Review on CO2–Brine Interaction in Oil and Gas Reservoirs
Abstract
:1. Introduction
2. Research Method of CO2 Water–Rock Interaction
2.1. Advances in Physical Simulation Experiments Research Methods
2.2. Advance in Numerical Simulation Experimental Research Methods
3. Mineral Evolution
4. Pore Structure and Physical Property Changes
4.1. Pore Structure
4.2. Physical Property
5. Selection of Geo-Storage Reservoir
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y. Academician of the Chinese Academy of Sciences Ding Zhongli: To achieve carbon neutrality requires ‘three-end force’. Beijing Dly. 2021, T01. [Google Scholar] [CrossRef]
- Zou, C.; Xiong, B.; Xue, H.; Zheng, D.; Ge, Z.; Wang, Y.; Jiang, L.; Pan, S.; Wu, S. The role of new energy in carbon neutral. Pet. Explor. Dev. 2021, 48, 411–420. [Google Scholar] [CrossRef]
- Qian, Y.; Cao, X. Development trend analysis of CCUS research based on bibliometrics. Ind. Saf. Environ. Prot. 2023, 49, 97–101+106. [Google Scholar]
- Lu, P.; Bai, Y.; Liu, W.; Chen, X.; Zheng, H.; Liu, J.; Chen, Y.; Gao, J. Optimization of favorable areas for carbon dioxide geological storage in Majiagou Formation in Ordos Basin. Geol. Rev. 2021, 67, 816–827. [Google Scholar] [CrossRef]
- Mac Dowell, N.; Fennell, P.S.; Shah, N.; Maitland, G.C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Chang. 2017, 7, 243–249. [Google Scholar] [CrossRef]
- Garcia, S.; Kaminska, S.; Maroto-Valer, M.M. Underground carbon dioxide storage in saline formations. Proc. Inst. Civ. Eng.-Waste Resour. Manag. 2010, 163, 77–88. [Google Scholar] [CrossRef]
- Kim, K.; Kim, D.; Na, Y.; Song, Y.; Wang, J. A review of carbon mineralization mechanism during geological CO2 storage. Heliyon 2023, 9, e23135. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.Y.; Li, S.Y. An experimental study on water-rock interaction during water flooding in formations saturated with CO2. Acta Petrolei Sinica. 2012, 33, 1032–1042. [Google Scholar]
- Yuan, Z.; Liao, X.; Zhang, K.; Zhao, X.; Chen, Z. The effect of inorganic salt precipitation on oil recovery during v flooding: A case study of Chang 8 block in Changqing oilfield, NW China. Pet. Explor. Dev. 2021, 48, 379–385. [Google Scholar] [CrossRef]
- Sang, G.; Liu, S. Carbonate Caprock-Brine-CO2 Interaction: Alteration of Hydromechanical Properties. In Proceedings of the SPE Annual Technical Conference and Exhibition, Virtual, 27 October 2020; p. D022S061R041. [Google Scholar]
- Wei, B.; Zhang, X.; Liu, J.; Xu, X.; Pu, W.; Bai, M. Adsorptive behaviors of supercritical CO2 in tight porous media and triggered chemical reactions with rock minerals during CO2-EOR and -sequestration. Chem. Eng. J. 2020, 381, 122577. [Google Scholar] [CrossRef]
- Wu, S.; Zou, C.; Ma, D.; Zhai, X.; Yu, H.; Yu, Z. Reservoir property changes during CO2-brine flow-through experiments in tight sandstone: Implications for CO2 enhanced oil recovery in the Triassic Chang 7 Member tight sandstone, Ordos Basin, China. J. Asian Earth Sci. 2019, 179, 200–210. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, S.; Chen, Y.; Yu, C.; Yu, Z.; Hua, G.; Guan, M.; Lin, M.; Yu, X. CO2-Water-Rock Interaction and Pore Structure Evolution of the Tight Sandstones of the Quantou Formation, Songliao Basin. Energies 2022, 15, 9268. [Google Scholar] [CrossRef]
- Mohamed, I.M.; He, J.; Nasr-El-Din, H.A. Permeability Change during CO2 Injection in Carbonate Aquifers: Experimental Study. In Proceedings of the SPE Americas E&P Health, Safety, Security, and Environmental Conference, Houston, TX, USA, 21 March 2011; p. SPE-140979-MS. [Google Scholar]
- Choi, C.-S.; Song, J.-J. Swelling and Mechanical Property Change of Shale and Sandstone in Supercritical CO2. J. Korean Soc. Rock Mech. 2012, 22, 266–275. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Zhang, Y.; Chen, J. High-temperature supercritical CO2 water-rock simulation experiment of sandstone and its geological significance. Nat. Gas Ind. 2015, 35, 31–38. [Google Scholar]
- Olabode, A.O.; Radonjic, M.; Du, H. Diagenetic Fluid Transport in Fractured Shale Using Laboratory Rock/Fluid Interactions Data to Analyze Sealing Potential. In Proceedings of the U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 25–28 June 2017. [Google Scholar]
- Liu, X. Effect of CO2-Water Reaction on Mineralization and Sequestration Mechanism of Sandstone Reservoir. Master’s Thesis, China University of Geosciences, Beijing, China, 2018. [Google Scholar]
- Li, N.; Jin, Z.; Zhang, S.; Wang, H.; Yang, P.; Zou, Y.; Zhou, T. Micro-mechanical properties of shale due to water/supercritical carbon dioxide-rock interaction. Pet. Explor. Dev. 2023, 50, 872–882. [Google Scholar] [CrossRef]
- Li, Y.; Ma, H.; Li, H.; Leonhard, G.; Tang, Z.; Li, K.; Luo, H. Dissolution of supercritical CO2 on carbonate reservoirs. Pet. Reserv. Eval. Dev. 2023, 13, 288–295+357. [Google Scholar]
- Ahmat, K.; Cheng, J.; Yu, Y.; Zhao, R.; Li, J. CO2-Water-Rock Interactions in Carbonate Formations at the Tazhong Uplift, Tarim Basin, China. Minerals 2022, 12, 635. [Google Scholar] [CrossRef]
- An, S.; Erfani, H.; Hellevang, H.; Niasar, V. Lattice-Boltzmann simulation of dissolution of carbonate rock during CO2-saturated brine injection. Chem. Eng. J. 2020, 408, 127235. [Google Scholar] [CrossRef]
- Ghasemi, M.; Astutik, W.; Alavian, S.A.; Whitson, C.H.; Sigalas, L.; Olsen, D.; Suicmez, V.S. Lab Tests and Modeling of CO2 Injection in Chalk with Fracture-Matrix Transport Mechanisms. In Proceedings of the SPE Europec featured at 78th EAGE Conference and Exhibition, Vienna, Austria, 30 May–2 June 2016. [Google Scholar] [CrossRef]
- Gao, Y. Investigation of CO2-Formation Brine-Rock Reaction of Shenhua Ordos CCS Project. Master’s Thesis, China University of Petroleum, Beijing, China, 2020. [Google Scholar]
- Ghoodjani, E.; Bolouri, S.H. Numerical and Analytical Optimization of Injection Rate During CO2-EOR and -Sequestration Processes. In Proceedings of the Carbon Management Technology Conference, Orlando, FL, USA, 7–9 February 2012. [Google Scholar]
- DOE (US Department of Energy). Fossil Energy Research Benefits. Enhanced Oil Recovery; U.S. Department of Energy, Office of Fossil Energy: Washington, DC, USA, 2012.
- Fischer, S.; Liebscher, A.; Wandrey, M. CO2–brine–rock interaction—First results of long-term exposure experiments at in situ P–T conditions of the Ketzin CO2 reservoir. Geochemistry 2010, 70, 155–164. [Google Scholar] [CrossRef]
- Dai, X.; Wang, M.; Feng, G.; Zheng, S.; Ren, B.; Xu, S. Mineralogical erosion and precipitation characteristics and their effects on adsorption property of shale during scCO2-H2O-shale interaction. J. China Coal Soc. 2023, 48, 2813–2826. [Google Scholar] [CrossRef]
- Meng, F.; Li, C.; Liu, L.; Zhou, B.; Zhao, S.; Wang, L.J.; Yu, Z.C. Experiment of CO2-Saline Water-Calcite Interactions. Geol. Sci. Technol. Inf. 2013, 32, 171–176. [Google Scholar]
- Gunter, W.D.; Perkins, E.H.; McCann, T.J. Aquifer disposal of CO2- rich gases: Reaction design for added capacityl. Energy Convers. Manag. 1993, 34, 941–948. [Google Scholar] [CrossRef]
- Mandalaparty, P.; Deo, M.; Moore, J. CO2 Sequestration: Temperature and Gas Compositional Effects on the Kinetics of Min-eralogical Reactions. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 4 October 2009; p. SPE-124909-MS. [Google Scholar]
- Druckenmiller, M.L.; Maroto-Valer, M.M.; Hill, M. Investigation of Carbon Sequestration via Induced Calcite Formation in Natural Gas Well Brine. Energy Fuels 2005, 20, 172–179. [Google Scholar] [CrossRef]
- Zhang, R.; Winterfeld, P.H.; Yin, X.; Xiong, Y.; Wu, Y.S. Sequentially Coupled THMC Model for CO2 Geo-logical Sequestration into a 2D Heterogeneous Saline Aquifer. J. Nat. Gas Sci. Eng. 2015, 27, 579–615. [Google Scholar] [CrossRef]
- Wigand, M.; Carey, J.; Schütt, H.; Spangenberg, E.; Erzinger, J. Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Appl. Geochem. 2008, 23, 2735–2745. [Google Scholar] [CrossRef]
- Pan, Y.; Hui, D.; Luo, P.; Zhang, Y.; Zhang, L.; Sun, L. Influences of subcritical and supercritical CO2 treatment on the pore structure characteristics of marine and terrestrial shales. J. CO2 Util. 2018, 28, 152–167. [Google Scholar] [CrossRef]
- Zhou, L.; Kang, Z. Fractal characterization of pores in shales using NMR: A case study from the lower Cambrian Niutitang formation in the Middle Yangtze Platform, Southwest China. J. Nat. Gas Sci. Eng. 2016, 35, 860–872. [Google Scholar] [CrossRef]
- Lin, H.; Mei, J.; Jia, S.; Huang, J.; Ding, M. Variation characteristics of micro-pore structure of shale after CO2-water interaction. Pet. Geol. Oilfield Dev. Daqing 2024, 43, 86–94. [Google Scholar] [CrossRef]
- Zhao, M. Laboratory and Numerical Simulation Study on CO2 Flooding in Ultra Low Permeability Reservoir. Ph.D. Thesis, Daqing Petroleum Institute, Daqing, China, 2008. [Google Scholar]
- Sun, L.; Wang, H.; Wang, B.; Dang, K.; Shi, M.; Zhang, Y.; Liu, M.; Wu, Y. The Effect of SCCO2 Treatments on the Petrophysical Properties of Continental Shale with Different Mineral Compositions. In Proceedings of the 57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, GA, USA, 25 June 2023; p. ARMA-2023-0467. [Google Scholar]
- Park, J.; Choi, B.-Y.; Lee, M.; Yang, M. Porosity changes due to analcime in a basaltic tuff from the Janggi Basin, Korea: Experimental and geochemical modeling study of CO2–water–rock interactions. Environ. Earth Sci. 2021, 80, 81. [Google Scholar] [CrossRef]
- Tian, G.; Wang, H.; Li, G.; Yang, B.; Zhao, C.; Zheng, Y. Experiment Investigation on the Fracture Initiation Characteristics of Shale Saturated with CO2 and Brine. In Proceedings of the 56th U.S. Rock Mechanics/Geomechanics Symposium, Santa Fe, NM, USA, 26 June 2022; p. ARMA-2022-0229. [Google Scholar]
- Li, S.H.; Reginald, S.C.Z. Experimental Study on the Impact of CO2-Brine-Rock Interaction on Rock Properties and Fracture Propagation during Supercritical CO2 Fracturing in Chang-7 Tight Sandstone Formation; American Rock Mechanics Association: Atlanta, GA, USA, 2019. [Google Scholar]
- Major, J.R.; Eichhubl, P.; Dewers, T.A.; Olson, J.E. Effect of CO2–brine–rock interaction on fracture mechanical properties of CO2 reservoirs and seals. Earth Planet. Sci. Lett. 2018, 499, 37–47. [Google Scholar] [CrossRef]
- Bao, H. Research on the Variation of Pore Throat during CO2 Injection in Tight Sandstone Oil Reservoir. Master’s Thesis, Xi’an Shiyou University, Xi’an, China, 2019. [Google Scholar]
- Luhmann, A.J.; Kong, X.Z.; Tutolo, B.M.; Garapati, N.; Bagley, B.C.; Saar, M.O.; Seyfried, W.E. Seyfried, Experimental dissolution of dolomite by CO2-charged brine at 100 °C and 150 bar: Evolution of porosity, permeability, and reactive surface area. Chem. Geol. 2014, 380, 145–160. [Google Scholar] [CrossRef]
- Luquot, L.; Rodriguez, O.; Gouze, P. Experimental Characterization of Porosity Structure and Transport Property Changes in Limestone Undergoing Different Dissolution Regimes. Transp. Porous Media 2014, 101, 507–532. [Google Scholar] [CrossRef]
- Erol, S.; Fowler, S.J.; Nehler, M.; De Boever, E.; Harcouët-Menou, V.; Laenen, B. An Analytical Algorithm of Porosity–Permeability for Porous and Fractured Media: Extension to Reactive Transport Conditions and Fitting via Flow-Through Experiments Within Limestone and Dolomite. Transp. Porous Media 2019, 129, 343–383. [Google Scholar] [CrossRef]
- Deng, H.; Voltolini, M.; Molins, S.; Steefel, C.; DePaolo, D.; Ajo-Franklin, J.; Yang, L. Alteration and Erosion of Rock Matrix Bordering a Carbonate-Rich Shale Fracture. Environ. Sci. Technol. 2017, 51, 8861–8868. [Google Scholar] [CrossRef]
- Deng, H.; Spycher, N. Modeling Reactive Transport Processes in Fractures. Rev. Miner. Geochem. 2019, 85, 49–74. [Google Scholar] [CrossRef]
- Noiriel, C.; Madé, B.; Gouze, P. Impact of coating development on the hydraulic and transport properties in argillaceous limestone fracture. Water Resour. Res. 2007, 43, W09406. [Google Scholar] [CrossRef]
- Ellis, J.; Bazylak, A. Investigation of contact angle heterogeneity on CO2 saturation in brine-filled porous media using 3D pore network models. Energy Convers. Manag. 2013, 68, 253–259. [Google Scholar] [CrossRef]
- Luquot, L.; Gouze, P.; Niemi, A.; Bensabat, J.; Carrera, J. CO2 -rich brine percolation experiments through Heletz reservoir rock samples (Israel): Role of the flow rate and brine composition. Int. J. Greenh. Gas Control. 2016, 48, 44–58. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, J.; Yang, L.; Zhu, D.; Jiang, W.; He, Z. Exploring the role of the structural heterogeneity of fractured carbonate reservoirs in contact with dissolved CO2 based on fracture-water-rock simulation experiments. Appl. Geochem. 2023, 150, 105589. [Google Scholar] [CrossRef]
- Xiao, N.; Li, S.; Lin, M. The Influence of CO2-water-calcite Interactions on Surface Texture and Permeability of the Calcite. Sci. Technol. Eng. 2017, 17, 38–44. [Google Scholar]
- Wu, S.; Yu, C.; Hu, X.; Yu, Z.; Jiang, X. Characterization of mineral and pore evolution under CO2-brine-rock interaction at in-situ conditions. Adv. Geo-Energy Res. 2022, 6, 177–178. [Google Scholar] [CrossRef]
- Cai, B.; Li, Q.; Zhang, X.; Cao, C.; Cao, L.; Chen, W.; Chen, W.; Dong, J.; Fan, J.; Jiang, Y.; et al. Annual Report of China Carbon Dioxide Capture, Utilization and Storage (CCUS) (2021)—Study on CCUS Path in China; Environmental Planning Institute, Ministry of Ecology and Environment, Wuhan Institute of Geomechanics, Chinese Academy of Sciences, China Agenda 21 Management Center: Wuhan, China, 2021. [Google Scholar]
- Zhang, X.; Li, Y.; Ma, Q.; Liu, L. Development of Carbon Capture, Utilization and Storage Technology in China. Strateg. Study CAE 2021, 23, 70–80. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Y.; Zhao, Y.; Gu, P.; Xiao, J.; Zhou, J.; Li, Z.; Yu, Z.; Peng, P. Carbon dioxide storage in China: Current status, main challenges, and future outlooks. Earth Sci. Front. 2023, 30, 429–439. [Google Scholar]
- Bashir, A.; Ali, M.; Patil, S.; Aljawad, M.S.; Mahmoud, M.; Al-Shehri, D.; Hoteit, H.; Kamal, M.S. Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects. Earth-Sci. Rev. 2024, 249, 104672. [Google Scholar] [CrossRef]
- Shu, S. Geological Problems of CO2 Underground Storage and Its Significance on Mitigating Climate Change. China Basic Sci. 2006, 3, 17–22. [Google Scholar]
- Bachu, S.; Adams, J. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers. Manag. 2003, 44, 3151–3175. [Google Scholar] [CrossRef]
- Shen, P.; Liao, X. Carbon Dioxide Geological Storage and Enhanced Oil Recovery Technology; Petroleum Industry Press: Beijing, China, 2009. [Google Scholar]
- Diao, Y.; Zhang, S.; Guo, J.; Li, X.; Fan, J.; Jia, X. Reservoir and caprock evaluation of CO2 geological storage site selection in deep saline aquifers. Rock Soil Mech. 2012, 33, 2422–2428. [Google Scholar] [CrossRef]
- Busch, A.; Alles, S.; Gensterblum, Y.; Prinz, D.; Dewhurst, D.N.; Raven, M.D.; Stanjek, H.; Krooss, B.M. Carbon dioxide storage potential of shales. Int. J. Greenh. Gas Control. 2008, 2, 297–308. [Google Scholar] [CrossRef]
- Goldberg, D.S.; Takahashi, T.; Slagle, A.L. Carbon dioxide sequestration in deep-sea basalt. Proc. Natl. Acad. Sci. USA 2008, 105, 9920–9925. [Google Scholar] [CrossRef]
- Liquid Energy Pipeline Association. Available online: https://liquidenergypipelines.org/page/co2-pipelines (accessed on 4 May 2024).
- Zhou, Y.; Wang, R.; He, Y.; Zhao, S.; Zhou, Y.; Zhang, Y. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer. Pet. Geol. Recovery Effic. 2023, 30, 162–167. [Google Scholar]
- Fu, X.; Wu, T.; Lyu, Y.; Liu, S.; Tian, H.; Lu, M. Research status and development trend of the reservoir caprock sealing properties. Oil Gas Geol. 2018, 39, 454–471. [Google Scholar]
- Liu, J.; Yang, C.; Liu, W.; Huo, L.; Mao, H. Apparent Perconsolidation Stress and Sealing Characteristics of Argillaceous Cap Rock. Chin. J. Rock Mech. Eng. 2015, 11, 2377–2387. [Google Scholar]
- Chen, B.; Wang, R.; Li, Q.; Zhou, Y.; Tan, Y.; Dai, Q.; Zhang, Y. Status and Advances of Research on Caprock Sealing Properties of CO2 Geological Storage. Geol. J. China Univ. 2023, 29, 85–99. [Google Scholar]
- Khudaida, K.J.; Das, D.B. A numerical study of capillary pressure–saturation relationship for supercritical carbon dioxide (CO2) injection in deep saline aquifer. Chem. Eng. Res. Des. 2014, 92, 3017–3030. [Google Scholar] [CrossRef]
- Liu, Y. A Study on Effect of CO2 Geological Storage in Reservoir and Cap Rock; Northeast Petroleum University: Daqing, China, 2018. [Google Scholar]
- Zhang, M.; Wang, L.; Cui, Q.; Hu, Y.; He, S. Experimental study on reservoir physical property change of carbon dioxide flooding. World Pet. Ind. 2023, 30, 90–96. [Google Scholar]
- Mkemai, R.M.; Bin, G. A modeling and numerical simulation study of enhanced CO2 sequestration into deep saline formation: A strategy towards climate change mitigation. Mitig. Adapt. Strat. Glob. Chang. 2020, 25, 901–927. [Google Scholar] [CrossRef]
- Benson, S.M.; Cole, D.R. CO2 sequestration in deep sedimentary formations. Elements 2008, 4, 325–331. [Google Scholar] [CrossRef]
- Zheng, D.; Turhan, C.; Wang, N.; Ashok, P.; van Oort, E. Prioritizing Wells for Repurposing or Permanent Abandonment Based on Generalized Well Integrity Risk Analysis. In Proceedings of the IADC/SPE International Drilling Conference and Exhibition, Galveston, TX, USA, 6 March 2024; p. D021S018R001. [Google Scholar]
- Li, Y. Analysis on improving oil recovery by carbon dioxide storage in China’s petroleum engineering. China Pet. Chem. Stand. Qual. 2020, 40, 17–19. [Google Scholar]
Literature | Experiment Type | Reaction Solution | Sample Specifications | Experimental Time | Analysis Frequency |
---|---|---|---|---|---|
I.M. Mohamed, 2011 [14] | flow-through simulation experiments | scCO2 + brine + calcite core | calcite cores (pink desert limestone) with a length of 6 in. and a diameter of 1.5 in. | 3 periods | before and after the experiment |
Choi, 2012 [15] | sequestration physical simulation experiment | three conditions: scCO2–rock; scCO2–H2O–rock; scCO2–brine–rock | Big size: D: 38 mm, L: 70 mm; Small size: specimens or powder samples | 2 weeks | before and after the experiment |
Zijing Li, 2015 [16] | sequestration physical simulation experiment | scCO2 + deionized water + sandstone with high calcium content | The sample was sieved after crushing, and the particle size of the powder was between 75 and 150 μm. | 400 h | 100 h, 250 h, 400 h |
Olabode, A.O., 2017 [17] | flow-through simulation experiments | four natural shale samples + scCO2 + brine | the crushed samples are 1 mm to 2 mm in diameter | 5 d | before and after the experiment |
Xiaotian Liu, 2018 [18] | sequestration physical simulation experiment | scCO2 + brine + sandstone | 25 mm diameter, 20 mm height standard core + rock debris | 30 d | liquid: 3d, 6d, 12d, 18d, 24d, 30d; other solids: before and after the test |
Wu, 2019 [12] | flow-through simulation experiments | laboratory preparation of liquid + scCO2 + sandstone | standard core + two plugs with diameters of 1 cm and 2 mm | 854 h | 23 analytical tests during the experiment for a total of 24 analytical tests |
Yue Zhao, 2022 [13] | sequestration physical simulation experiment | formation water + scCO2 + tight sandstone | cylindrical samples with a 2.5 cm diameter, and a 5 mm diameter | 432 h (18 d) | 24 h, 72 h, 192 h, 432 h |
Ning Li, 2023 [19] | sequestration physical simulation experiment | H2O + scCO2 + shale | bulk sample with a side length of 1.5 cm and a height of about 1.0 cm | 6 d | before and after the experiment |
Ying Li, 2023 [20] | flow-through simulation experiments | carbonatite + formation water + scCO2 | core columns of 25 mm in diameter and 35–50 mm in length + rock debris | 20 d | before and after the experiment |
Project/ Country | Estimated Sequestration | Geological Sequestration | Sequestration Formation/Caprock | Injection Depth | Injection Rate | Start-Up Year | Project Details |
---|---|---|---|---|---|---|---|
Rangely/ Northwest Colorado, USA | 25 Million tons (Mt) | Deep saline aquifers | Sandstone/garden gulch shale | 1950 m | 4.5 mm3/day | 1986 | CO2 is injected in alternating slugs with water at a ratio of 1:1. The sequestration thickness is 160 m. |
Sleipner project /Norway | 25 Mt | Deep saline aquifers | Sandstone/thick shale | 800 m | 2800 t/day | 1996 | \ |
Nagaoka field/Japan | 128 Mt | Deep saline aquifers | Sandstone/mudstone | 1230 m | 20–40 t/ day | 2000 | CO2 is injected in alternating slugs with water at a ratio of 1:1. The sequestration thickness is 60 m. |
Weyburn field/ Canada | 20 Mt (2000–2025) | EOR | Carbonate rock/gypsum-salt layer | 1450 m | 6300 t/day | 2000 | CO2 is injected into low-porosity and low-permeability reservoirs. |
Salah project/Algeria | ≈17 Mt (2004–2011) | Deep saline aquifers | Sandstone/shale | \ | 14–15 t/ day | 2004 | The project ended in 2011 due to the caprock concern, providing insights into the CO2 injection in low-permeability reservoirs. |
Jilin Oil Field/China | about 1.18 Mt of CO2 | EOR | Sandstone/mudstone | \ | 250,000 t /year | 2008 | The CO2 injection in low-permeability reservoirs. |
Ordos project/China | approximately 0.15 Mt of CO2 in 2014 | Deep saline aquifers | Sandstone/shale and mudstone | \ | 100,000 t /year | 2010 | CO2 is injected into low-porosity and low-permeability reservoirs. |
Gorgon Field/Barrow Island in Western Australia | 129 Mt | Deep saline aquifers | Sandstone & siltstones/shale | 2700 m | 4.9 Mt/year | 2019 | The sequestration thickness is 200–500 m. |
Grading Standard | Lithology | Single Layer Thickness h/m | Porosity φ | Permeability K/(10−3 μm2) | Permeability Variation Coefficient V(K) | Distribution Continuity L/m | Hydrodynamic Conditions |
---|---|---|---|---|---|---|---|
Most appropriate | Clastic rock | ≥10 | ≥25 | ≥1000 | ≤0.5 | ≥2000 | Hydraulic sealing effect |
Suitable | Clastic rock, carbonate mixed | 5 ≤ h < 10 | 20 ≤ φ < 25 | 500 ≤ K < 1000 | 0.5 ≤ V(K) < 0.55 | 1200 ≤ L < 2000 | Hydraulic sealing-blocking effect |
Generally suitable | Carbonate | 2 ≤ h < 5 | 10 ≤ φ < 20 | 50 ≤ K < 500 | 0.55 ≤ V(K) < 0.6 | 600 ≤ L < 1200 | Hydraulic blocking effect |
Less suitable | Magmatic rocks, metamorphic rocks, salt domes, and other special reservoirs. | 1 ≤ h < 2 | 5 ≤ φ < 10 | 1 ≤ K < 50 | 0.6 ≤ V(K) < 0.65 | 300 ≤ L < 600 | Hydraulic blocking–migration dissipation effect |
Not suitable | \ | <1 | <5 | <1 | ≥0.65 | <300 | Migration dissipation effect |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wu, S.; Shen, Y.; Li, X. Review on CO2–Brine Interaction in Oil and Gas Reservoirs. Energies 2024, 17, 3926. https://doi.org/10.3390/en17163926
Wang C, Wu S, Shen Y, Li X. Review on CO2–Brine Interaction in Oil and Gas Reservoirs. Energies. 2024; 17(16):3926. https://doi.org/10.3390/en17163926
Chicago/Turabian StyleWang, Chanfei, Songtao Wu, Yue Shen, and Xiang Li. 2024. "Review on CO2–Brine Interaction in Oil and Gas Reservoirs" Energies 17, no. 16: 3926. https://doi.org/10.3390/en17163926
APA StyleWang, C., Wu, S., Shen, Y., & Li, X. (2024). Review on CO2–Brine Interaction in Oil and Gas Reservoirs. Energies, 17(16), 3926. https://doi.org/10.3390/en17163926