On-Site Electrochemical Detection of Corrosion in Substation Grounding System
Abstract
:1. Introduction
2. Experimental
2.1. Excavation and Sampling Methods
2.1.1. Excavation Method for the Grounding Grid
2.1.2. Sampling Method for Soil Samples
2.2. Measurement of Electrochemical Polarization Plot
2.3. Soil Physical and Chemical Properties
2.3.1. pH Measurement
2.3.2. Measurement of Total Water-Soluble Salts
- ma = drying quality of evaporation dish + salt (g);
- mb = drying quality of evaporating dish (g);
- D = partition multiple, 250/20~50;
- m = weight of the air-dried sample (g).
2.3.3. Determination of Chloride Ions
2.3.4. Determination of Moisture Content
- m0 = mass of dry empty aluminum box (g);
- m1 = mass of the aluminum box and soil sample before drying (g);
- m2 = mass of the aluminum box and soil sample after drying (g).
3. Results and Discussion
4. Multiple Linear Regression Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lavanya, M.; Machado, A.A. Surfactants as biodegradable sustainable inhibitors for corrosion control in diverse media and conditions: A comprehensive review. Sci. Total Environ. 2024, 908, 168407. [Google Scholar] [CrossRef] [PubMed]
- Nakhaie, D.; Kosari, A.; Mol, J.M.C.; Asselin, E. Corrosion resistance of hot-dip galvanized steel in simulated soil solution: A factorial design and pit chemistry study. Corros. Sci. 2020, 164, 108310. [Google Scholar] [CrossRef]
- Contreras, A.; Quej, L.M.; Sosa, E.; Liu, H.B.; Alamilla, J.L. Corrosion rate of low carbon steels in function of physicochemical properties of soils. MRS Adv. 2021, 6, 825–829. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, F.; Du, G.; Li, G.; Fan, W.; Wang, Y.; Jia, Z.; Wang, X. Effect of intermittent and continuous direct current electric fields on the initial corrosion of steel in simulated marine environment. Mater. Today Commun. 2023, 35, 105629. [Google Scholar] [CrossRef]
- Shin, H.; Song, Y.; Kong, P.-Y. Robust online overhead transmission line monitoring with cost efficiency in smart power grid. IEEE Access 2021, 9, 86449–86459. [Google Scholar] [CrossRef]
- Yang, C.; Wu, J.; Zhao, J.; Zhang, X.; Li, L.; Mu, J. Research on the architecture of integrated platform of intelligent substation auxiliary monitoring system. Proc. J. Phys. Conf. Ser. 2021, 2095, 012010. [Google Scholar] [CrossRef]
- Zheng, R.; Niu, B.; She, C.; Gao, D. Research on improvement of substation monitoring capability based on AI algorithm. Proc. J. Phys. Conf. Ser. 2022, 2290, 012016. [Google Scholar] [CrossRef]
- Qian, L.I.; Bo, Z. Multi-aspect Assessment and Parameter Calculation Method of Large Grounding Grid. Proc. CSEE 2018, 38, 129–136. [Google Scholar] [CrossRef]
- Jia, X. Optimized Design and Safety Assessment of Substation Grounding Network; North China Electric Power University: Beijing, China, 2016. [Google Scholar]
- Wu, J. Research on Grounding Scheme of 220 kV Substation Considering Ground Potential Rise and Grid Optimization; North China Electric Power University: Beijing, China, 2019. [Google Scholar]
- Li, G.X.; Wang, Y.; Guan, Y.L.; Li, L.; Jiang, Z.Q. Research on evaluation method of soil corrosive property to grounding grid in transformer substation. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2019, 479, 012017. [Google Scholar] [CrossRef]
- Wu, Y.H.; Liu, T.M.; Luo, S.X.; Sun, C. Corrosion characteristics of Q235 steel in simulated Yingtan soil solutions. Mater. Werkst. 2010, 41, 142–146. [Google Scholar] [CrossRef]
- Kostić, V.I.; Raičević, N.B. A study on high-voltage substation ground grid integrity measurement. Electr. Power Syst. Res. 2016, 131, 31–40. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, J.; Liu, Y.; Xiang, N.; Sun, Z.; Chen, J.; Fang, C. Causes, Forms and Remedies of Substation Grounding Grid Corrosion. In Proceedings of the 2008 International Conference on High Voltage Engineering and Application, Chongqing, China, 9–12 November 2008; pp. 186–189. [Google Scholar] [CrossRef]
- Lv, K. Comparative Study on the Corrosion Behaviours of High-Silicon Chromium Iron and Q235 Steel in a Soil Solution. Int. J. Electrochem. Sci. 2020, 15, 5193–5207. [Google Scholar] [CrossRef]
- Wang, T.; Yuan, H.; Zheng, X.; Song, M.; Ma, C. Coupling Analysis and Protection Design of Substation Grounding Grid and Surrounding Metal Pipe Grid. Procedia Comput. Sci. 2003, 228, 1262–1269. [Google Scholar] [CrossRef]
- Sun, L.; Ma, D.; Liu, Y.; Wang, J.; Ma, H.; Jin, P.; Peng, Y. Insight of the role of cooling method and soil environment on the corrosion behavior of Mg–2Nd alloys. J. Mater. Res. Technol. 2023, 25, 6782–6791. [Google Scholar] [CrossRef]
- Gupta, S.K.; Gupta, B.K. The critical soil moisture content in the underground corrosion of mild steel. Corros. Sci. 1979, 19, 171–178. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, J. Substation grounding network corrosion analysis and anti-corrosion measures. In 2008 National Doctoral Academic Forum—Electrical Engineering; 2008. [Google Scholar]
- Zhang, C.; Liao, Y.; Gao, X.; Zhao, J.; Yuan, Y.; Liao, R. Research Advances of Soil Corrosion of Grounding Grids. Micromachines 2021, 12, 513. [Google Scholar] [CrossRef]
- Du, Y.; Qin, H.; Liu, J.; Tang, D. Research on corrosion rate assessment of buried pipelines under dynamic metro stray current. Mater. Corros. 2021, 72, 1038–1050. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, J. Influence of Grounding Conductor in Cable Duct on the Corrosion Diagnosis in the Substation. High Volt. Technol. 2014, 40, 505–512. [Google Scholar] [CrossRef]
- Fang, Y.; Lu, J. Analysis on the Influence of HVDC Grounding Electrode’s Ground Current on the Corrosion of Buried Metal Pipelines. South. Power Grid Technol. 2013, 7, 71–75. [Google Scholar] [CrossRef]
- Zhu, Z.; Shi, C.; Zhang, Y.; Liu, Z. The effects of Cl− and direct stray current on soil corrosion of three grounding grid materials. Anti Corros. Methods Mater. 2020, 67, 73–82. [Google Scholar] [CrossRef]
- Kleiner, Y.; Rajani, B. Forecasting Variations and Trends in Water-Main Breaks. J. Infrastruct. Syst. 2002, 8, 122–131. [Google Scholar] [CrossRef]
- Shao, Y.; Yan, A.; Li, B.; Liao, Q. Corrosion Behavior of Q235 Carbon Steel for Grounding Grids in Soil at Shanghai District. Corros. Sci. Prot. Technol. 2015, 27, 333–338. [Google Scholar] [CrossRef]
- Li, J.; Men, C.; Qi, J.; Yang, B.; Liu, R. Impact factor analysis, prediction, and mapping of soil corrosion of carbon steel across China based on MIV-BP artificial neural network and GIS. J. Soils Sediments 2020, 20, 3204–3216. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
Substation | Corrosion Rate (mm/a) | Corrosion Current (mAcm−2) | Corrosion Potential (V) |
---|---|---|---|
i | 0.1643 | 1.4125 × 10−5 | −0.642 |
ii | 0.1844 | 1.5849 × 10−5 | −0.562 |
iii | 0.2117 | 1.8197 × 10−5 | −0.231 |
iv | 0.5568 | 4.7863 × 10−5 | −0.632 |
v | 0.5698 | 4.8978 × 10−5 | −0.632 |
vi | 0.5800 | 5.0119 × 10−5 | −0.261 |
vii | 1.4313 | 1.23027 × 10−4 | −0.633 |
viii | 2.5453 | 2.8776 × 10−4 | −0.741 |
iv | 1.773 × 10−4 | 3.7025 × 10−6 | −0.233 |
Substation | Soil Resistivity (Ω·m) | Soil Quality | Chloride Ion Concentration (mg/kg) | pH | Moisture Content (%) | Total Water-Soluble Salts (mg/kg) | Sulfate Concentration (mg/kg) |
---|---|---|---|---|---|---|---|
i | 8.48 | Sand | 7.81 | 8.37 | 15.24 | 185.50 | 92.64 |
ii | 13.19 | Clay loam soil | 3.55 | 8.11 | 10.45 | 219.40 | 80 |
iii | 5.08 | Clay | 18.46 | 8.32 | 19.33 | 421.50 | 275.28 |
iv | 6.22 | Sand | 5.68 | 8.44 | 16.69 | 221.50 | 144.00 |
v | 10.17 | Silty soil | 29.82 | 8.25 | 16.51 | 1107.5 | 208 |
vi | 4.52 | Silty soil | 24.85 | 7.77 | 14.195 | 1386 | 128 |
vii | 21.67 | Sand | 39.05 | 7.99 | 10.825 | 1100 | 528 |
viii | 2.82 | Silty soil | 49.7 | 8.06 | 13.48 | 1605 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Zhao, P.; Cai, Y.; Yuan, W.; Yu, J.; Tan, Y. On-Site Electrochemical Detection of Corrosion in Substation Grounding System. Energies 2024, 17, 3906. https://doi.org/10.3390/en17163906
Yu B, Zhao P, Cai Y, Yuan W, Yu J, Tan Y. On-Site Electrochemical Detection of Corrosion in Substation Grounding System. Energies. 2024; 17(16):3906. https://doi.org/10.3390/en17163906
Chicago/Turabian StyleYu, Ben, Peng Zhao, Yuhang Cai, Weiming Yuan, Jinshan Yu, and Yu Tan. 2024. "On-Site Electrochemical Detection of Corrosion in Substation Grounding System" Energies 17, no. 16: 3906. https://doi.org/10.3390/en17163906
APA StyleYu, B., Zhao, P., Cai, Y., Yuan, W., Yu, J., & Tan, Y. (2024). On-Site Electrochemical Detection of Corrosion in Substation Grounding System. Energies, 17(16), 3906. https://doi.org/10.3390/en17163906