Implication of the EU Countries’ Energy Policy Concerning Scenarios Affecting the Air Quality Improvement
Abstract
:1. Introduction
- –
- ScI: Reducing air pollution by introducing renewable energy sources to produce energy used for lighting and preparing hot water.
- –
- ScII: The gross domestic product will increase (the purchasing power of money will increase), enabling wider access to paid medical services.
- –
- ScIII: Reducing air pollution by introducing renewable energy sources to produce energy for cooling buildings in connection with upcoming climate changes (warming/overheating).
2. Literature Review
3. Materials and Methods
3.1. Casy Study
3.2. Bayesian Networks
- –
- Intuitive representation (Bayesian networks present relationships between variables in a graphical form, which facilitates understanding and interpretation of the model);
- –
- Flexibility (they can combine expert knowledge with empirical data, which allows the creation of hybrid models.
- –
- Uncertainty handling (use probability theory to model uncertainty and incomplete data).
- –
- Bidirectional reasoning (they enable predictive reasoning—from causes to effects and diagnostic reasoning—from effects to causes).
3.3. MCDM and TOPSIS
4. Results
5. Discussion
6. Conclusions
- –
- Actual data (for 36 European countries),
- –
- Expert evaluation of scenario proposals and identification of criteria affecting the success of their implementation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, P.; Dagestani, A. Urban planning policy and clean energy development Harmony- evidence from smart city pilot policy in China. Renew. Energy 2023, 210, 251–257. [Google Scholar] [CrossRef]
- Dzikuć, M.; Gorączkowska, J.; Piwowar, A.; Dzikuć, M.; Smoleński, R.; Kułyk, P. The analysis of the innovative potential of the energy sector and low-carbon development: A case study for Poland. Energy Strategy Rev. 2021, 38, 100769. [Google Scholar] [CrossRef]
- Keles, R. The Quality of Life and the Environment. Procedia Soc. Behav. Sci. 2012, 35, 23–32. [Google Scholar] [CrossRef]
- Neira, M.; Erguler, K.; Ahmady-Birgani, H.; DaifAllah AL-Hmoud, N.; Fears, R.; Gogos, C.; Hobbhahn, N.; Koliou, M.; Kostrikis, L.G.; Lelieveld, J.; et al. Climate change and human health in the Eastern Mediterranean and Middle East: Literature review, research priorities and policy suggestions. Environ. Res. 2023, 216, 114537. [Google Scholar] [CrossRef]
- Nadimi, R.; Tokimatsu, K.; Yoshikawa, K. Sustainable energy policy options in the presence of quality of life, poverty, and CO2 emission. Energy Procedia 2017, 142, 2959–2964. [Google Scholar] [CrossRef]
- Małecka-Ziembińska, E.; Janicka, I. Nature-Based Solutions in Poland against Climate Change. Energies 2022, 15, 357. [Google Scholar] [CrossRef]
- Ligarski, M.J.; Rożałowska, B.; Kalinowski, K. A Study of the Human Factor in Industry 4.0 Based on the Automotive Industry. Energies 2021, 14, 6833. [Google Scholar] [CrossRef]
- Tanaka, S. Environmental regulations on air pollution in China and their impact on infant mortality. J. Health Econ. 2015, 42, 90–103. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Fan, M.; Zhou, M. The effect of air pollution on mortality in China: Evidence from the 2008 Beijing Olympic Games. J. Environ. Econ. Manag. 2016, 79, 18–39. [Google Scholar] [CrossRef]
- Ali, M.U.; Siyi, L.; Yousaf, B.; Abbas, Q.; Hameed, R.; Zheng, C.; Kuang, X.; Wong, M.H. Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 857–896. [Google Scholar] [CrossRef]
- Xiaobin, L.; Ma, W.; Ren, J.; Dang, W.; Wang, K.; Nie, H.; Cao, J.; Yao, T. An integrated risk assessment methodology based on fuzzy TOPSIS and cloud inference for urban polyethylene gas pipelines. J. Clean. Prod. 2022, 376, 134332. [Google Scholar] [CrossRef]
- Adamczyk, J.; Dylewski, R.; Sobierajewicz, P. Economic and ecological benefits of thermal insulation of external partitions depending on the temperature in residential premises. J. Clean. Prod. 2023, 384, 135622. [Google Scholar] [CrossRef]
- Simionescu, M.; Cifuentes-Faura, J. Sustainability policies to reduce pollution in energy supply and waste sectors in the V4 countries. Util. Policy 2023, 82, 101551. [Google Scholar] [CrossRef]
- Badach, J.; Voordeckers, D.; Nyka, L.; Van Acker, M. A framework for Air Quality Management Zones—Useful GIS-based tool for urban planning: Case studies in Antwerp and Gdańsk. Build. Environ. 2020, 174, 106743. [Google Scholar] [CrossRef]
- Sędzicki, D.; Cudzik, J.; Nyka, L. Computer-Aided Greenery Design—Prototype Green Structure Improving Human Health in Urban Ecosystem. Int. J. Environ. Res. Public Health 2023, 20, 1198. [Google Scholar] [CrossRef] [PubMed]
- Grow Smarter. 2019. Available online: https://grow-smarter.eu/fileadmin/editor-upload/Reports/GrowSmarter_Concluding_Report_WP2.pdf (accessed on 1 May 2024).
- Bobyleva, N. Zero Energy Districts: From building to city scale. Int. J. Proc. Sci. Technol. 2023, 3, 33–42. [Google Scholar] [CrossRef]
- Papas, T.; Basbas, S.; Campisi, T. Urban mobility evolution and the 15-minute city model: From holistic to bottom-up approach. Transp. Res. Procedia 2023, 69, 544–551. [Google Scholar] [CrossRef]
- Łączak, A.; Bazan-Krzywoszańska, A.; Mrówczyńska, M.; Skiba, M. Renewable Energy Sources in the Lubusz Voivodship (Poland). The Present Conditions and Perspectives for Development. Civ. Environ. Eng. Rep. 2018, 28, 31–67. [Google Scholar] [CrossRef]
- Ochab, P.; Kokoszka, W.; Kogut, J.; Szyszka, J.; Starakiewicz, A. Passive Residential Houses with the Accumulation Properties of Ground as a Heat Storage Medium. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 042017. [Google Scholar] [CrossRef]
- Seyrek Şık, C.I.; Woźniczka, A.; Widera, B. A Conceptual Framework for the Design of Energy-Efficient Vertical Green Façades. Energies 2022, 15, 8069. [Google Scholar] [CrossRef]
- Bartyzel, F.; Wegiel, T.; Kozień-Woźniak, M.; Czamara, M. Numerical Simulation of Operating Parameters of the Ground Source Heat Pump. Energies 2022, 15, 383. [Google Scholar] [CrossRef]
- Pietrzak, M.B.; Olczyk, M.; Kuc-Czarnecka, M.E. Assessment of the Feasibility of Energy Transformation Processes in European Union Member States. Energies 2022, 15, 661. [Google Scholar] [CrossRef]
- Omri, E.; Chtourou, N.; Bazin, D. Technological, economic, institutional, and psychosocial aspects of the transition to renewable energies: A critical literature review of a multidimensional process. Renew. Energy Focus 2022, 43, 37–49. [Google Scholar] [CrossRef]
- Adamczyk, J.; Dylewski, R. Changes in heat transfer coefficients in Poland and their impact on energy demand—An environmental and economic assessment. Renew. Sustain. Energy Rev. 2017, 78, 530–538. [Google Scholar] [CrossRef]
- Jaiswal, K.K.; Chowdhury, C.R.; Yadav, D.; Verma, R.; Dutta, S.; Jaiswal, K.S.; Sangmesh, B.; Karuppasamy, K.S.K. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus 2022, 7, 100118. [Google Scholar] [CrossRef]
- Yankiv-Vitkovska, L.; Peresunko, B.; Wyczałek, I.; Papis, J. Site selection for solar power plant in Zaporizhia city (Ukraine). Geod. Cartogr. 2020, 69, 97–116. [Google Scholar] [CrossRef]
- Toly, C.; Wang, Y.-C.; Jiang, P.-H. A selectively calibrated derivation technique and generalized fuzzy TOPSIS for semiconductor supply chain localization assessment. Decis. Anal. J. 2023, 8, 100275. [Google Scholar] [CrossRef]
- Santosh, P.; Adamowski, J.; Jat, M.; Khare, D. Implications of spatial scale on climate change assessments. J. Water Land Dev. 2015, 26, 37–55. [Google Scholar] [CrossRef]
- Kazak, J.K.; Chodkowska-Miszczuk, J.; Chrobak, G.; Mrówczyńska, M.; Martinát, S. Renewable energy creditors versus renewable energy debtors: Seeking a pattern in a sustainable energy transition during the climate crisis. Anthr. Rev. 2023, 10, 750–770. [Google Scholar] [CrossRef]
- Al-mulali, U.; Fereidouni, H.G.; Lee, J.Y.; Sab, C.N.B.C. Examining the bidirectional long run relationship between renewable energy consumption and GDP growth. Renew. Sustain. Energy Rev. 2013, 22, 209–222. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Li, R. Does renewable energy help increase life expectancy? Insight from the linking renewable energy, economic growth, and life expectancy in 121 countries. Energy Strategy Rev. 2023, 50, 101185. [Google Scholar] [CrossRef]
- Piwowar, A.; Dzikuć, M. Bioethanol Production in Poland in the Context of Sustainable Development-Current Status and Future Prospects. Energies 2022, 15, 2582. [Google Scholar] [CrossRef]
- Gill, A.R.; Viswanathan, K.K.; Hassan, S.A. Test of Environmental Kuznets Curve (EKC) for Carbon Emission and Potential of Renewable Energy to Reduce Green House Gases (GHG) in Malaysia. Environ. Dev. Sustain. 2018, 20, 1103–1114. [Google Scholar] [CrossRef]
- Soukiazis, E.; Proenca, S.; Cerqueira, P.A. The interconnections between renewable energy, economic development and environmental pollution: A simultaneous equation system approach. Energy J. 2019, 40, 1–23. [Google Scholar] [CrossRef]
- Daniel, M.; Ahammed, M.M.; Shaikh, I.N. Selection of Greywater Reuse Options Using Multicriteria Decision-making Techniques. Water Conserv. Sci. Eng. 2023, 8, 2. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Mardani, A.; Turskis, Z.; Jusoh, A.; Nor, K.M. Development of TOPSIS Method to Solve Complicated Decision-Making Problems—An Overview on Developments from 2000 to 2015. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 645–682. [Google Scholar] [CrossRef]
- García-Orozco, S.; Vargas-Gutiérrez, G.; Ordóñez-Sánchez, S.; Silva, R. Using Multi-Criteria Decision Making in Quality Function Deployment for Offshore Renewable Energies. Energies 2023, 16, 6533. [Google Scholar] [CrossRef]
- Aghabegloo, M.; Rezaie, K.; Torabi, S.A.; Khalili, S.M. A BIA-Based Quantitative Framework for Built Physical Asset Criticality Analysis under Sustainability and Resilience. Buildings 2023, 13, 264. [Google Scholar] [CrossRef]
- Ning, L.; Jamal, Y.; El-Sinawi, A.; Krishnaraj, V. Multi-objective optimization of the trimming operation of CFRPs using sensor-fused neural networks and TOPSIS. Measurement 2019, 132, 252–262. [Google Scholar] [CrossRef]
- Oleniacz, G.; Skrzypczak, I.; Leń, P. Decision-making models using the Analytical Hierarchy Process in the urgency of land consolidation works. J. Water Land Dev. 2019, 43, 144–150. [Google Scholar] [CrossRef]
- Ravneet, K.; Singh, S.; Kumar, H. AuthCom: Authorship verification and compromised account detection in online social networks using AHP-TOPSIS embedded profiling based technique. Expert Syst. Appl. 2018, 113, 397–414. [Google Scholar] [CrossRef]
- Li, W.; Dong, F.; Ji, Z.; Ji, L. Evaluation of provincial power supply reliability with high penetration of renewable energy based on combination weighting of game theory-TOPSIS method. Sustain. Energy Grids Netw. 2023, 35, 101092. [Google Scholar] [CrossRef]
- Kafel, K.; Leśniak, A.; Zima, K. Multicriteria comparative analysis of pillars strengthening of the historic building. Open Eng. 2019, 9, 18–25. [Google Scholar] [CrossRef]
- Yang, Z.; Wan, C.; Yang, Z.; Yu, Q. Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision. Reliab. Eng. Syst. Saf. 2021, 213, 107784. [Google Scholar] [CrossRef]
- Mrówczyńska, M.; Skiba, M.; Leśniak, A.; Bazan-Krzywoszańska, A.; Janowiec, F.; Sztubecka, M.; Grech, R.; Kazak, J.K. A new fuzzy model of multicriteria decision support based on Bayesian networks for the urban areas’ decarbonization planning. Energy Convers. Manag. 2022, 268, 116035. [Google Scholar] [CrossRef]
- Wałach, D.; Mach, A. Effect of Concrete Mix Composition on Greenhouse Gas Emissions over the Full Life Cycle of a Structure. Energies 2023, 16, 3229. [Google Scholar] [CrossRef]
- Ahmed, S.Y.; Longsheng, C.; Shah, S.A.A. Assessing and overcoming the renewable energy barriers for sustainable development in Pakistan: An integrated AHP and fuzzy TOPSIS approach. Renew. Energy 2021, 173, 209–222. [Google Scholar] [CrossRef]
- Esfandiary Abdolmaleki, D.; Faraji Abdolmaleki, S.; Bello Bugallo, P.M. Evaluating Renewable Energy and Ranking 17 Autonomous Communities in Spain: A TOPSIS Method. Sustainability 2023, 15, 12259. [Google Scholar] [CrossRef]
- Faik, B.; Zarali, F.; Ilgün, M.F.; Dumrul, C.; Dumrul, Y. The evaluation of renewable energy alternatives for sustainable development in Turkey using intuitionistic fuzzy-TOPSIS method. Renew. Energy 2022, 189, 1443–1458. [Google Scholar] [CrossRef]
- Ye, X.; Qi, H.; Kang, Y.; Zhong, K. Optimization study of heating performance for an impinging jet ventilation system based on data-driven model coupled with TOPSIS method. Build. Environ. 2022, 223, 09465. [Google Scholar] [CrossRef]
- Shadab, A.; Parvez, M.; Khan, T.A.; Khan, O. A hybrid approach using AHP–TOPSIS methods for ranking of soft computing techniques based on their attributes for prediction of solar radiation. Environ. Chall. 2022, 9, 100634. [Google Scholar] [CrossRef]
- Lin, S.S.; Zhou, A.; Shen, S.L. Safety assessment of excavation system via TOPSIS-based MCDM modelling in fuzzy environment. Appl. Soft Comput. 2023, 138, 110206. [Google Scholar] [CrossRef]
- Agar, D.A.; Hansen, P.; Rudolfsson, M.; Blagojević, B. Combining behavioural TOPSIS and six multicriteria weighting methods to rank biomass fuel pellets for energy use in Sweden. Energy Rep. 2023, 10, 706–718. [Google Scholar] [CrossRef]
- Chisale, S.W.; Lee, H.S. Evaluation of barriers and solutions to renewable energy acceleration in Malawi, Africa, using AHP and fuzzy TOPSIS approach. Energy Sustain. Dev. 2023, 76, 101272. [Google Scholar] [CrossRef]
- Dennis, A.; Ampah, J.D.; Afrane, S.; Adjei-Darko, P.; Asante, B.; Fosu, E.; Dankwah, P.A.; Amoh, P.O. Prioritizing strategies to eliminate barriers to renewable energy adoption and development in Ghana: A CRITIC-fuzzy TOPSIS approach. Renew. Energy 2022, 195, 47–65. [Google Scholar] [CrossRef]
- Banadkouki, M.R.Z. Selection of strategies to improve energy efficiency in industry: A hybrid approach using entropy weight method and fuzzy TOPSIS. Energy 2023, 279, 128070. [Google Scholar] [CrossRef]
- Hasanzadeh, R.; Parisa, M.; Taher, A.; Shahram, K.; Ata, C.; Rosen, M.A. Decision analysis for plastic waste gasification considering energy, exergy, and environmental criteria using TOPSIS and grey relational analysis. Process Saf. Environ. Prot. 2023, 174, 414–423. [Google Scholar] [CrossRef]
- Wang, N.; Min, W.; Kum, F.Y. Assessment of port resilience using Bayesian network: A study of strategies to enhance readiness and response capacities. Reliab. Eng. Syst. Saf. 2023, 237, 109394. [Google Scholar] [CrossRef]
- Leśniak, A.; Janowiec, F. Application of the Bayesian networks in construction engineering. Civ. Environ. Eng. Rep. 2020, 30, 221–233. [Google Scholar] [CrossRef]
- Janowiec, F. Modelling the impact of electronic auction on the tender procedure for the construction of railway infrastructure with the Bayesian networks. Arch. Civ. Eng. 2020, 68, 617–631. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Q.; Xu, F.; Du, M.; Hou, L.; Hou, L. Service Performance Evaluation of Operating Loess Railway Tunnel Based on Bayesian Network. Electronics 2023, 12, 958. [Google Scholar] [CrossRef]
- Wang, Q.; Dai, H.-N.; Wang, H. A Smart MCDM Framework to Evaluate the Impact of Air Pollution on City Sustainability: A Case Study from China. Sustainability 2017, 9, 911. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/ (accessed on 13 September 2023).
- Renewables in Cities • 2019 Global Status Report. Available online: https://www.unep.org/resources/report/renewables-cities-2019-global-status-report (accessed on 13 September 2023).
- Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach. 2023. Available online: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach (accessed on 13 September 2023).
- Pan, S.-Y.; Chiang, P.-C.; Pan, W.; Kim, H. Advances in state-of-art valorization technologies for captured CO2 toward sustainable carbon cycle. Crit. Rev. Environ. Sci. Technol. 2018, 48, 471–534. [Google Scholar] [CrossRef]
- Malik, S.; Arshad, M.Z.; Amjad, Z.; Bokhari, A. An empirical estimation of determining factors influencing public willingness to pay for better air quality. J. Clean. Prod. 2022, 372, 133574. [Google Scholar] [CrossRef]
- Rafique, M.Z.; Sun, J.; Larik, A.R.; Li, Y. Assessment of Willingness to Pay for Pollution Prevention, Health and Happiness: A Case Study of Punjab, Pakistan. Front. Public Health 2022, 10, 825387. [Google Scholar] [CrossRef] [PubMed]
- Fenton, N.; Neil, M. Risk Assessment and Decision Analysis with Bayesian Networks, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Kobryń, A. Wielokryterialne Multi-Criteria Decision Support in Space Management; Difin SA: Warsaw, Poland, 2014; ISBN 978-83-7930-469-1. (In Polish) [Google Scholar]
- Wang, S.; Huang, Q.; Liu, Q.; Sun, D. Can Clean Heating in Winter in Northern China Reduce Air Pollution?—Empirical Analysis Based on the PSM-DID Method. Energies 2022, 15, 1839. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attriuute Decision Making: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Kjaerulff, U.B.; Madsen, A.L. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis. In Information Science and Statistics; Springer: Berlin/Heidelberg, Germany, 2012; Volume 22. [Google Scholar]
- Siming, Y.; Wangliang, L.; Weihua, Z.; Hankwon, L.; Harn Wei, K.; Young-Kwon, P.; Avanthi Deshani, I.; Yong Sik, O. Energy, economic, and environmental impacts of sustainable biochar systems in rural China. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1063–1091. [Google Scholar] [CrossRef]
- Skiba, M.; Mrówczyńska, M.; Sztubecka, M.; Maciejko, A.; Rzeszowska, N. The European Union’s Energy Policy Efforts Regarding Emission Reduction in Cities—A Method Proposal. Energies 2023, 16, 6123. [Google Scholar] [CrossRef]
Country | Criteria | ||||||||
---|---|---|---|---|---|---|---|---|---|
Economic Factors | Health Factors | Demographic Factors | |||||||
E1 | E2 | E3 | H1 | H2 | H3 | H4 | D1 | D2 | |
Finland | 4.7672 | 16.20771 | 21.56149 | 1024 | 92 | 2 | 3,034,855 | 87 | 191,886 |
Sweden | 2.6314 | 31.03864 | 28.14322 | 2890 | 292 | 3 | 5,626,602 | 95 | 381,496 |
Estonia | 0.6549 | 12.0294 | 25.14243 | 516 | 45 | 3 | 728,651 | 66 | 22,212 |
Ireland | 8.1302 | 14.92523 | 2.12134 | 3941 | 328 | 7 | 2,697,332 | 151 | 285,086 |
Iceland | 11.1274 | 40.84707 | 39.87947 | 288 | 27 | 8 | 196,345 | 101 | 17,622 |
Luxembourg | 155.0402 | 5.82897 | 5.29638 | 596 | 52 | 8 | 337,642 | 201 | 49,899 |
Norway | 11.2926 | 46.6047 | 13.49884 | 6789 | 673 | 13 | 2,930,517 | 118 | 292,104 |
Portugal | 0.1475 | 23.95753 | 17.49921 | 14,548 | 1383 | 14 | 5,652,139 | 63 | 171,500 |
France | 49.6662 | 10.25656 | 9.92692 | 119,585 | 10,326 | 16 | 37,009,759 | 85 | 1,950,108 |
Denmark | 13.9948 | 25.68527 | 17.0273 | 10,307 | 944 | 17 | 3,193,345 | 101 | 247,621 |
Spain | 33.6536 | 18.84442 | 7.13318 | 91,029 | 8106 | 18 | 25,815,383 | 73 | 996,410 |
Netherlands | 21.0984 | 12.46154 | 3.1652 | 36,235 | 3332 | 19 | 9,505,190 | 102 | 650,444 |
Switzerland | 22.0778 | 25.88412 | 11.931 | 18,928 | 1778 | 21 | 4,699,490 | 122 | 515,555 |
Malta | 0.2124 | 3.95855 | 12.85596 | 1263 | 104 | 21 | 271,457 | 83 | 11,349 |
Belgium | 507.1227 | 10.66533 | 3.78881 | 26,722 | 2496 | 22 | 6,300,535 | 94 | 382,941 |
Germany | 246.1362 | 17.90921 | 6.32958 | 200,716 | 18,898 | 23 | 45,660,567 | 97 | 2,779,288 |
Austria | 45.0229 | 31.23585 | 14.54721 | 20,923 | 2023 | 23 | 4,872,326 | 101 | 317,736 |
Cyprus | 3.3217 | 6.0844 | 16.95063 | 3389 | 320 | 26 | 481,744 | 74 | 18,541 |
Türkiye | 3.7347 | 12.136 | 12.3 | 306,846 | 23,201 | 28 | 45,102,135 | 47 | 542,544 |
Latvia | 1.1505 | 21.07277 | 23.52498 | 6278 | 552 | 29 | 1,055,982 | 55 | 24,543 |
Slovenia | 0.0295 | 14.34016 | 14.43815 | 7129 | 629 | 30 | 1,144,499 | 71 | 38,826 |
Slovakia | 3.6639 | 9.17129 | 8.00361 | 24,246 | 1905 | 35 | 2,997,732 | 57 | 75,543 |
Czechia | 30.8098 | 5.96304 | 9.91503 | 42,730 | 3819 | 36 | 5,857,390 | 74 | 180,491 |
Lithuania | 0.472 | 8.72398 | 19.93707 | 11,949 | 1035 | 37 | 1,536,801 | 67 | 39,133 |
Italy | 6.2717 | 14.75836 | 8.08233 | 234,093 | 23,467 | 39 | 32,899,170 | 78 | 1,437,319 |
Croatia | 1.1918 | 21.92311 | 15.59148 | 20,027 | 1909 | 47 | 2,241,935 | 54 | 44,516 |
Greece | 31.5591 | 14.73294 | 12.76986 | 52,120 | 5215 | 48 | 5,898,529 | 53 | 146,681 |
Hungary | 1.3806 | 5.6006 | 7.35089 | 54,350 | 4766 | 49 | 5,375,016 | 58 | 117,244 |
Poland | 0.3835 | 7.03806 | 8.62271 | 248,853 | 19,610 | 52 | 20,885,047 | 58 | 426,004 |
Romania | 0.7906 | 17.42049 | 10.03803 | 119,639 | 10,160 | 52 | 10,677,952 | 56 | 179,343 |
Albania | 2.1122 | 38.71261 | 8.692 | 23,398 | 2186 | 76 | 1,574,335 | 24 | 11,003 |
Bulgaria | 0.1416 | 7.7039 | 10.50625 | 58,669 | 5450 | 78 | 3,850,021 | 42 | 49,247 |
Montenegro | 1.3511 | 24.78942 | 26.03418 | 5360 | 501 | 80 | 342,200 | 40 | 3961 |
North Macedonia | 0.4838 | 8.82812 | 13.24587 | 18,648 | 1851 | 89 | 1,142,423 | 30 | 9010 |
Serbia | 0.6667 | 12.25777 | 14.54393 | 64,702 | 6261 | 90 | 3,830,070 | 33 | 36,804 |
Bosnia and Herzegovina | 1.0325 | 18.99038 | 21.85628 | 33,452 | 3236 | 92 | 1,920,610 | 26 | 14,637 |
Scenario | The Variety of Variants That Cause a Scenario to Occur |
---|---|
ScI | Renewable Energy Share (Low or Medium); GDP per capita in purchasing power (High). |
ScII | Premature death from particle pollution <2.5 μm (Medium or High); GDP per capita in purchasing power (Low). |
ScIII | Renewable Energy Share (heating and cooling) (Low or Medium); GDP per capita in purchasing power (High). |
Analyzed Criteria | Scenario/Weight | ||
---|---|---|---|
ScI/0.0512 | ScII/0.2520 | ScIII/0.3477 | |
E1 | 0.5944 | 0.0811 | 0.5946 |
E2 | 0.3783 | 0.1892 | 0.3783 |
E3 | 0.2163 | 0.2163 | 0.2163 |
H1 | 0.1621 | 0.1621 | 0.1621 |
H2 | 0.0810 | 0.3514 | 0.0810 |
H3 | 0.0810 | 0.3514 | 0.0810 |
H4 | 0.3784 | 0.3784 | 0.3784 |
D1 | 0.2973 | 0.5675 | 0.5675 |
D2 | 0.3243 | 0.3514 | 0.3514 |
Analyzed Criteria | Scenario | ||
---|---|---|---|
ScI | ScII | ScIII | |
E1 | 0.0360 | 0.0242 | 0.1744 |
E2 | 0.0229 | 0.0564 | 0.1109 |
E3 | 0.0131 | 0.0645 | 0.0634 |
H1 | 0.0098 | 0.0484 | 0.0475 |
H2 | 0.0049 | 0.1048 | 0.0238 |
H3 | 0.0049 | 0.1048 | 0.0238 |
H4 | 0.0229 | 0.1129 | 0.1110 |
D1 | 0.0180 | 0.1693 | 0.1664 |
D2 | 0.0197 | 0.1048 | 0.1031 |
Scenario | Values | |||
---|---|---|---|---|
D+ | D− | Ti | Rank | |
ScI | 0.0118 | 0.2987 | 0.9619 | 1 |
ScII | 0.2519 | 0.1598 | 0.3880 | 2 |
ScIII | 0.2677 | 0.1147 | 0.3000 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skiba, M.; Mrówczyńska, M.; Leśniak, A.; Rzeszowska, N.; Janowiec, F.; Sztubecka, M.; Błaszczak-Bąk, W.; Kazak, J.K. Implication of the EU Countries’ Energy Policy Concerning Scenarios Affecting the Air Quality Improvement. Energies 2024, 17, 3892. https://doi.org/10.3390/en17163892
Skiba M, Mrówczyńska M, Leśniak A, Rzeszowska N, Janowiec F, Sztubecka M, Błaszczak-Bąk W, Kazak JK. Implication of the EU Countries’ Energy Policy Concerning Scenarios Affecting the Air Quality Improvement. Energies. 2024; 17(16):3892. https://doi.org/10.3390/en17163892
Chicago/Turabian StyleSkiba, Marta, Maria Mrówczyńska, Agnieszka Leśniak, Natalia Rzeszowska, Filip Janowiec, Małgorzata Sztubecka, Wioleta Błaszczak-Bąk, and Jan K. Kazak. 2024. "Implication of the EU Countries’ Energy Policy Concerning Scenarios Affecting the Air Quality Improvement" Energies 17, no. 16: 3892. https://doi.org/10.3390/en17163892
APA StyleSkiba, M., Mrówczyńska, M., Leśniak, A., Rzeszowska, N., Janowiec, F., Sztubecka, M., Błaszczak-Bąk, W., & Kazak, J. K. (2024). Implication of the EU Countries’ Energy Policy Concerning Scenarios Affecting the Air Quality Improvement. Energies, 17(16), 3892. https://doi.org/10.3390/en17163892