T.; Berg, S.; Dinariev, O.; Evseev, N.; Klemin, D.; Koroteev, D.; Safonov, S. Modeling of pore-scale two-phase phenomena using density functional hydrodynamics. Transp. Porous Media 2016, 112, 577–607. [Google Scholar] [CrossRef]
- Raeini, A.Q.; Blunt, M.J.; Bijeljic, B. Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. J. Comput. Phys. 2012, 231, 5653–5668. [Google Scholar] [CrossRef]
- Chen, S.Y.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef]
- Raeini, A.Q.; Bijeljic, B.; Blunt, M.J. Numerical modelling of sub-pore scale events in two-phase flow through porous media. Transp. Porous Media 2014, 101, 191–213. [Google Scholar] [CrossRef]
- Starnoni, M.; Pokrajac, D. Numerical study of the effects of contact angle and viscosity ratio on the dynamics of snap-off through porous media. Adv. Water Resour. 2018, 111, 70–85. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, Z.; Matsushita, S.; Xiao, F.; Suekane, T. Interpreting dynamics of snap-off in a constricted capillary from the energy dissipation principle. Phys. Fluids 2021, 33, 032112. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, J.; Chen, W. An interface tracking method of coupled Youngs-VOF and level set based on geometric reconstruction. Chin. J. Theor. Appl. Mech. 2019, 51, 775–786. [Google Scholar]
- Li, Q.; Yu, Y.; Tang, S. Multiphase lattice Boltzmann method and its applications in phase-change heat transfer. Chin. Sci. Bull. 2020, 65, 1677–1693. [Google Scholar] [CrossRef]
- Zang, C.; Qin, L. Lattice Boltzmann simulation of immiscible displacement in the complex micro-channel. Acta Phys. Sin. 2017, 66, 154–162. [Google Scholar]
- Rothman, D.H.; Keller, J.M. Immiscible cellular-automaton fluids. J. Stat. Phys. 1988, 52, 1119–1127. [Google Scholar] [CrossRef]
- Shan, X.W.; Chen, H.D. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 1993, 47, 1815. [Google Scholar] [CrossRef]
- Swift, M.R.; Osborn, W.R.; Yeomans, J.M. Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 1995, 75, 830. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Shan, X.W.; Doolen, G.D. Discrete Boltzmann equation model for nonideal gases. Phys. Rev. E 1998, 57, R13. [Google Scholar] [CrossRef]
- Zhang, L.; Kang, L.; Jing, W.; Guo, Y.; Sun, H.; Yang, Y.; Yao, J. Flow behavior analysis of oil-water two-phase flow in pore throat doublet model. J. China Univ. Pet. (Ed. Nat. Sci.) 2020, 44, 89–93. [Google Scholar]
- Zhao, Y.; Liu, X.; Zhang, L.; Tang, H.; Xiong, Y.; Guo, J.; Shan, B. Laws of gas and water flow and mechanism of reservoir drying in tight sandstone gas reservoirs. Nat. Gas Ind. B 2020, 40, 70–79. [Google Scholar] [CrossRef]
- Alpak, F.O.; Zacharoudiou, I.; Berg, S.; Dietderich, J.; Saxena, N. Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method on general-purpose graphics processing units. Comput. Geosci. 2019, 23, 849–880. [Google Scholar] [CrossRef]
- Wei, B.; Hou, J.; Sukop, M.C.; Du, Q.; Wang, H. Flow behaviors of emulsions in constricted capillaries: A Lattice Boltzmann simulation study. Chem. Eng. Sci. 2020, 227, 115925. [Google Scholar] [CrossRef]
- Zhang, T.; Javadpour, F.; Li, J.; Zhao, Y.; Zhang, L.; Li, X. Pore-Scale Perspective of Gas/Water Two-Phase Flow in Shale. SPE J. 2021, 26, 828–846. [Google Scholar] [CrossRef]
- Bhatnagar, P.L.; Gross, E.P. Krook MA model for collision processes in gases, I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 1954, 94, 511. [Google Scholar] [CrossRef]
- Qian, Y.H.; d’Humières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation. EPL (Europhys. Lett.) 1992, 17, 479. [Google Scholar] [CrossRef]
- Yuan, P.; Schaefer, L. Equations of state in a lattice Boltzmann model. Phys. Fluids 2006, 18, 042101. [Google Scholar] [CrossRef]
- Huang, H.B.; Li, Z.T.; Liu, S.S.; Lu, X. Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media. Int. J. Numer. Methods Fluids 2009, 61, 341–354. [Google Scholar] [CrossRef]
- Huang, H.B.; Sukop, M.; Lu, X.Y. Multiphase Lattice Boltzmann Methods: Theory and Application; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Gong, S.; Cheng, P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Comput. Fluids 2012, 53, 93–104. [Google Scholar] [CrossRef]
- Chen, L.; Kang, Q.; Mu, Y.; He, Y.-L.; Tao, W.-Q. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. Int. J. Heat Mass Transf. 2014, 76, 210–236. [Google Scholar] [CrossRef]
- Mukherjee, A.; Basu, D.N.; Mondal, P.K. Algorithmic augmentation in the pseudopotential-based lattice Boltzmann method for simulating the pool boiling phenomenon with high-density ratio. Phys. Rev. E 2021, 103, 053302. [Google Scholar] [CrossRef]
- Kupershtokh, A.L.; Medvedev, D.A.; Karpov, D.I. On equations of state in a lattice Boltzmann method. Comput. Math. Appl. 2009, 58, 965–974. [Google Scholar] [CrossRef]
- Huang, J.; Yin, X.; Barrufet, M.; Killough, J. Lattice Boltzmann simulation of phase equilibrium of methane in nanopores under effects of adsorption. Chem. Eng. J. 2021, 419, 129625. [Google Scholar] [CrossRef]
- Huang, H.B.; Krafczyk, M.; Lu, X.Y. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2011, 84, 046710. [Google Scholar] [CrossRef]
- Shi, D.; Wang, Z.; Zhang, A. A novel lattice boltzmann model simulating gas-liquid two-phase flow. Chin. J. Theor. Appl. Mech. 2014, 46, 224–233. [Google Scholar]
- Hu, W.; Liu, G.; Yan, S.; Fan, Y. Pore-Scale lattice Boltzmann modeling of soil water Distribution. Chin. J. Theor. Appl. Mech. 2021, 53, 568–579. [Google Scholar]
- Li, Q.; Luo, K.H.; Kang, Q.J.; Chen, Q. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys. Rev. E 2014, 90, 053301. [Google Scholar] [CrossRef]
- Kovscek, A.R.; Radke, C.J. Gas bubble snap-off under pressure-driven flow in constricted noncircular capillaries. Colloids Surf. A Physicochem. Eng. Asp. 1996, 117, 55–76. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wang, X.; Li, Y.; Wu, K.; Shi, J.; Yang, L.; Feng, D.; Zhang, T.; Yu, P. Water distribution characteristic and effect on methane adsorption capacity in shale clay. Int. J. Coal Geol. 2016, 159, 135–154. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wu, K.; Feng, D.; Zhang, T.; Zhang, Y. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay. Int. J. Coal Geol. 2017, 179, 253–268. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wu, K.; Wang, X.; Shi, J.; Yang, L.; Zhang, H.; Sun, Z.; Wang, R.; Feng, D. Water sorption and distribution characteristics in clay and shale: Effect of surface force. Energy Fuels 2016, 30, 8863–8874. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.X.; Wu, K.L.; Zhang, T.; Zhang, R.; Xu, J.; Li, R.; Qu, S.; Shi, J.; Li, X. Effect of water saturation on gas slippage in circular and angular pores. AIChE J. 2018, 64, 3529–3541. [Google Scholar] [CrossRef]
- Fuquan, S.; Xiao, H.; Genmin, Z.; Weiyao, Z. The characteristics of water flow displaced by gas in nano arrays. Chin. J. Theor. Appl. Mech. 2018, 50, 553–560. [Google Scholar]
- Wei, B.; Wang, Y.Y.; Wen, Y.B.; Zhu, W. Bubble breakup dynamics and flow behaviors of a surface-functionalized nanocellulose based nanofluid stabilized foam in constricted microfluidic devices. J. Ind. Eng. Chem. 2018, 68, 24–32. [Google Scholar] [CrossRef]
- Si, T. Dynamic behavior of droplet formation in dripping mode of capillary flow focusing. Capillarity 2021, 4, 45–49. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Ji, Y.; Zhang, T.; Zhao, T. Modeling Snap-Off during Gas–Liquid Flow by Using Lattice Boltzmann Method. Energies 2024, 17, 4062. https://doi.org/10.3390/en17164062
Zhang K, Ji Y, Zhang T, Zhao T. Modeling Snap-Off during Gas–Liquid Flow by Using Lattice Boltzmann Method. Energies. 2024; 17(16):4062. https://doi.org/10.3390/en17164062
Chicago/Turabian StyleZhang, Ke, Yuan Ji, Tao Zhang, and Tianyi Zhao. 2024. "Modeling Snap-Off during Gas–Liquid Flow by Using Lattice Boltzmann Method" Energies 17, no. 16: 4062. https://doi.org/10.3390/en17164062
APA StyleZhang, K., Ji, Y., Zhang, T., & Zhao, T. (2024). Modeling Snap-Off during Gas–Liquid Flow by Using Lattice Boltzmann Method. Energies, 17(16), 4062. https://doi.org/10.3390/en17164062