Process Modeling and Optimization of Supercritical Carbon Dioxide-Enhanced Geothermal Systems in Poland
Abstract
:1. Introduction
1.1. Literature Review
1.1.1. Enhanced Geothermal Systems Overview
1.1.2. sCO2-EGS Worldwide Status
- Lack of adequate and efficient HDR artificial fracture management technology in EGS development may lead to isolated, disproportionately large artificial fractures, fluid circulation short circuits, early thermal breakthroughs, and consequently inefficient heat recovery.
- The processes of EGS formation and heat recovery are influenced by a number of variables, including water–rock interaction, seepage, heat transmission, medium deformation, and several others. It is yet unknown how multi-scale and multi-field coupling patterns and mechanisms influence geothermal reservoirs.
- Pressure drops during the lifting process in EGS producers can result in fluid flashing, which modifies the well’s flow and heat transfer properties and limits the extraction of hot fluid efficiently.
1.1.3. sCO2-EGS Potential in Poland
- -
- Carpathian Foredeep;
- -
- Outer Carpathians;
- -
- Sudetes;
- -
- Polish Lowlands.
2. Materials and Methods
2.1. Case Studies
- Case 1: direct sCO2 cogeneration cycle; unit with direct sCO2 expansion in the turbine for combined power and heat generation;
- Case 2: hybrid cycle for power generation only; unit with direct sCO2 turbine and organic Rankine cycle (ORC) only for power generation.
2.2. Process Synthesis and Design
- -
- Process modeling of different energy systems;
- -
- Conducting thermodynamic analyses;
- -
- Simulation and analysis of real thermal systems;
- -
- Optimization of thermal systems [33].
- The circulating medium is pure CO2, free from pollutants and other particles;
- Plant operating hours: 7884 h (90% of the year);
- Geothermal doublet—1 injection and 1 production well.
2.3. Assessment Methods
- Power output—gross and net electricity generation under various operating conditions. This parameter is crucial for assessing the capacity of the plant to meet energy demand and for optimizing the system’s power generation capabilities.
- Heat output—quantified the amount of heat transferred to the district heating system under particular conditions.
- Exergy output—quantified the amount of exergy transferred to the district heating system under particular conditions associated with the thermal energy generated by the plant, calculated based on the average mean temperature difference.
3. Results
3.1. Energy Assessment
3.1.1. Case 1 Direct sCO2 Cycle (Power and Heat Generation)
3.1.2. Case 2 Indirect sCO2 Cycle with ORC (Only Power Generation)
4. Discussion
5. Conclusions
- The geological properties of the reservoir play a crucial role in determining the feasibility and effectiveness of EGS units. Key factors include the permeability of the rock formation, its porosity, temperature gradient, and depth. High permeability is essential for fluid circulation and heat extraction, while adequate porosity allows for fluid storage. A reservoir with a substantial temperature gradient and sufficient depth ensures access to the desired heat source for efficient power production or power and heat generation.
- Both analyzed cases utilized a thermosiphon effect, which enabled the system to operate without an additional CO2 compressor installed before the injection well, which stems from the pressure difference between the wellheads and reduces the consumption of electricity for the auxiliaries.
- At nominal flows (100 kg/s), sCO2-EGS can produce:
- -
- Case no 1: 0.4 MWe and 9 MWth for up to 18 years;
- -
- Case no 2: 1.7 MWe for up to 20 years.
After this period, fairly stable conditions can be observed for lower mass flows, or a gradual decline, the dynamics of which are dependent on the flow rate. - The proposed simulation may have a valuable impact on further techno-economic assessments, taking into account additional income related to disposing of CO2 through its sequestration, which may change the revenue calculation significantly.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, L.; Han, D.; Chen, Z.; Wang, D.; Jiao, K.; Zhang, X.; Yu, B. Research Status and Development Trend of Key Technologies for Enhanced Geothermal Systems. Nat. Gas Ind. B 2023, 10, 140–164. [Google Scholar] [CrossRef]
- Lu, S.M. A Global Review of Enhanced Geothermal System (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar] [CrossRef]
- Liu, X. An Overview of EGS Development and Management Suggestions. Front. Res. Archit. Eng. 2020, 3, 6. [Google Scholar] [CrossRef]
- Biagi, J.; Agarwal, R.; Zhang, Z. Simulation and Optimization of Enhanced Geothermal Systems Using CO2 as a Working Fluid. Energy 2015, 86, 627–637. [Google Scholar] [CrossRef]
- Sharmin, T.; Khan, N.R.; Akram, M.S.; Ehsan, M.M. A State-of-the-Art Review on Geothermal Energy Extraction, Utilization, and Improvement Strategies: Conventional, Hybridized, and Enhanced Geothermal Systems. Int. J. Thermofluids 2023, 18, 100323. [Google Scholar] [CrossRef]
- Brown, D.W. A hot day rock geothermal energy concept utilizing super-critical CO2 instead of water. In Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 24–26 January 2000; Available online: https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2000/Brown.pdf (accessed on 26 February 2024).
- Olasolo, P.; Juárez, M.C.; Morales, M.P.; Damico, S.; Liarte, I.A. Enhanced Geothermal Systems (EGS): A Review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Pruess, K. Enhanced Geothermal Systems (EGS) Using CO2 as Working Fluid—A Novel Approach for Generating Renewable Energy with Simultaneous Sequestration of Carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef]
- Zhang, F.Z.; Jiang, P.X.; Xu, R.N. System Thermodynamic Performance Comparison of CO2-EGS and Water-EGS Systems. Appl. Therm. Eng. 2013, 61, 236–244. [Google Scholar] [CrossRef]
- Kumari, W.G.P.; Ranjith, P.G. Sustainable Development of Enhanced Geothermal Systems Based on Geotechnical Research—A Review. Earth Sci. Rev. 2019, 199, 102955. [Google Scholar] [CrossRef]
- Wang, C.-L.; Cheng, W.-L.; Nian, Y.-L.; Yang, L.; Han, B.-B.; Liu, M.-H. Simulation of Heat Extraction from CO2-Based Enhanced Geothermal Systems Considering CO2 Sequestration. Energy 2018, 142, 157–167. [Google Scholar] [CrossRef]
- Wang, X.; Levy, E.K.; Pan, C.; Romero, C.E.; Banerjee, A.; Rubio-Maya, C.; Pan, L. Working Fluid Selection for Organic Rankine Cycle Power Generation Using Hot Produced Supercritical CO2 from a Geothermal Reservoir. Appl. Therm. Eng. 2019, 149, 1287–1304. [Google Scholar] [CrossRef]
- Strojny, M.; Gładysz, P.; Andresen, T.; Pająk, L.; Starczewska, M.; Sowiżdżał, A. Environmental Impact of Enhanced Geothermal Systems with Supercritical Carbon Dioxide: A Comparative Life Cycle Analysis of Polish and Norwegian Cases. Energies 2024, 17, 2077. [Google Scholar] [CrossRef]
- Lacirignola, M.; Blanc, I. Environmental Analysis of Practical Design Options for Enhanced Geothermal Systems (EGS) through Life-Cycle Assessment. Renew. Energy 2013, 50, 901–914. [Google Scholar] [CrossRef]
- Frick, S.; Kaltschmitt, M.; Schröder, G. Life Cycle Assessment of Geothermal Binary Power Plants Using Enhanced Low-Temperature Reservoirs. Energy 2010, 35, 2281–2294. [Google Scholar] [CrossRef]
- Pratiwi, A.; Ravier, G.; Genter, A. Life-Cycle Climate-Change Impact Assessment of Enhanced Geothermal System Plants in the Upper Rhine Valley. Geothermics 2018, 75, 26–39. [Google Scholar] [CrossRef]
- Raos, S.; Ilak, P.; Rajšl, I.; Bilić, T.; Trullenque, G. Multiple-Criteria Decision-Making for Assessing the Enhanced Geothermal Systems. Energies 2019, 12, 1597. [Google Scholar] [CrossRef]
- Aljubran, M.J.; Horne, R.N. Techno-Economics of Enhanced Geothermal Systems across the United States Using Novel Temperature-at-Depth Maps. In Proceedings of the 49th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 12–14 February 2024; SGP-TR-227. Available online: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2024/Aljubran.pdf (accessed on 26 February 2024).
- Geothermal|Electricity|2023|ATB|NREL. Available online: https://atb.nrel.gov/electricity/2023/geothermal (accessed on 15 July 2024).
- Read, M.; Smith, I.; Stosic, N. Fundamental Investigation of Whole-Life Power Plant Performance For Enhanced Geothermal Systems. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 11–14 July 2016. [Google Scholar]
- Campos Rodríguez, C.E.; Escobar Palacio, J.C.; Venturini, O.J.; Silva Lora, E.E.; Cobas, V.M.; Marques Dos Santos, D.; Lofrano Dotto, F.R.; Gialluca, V. Exergetic and Economic Comparison of ORC and Kalina Cycle for Low Temperature Enhanced Geothermal System in Brazil. Appl. Therm. Eng. 2013, 52, 109–119. [Google Scholar] [CrossRef]
- Haris, M.; Hou, M.Z.; Feng, W.; Mehmood, F.; Saleem, A. bin A Regenerative Enhanced Geothermal System for Heat and Electricity Production as Well as Energy Storage. Renew. Energy 2022, 197, 342–358. [Google Scholar] [CrossRef]
- Bonalumi, D. Enhanced Geothermal System with Captured CO2. Energy Procedia 2018, 148, 744–750. [Google Scholar] [CrossRef]
- Gladysz, P.; Sowizdzal, A.; Miecznik, M.; Hacaga, M.; Pajak, L. Techno-Economic Assessment of a Combined Heat and Power Plant Integrated with Carbon Dioxide Removal Technology: A Case Study for Central Poland. Energies 2020, 13, 2841. [Google Scholar] [CrossRef]
- Gładysz, P.; Sowiżdżał, A.; Miecznik, M.; Pająk, L. Carbon Dioxide-Enhanced Geothermal Systems for Heat and Electricity Production: Energy and Economic Analyses for Central Poland. Energy Convers. Manag. 2020, 220, 113142. [Google Scholar] [CrossRef]
- Tagliaferri, M.; Gładysz, P.; Ungar, P.; Strojny, M.; Talluri, L.; Fiaschi, D.; Manfrida, G.; Andresen, T.; Sowiżdżał, A. Techno-Economic Assessment of the Supercritical Carbon Dioxide Enhanced Geothermal Systems. Sustainability 2022, 14, 16580. [Google Scholar] [CrossRef]
- IRENA; IGA. Global Geothermal Market and Technology Assessment; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates; International Geothermal Association: The Hague, The Netherlands, 2023; Available online: https://www.irena.org/Publications/2023/Feb/Global-geothermal-market-and-technology-assessment (accessed on 26 February 2024).
- Kelkar, S.; Woldegabriel, G.; Rehfeldt, K. Lessons Learned from the Pioneering Hot Dry Rock Project at Fenton Hill, USA 1. Geothermics 2016, 63, 5–14. [Google Scholar] [CrossRef]
- Baria, R.; Baumgärtner, J.; Gérard, A.; Jung, R.; Garnish, J. European HDR Research Programme at Soultz-Sous-Forêts (France) 1987–1996. Geothermics 1999, 28, 655–669. [Google Scholar] [CrossRef]
- Raos, S.; Hranić, J.; Rajšl, I.; Bär, K. An Extended Methodology for Multi-Criteria Decision-Making Process Focused on Enhanced Geothermal Systems. Energy Convers. Manag. 2022, 258, 115253. [Google Scholar] [CrossRef]
- Sowiżdżał, A. Characterization of geothermal reservoirs parameters in polish part of Carpathian Foredeep. Carpathian J. Earth Environ. Sci. 2015, 10, 237–246. [Google Scholar]
- Semyrka, R.; Sowiżdżał, A.; Górecki, W.; Kaczmarczyk, M.; Semyrka, G.; Machowski, W.; Michna, M.; Maruta, M.; Rutkowski, P.; Piekarczyk, W.; et al. Ocena Potencjału, Bilansu Cieplnego i Perspektywicznych Struktur Geologicznych Dla Potrzeb Zamkniętych Systemów Geotermicznych (Hot Dry Rocks) w Polsce. Minist. Sr. 2013, 53–69, ISBN 978-83-7863-263-4. [Google Scholar]
- SimTech Technical Documentation, IPSEpro Process Simulator; rev 4.0.001; Process Simulation Environment; SimTech: Singapore, 2017.
- Li, M.X.; Ricard, L.P.; Underschultz, J.; Freifeld, B.M. Reducing Operational Costs of CO2 Sequestration through Geothermal Energy Integration. Int. J. Greenh. Gas Control 2016, 44, 238–248. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Isentropic Efficiency: | |
sCO2 Turbine | 85% |
sCO2 Compressor | 94% |
ORC Turbine | 85% |
ORC Pump | 94% |
Mechanical efficiency: | |
Turbine | 98% |
Generator | 98% |
Motors (for pumps and compressors) | 98% |
Generator electrical efficiency | 96% |
Pressure drops in heat exchangers | 0.5 bar |
Minimum temperature difference for heat exchangers | 10 K |
Injection temperatures (50/100/150 kg/s) | 38/43/44.5 °C |
Cooling water parameters: | |
Temperatures | 20/25 °C |
Pressure | 1 bar |
District heating system parameters | 50/var °C |
Parameter | Case 1 Direct sCO2 Cycle (Power and Heat Generation) | Case 2 Indirect sCO2 Cycle with ORC (Only Power Generation) |
---|---|---|
Gross power (at time = 0), MWe | 0.8 | 2.1 |
Net power (at time = 0), MWe | 0.5 | 1.8 |
Total gross electricity production, MWhe | 175,884 | 451,058 |
Total electricity own consumption, MWhe | 55,609 | 81,818 |
Total net electricity production, MWhe | 120,235 | 369,240 |
Total DHS heat supply, MWhth | 2,219,119 | n/a |
Total DHS exergy supply, MWhth | 396,693 | n/a |
Total amount of CO2 sequestrated, ton | 10,764,096 |
Parameter | 50 kg/s | 100 kg/s | 150 kg/s |
---|---|---|---|
Net electricity production, MWhe | 24,732.3 | 120,235.1 | 163,161.7 |
DHS heat supply, MWhth | 926,901.3 | 2,219,119.2 | 2,754,275.2 |
Parameter | 50 kg/s | 100 kg/s | 150 kg/s |
---|---|---|---|
Gross electricity production, MWhe | 179,823.7 | 451,058.1 | 566,014.5 |
Net electricity production, MWhe | 117,991.7 | 369,240.1 | 473,362.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gładysz, P.; Pająk, L.; Andresen, T.; Strojny, M.; Sowiżdżał, A. Process Modeling and Optimization of Supercritical Carbon Dioxide-Enhanced Geothermal Systems in Poland. Energies 2024, 17, 3769. https://doi.org/10.3390/en17153769
Gładysz P, Pająk L, Andresen T, Strojny M, Sowiżdżał A. Process Modeling and Optimization of Supercritical Carbon Dioxide-Enhanced Geothermal Systems in Poland. Energies. 2024; 17(15):3769. https://doi.org/10.3390/en17153769
Chicago/Turabian StyleGładysz, Paweł, Leszek Pająk, Trond Andresen, Magdalena Strojny, and Anna Sowiżdżał. 2024. "Process Modeling and Optimization of Supercritical Carbon Dioxide-Enhanced Geothermal Systems in Poland" Energies 17, no. 15: 3769. https://doi.org/10.3390/en17153769
APA StyleGładysz, P., Pająk, L., Andresen, T., Strojny, M., & Sowiżdżał, A. (2024). Process Modeling and Optimization of Supercritical Carbon Dioxide-Enhanced Geothermal Systems in Poland. Energies, 17(15), 3769. https://doi.org/10.3390/en17153769