Cost Reduction in the Process of Biological Denitrification by Choosing Traditional or Alternative Carbon Sources
Abstract
:1. Introduction
2. Carbon Sources for Denitrification
2.1. Liquid Carbon Sources for Denitrification
2.2. Solid Carbon Sources for Denitrification
2.3. Alternative Carbon Sources for Denitrification
2.4. Endogenous Denitrification/Internal Carbon Sources
3. Aerobic Denitrification
4. The Role of Temperature and pH on Denitrification
5. Microbial Community in Denitrification
6. N2O and NO Emission during Denitrification
7. Limitations and Future Perspectives
- i.
- ii.
- iii.
- iv.
- The storage, pumping, and delivery systems for combustible carbon sources require higher capital construction costs to fulfil safety standards in comparison to other non-hazardous and non-flammable carbon sources [41].
- v.
- Overdose is a common problem that may result in significant secondary contamination [58].
- vi.
- There is a long adaptation period of activated sludge microorganisms to some carbon sources [40].
- i.
- The release of carbon is gradual, making it an easy-to-manage, long-term operation [58].
- ii.
- They are low in cost, easily available, easy to control, and can avoid the overdose problem [58].
- iii.
- It is easy to maintain a stable operation for the system [58].
- iv.
- The usage of natural carbon sources is limited because of increased colour intensity in the effluent, excessive dissolved organic carbon release, unstable carbon release rates, and slow denitrification rates [58].
- v.
- The chemical structure and molecular weight of biodegradable polymers considerably influence the mechanism of the utilisation of the carbon source, particularly the microbial community [87].
- vi.
- The amount of CO2 released is lower than from liquid carbon sources [59].
- vii.
- The drawbacks include possible susceptibility to the operational conditions; low electron donor availability; the accumulation of products such as greenhouse gases, residual organic compounds, nitrite, nitrous oxide, and ammonium; and a low efficiency rate [62].
8. Economic and Environmental Benefits and Drawbacks of Some Carbon Sources for Denitrification
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghafari, S.; Hasan, M.; Aroua, M.K. Bio-electrochemical removal of nitrate from water and wastewater—A review. Bioresour. Technol. 2008, 99, 3965–3974. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-C.; Rittmann, B.E. Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor. Water Res. 2003, 37, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Levy-Booth, D.J.; Prescott, C.E.; Grayston, S.J. Microbial Functional Genes Involved in Nitrogen Fixation, Nitrification and Denitrification in Forest Ecosystems. Soil Biol. Biochem. 2014, 75, 11–25. [Google Scholar] [CrossRef]
- Schreiber, F.; Wunderlin, P.; Udert, K.M.; Wells, G.F. Nitric Oxide and Nitrous Oxide Turnover in Natural and Engineered Microbial Communities: Biological Pathways, Chemical Reactors, and Novel Technologies. Front. Microbiol. 2012, 3, 372. [Google Scholar] [CrossRef] [PubMed]
- Kits, K.D.; Kalyuzhnaya, M.G.; Klotz, M.G.; Jetten, M.S.M.; Opden Camp, H.J.M.; Vuilleumier, S.; Bringel, F. Genome sequence of the obligate gammaproteobacterial methanotroph Methylomicrobium album strain BG8. Genome Announc. 2013, 1, e0017013. [Google Scholar] [CrossRef] [PubMed]
- Bárta, J.; Melichová, T.; Vanĕk, D.; Picek, T.; Šantrůčková, H. Effect of pH and Dissolved Organic Matter on the Abundance of nirK and nirS Denitrifiers in Spruce Forest Soil. Biogeochemistry 2010, 101, 123–132. [Google Scholar] [CrossRef]
- Adouani, N.; Lendormi, T.; Limousy, L.; Sire, O. Effect of the Carbon Source on N2O Emissions during Biological Denitrification. Resour. Conserv. Recycl. 2010, 54, 299–302. [Google Scholar] [CrossRef]
- Matĕjů, V.; Čižinská, S.; Krejčí, J.; Janoch, T. Biological Water Denitrification—A Review. Enzyme Microb. Technol. 1992, 14, 170–183. [Google Scholar] [CrossRef]
- Campo, R.; Sguanci, S.; Caffaz, S.; Mazzoli, L.; Ramazzotti, M.; Lubello, C.; Lotti, T. Efficient carbon, nitrogen and phosphorus removal from low C/N real domestic wastewater with aerobic granular sludge. Bioresour. Technol. 2020, 305, 122961. [Google Scholar] [CrossRef]
- Grgas, D.; Ugrina, M.; Toromanović, M.; Ibrahimpašić, J.; Štefanac, T.; Tibela Landeka Dragičević. Fish canning wastewater treatment in sequencing batch reactor with activated sludge. Holistic Approach Environ. 2020, 10, 29–34. [Google Scholar] [CrossRef]
- Chen, Q.; Ni, J.R.; Ma, T.; Liu, T.; Zheng, M.S. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresour. Technol. 2015, 183, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Landeka Dragičević, T.; Zanoški Hren, M.; Grgas, D.; Buzdum, I.; Čurlin, M. The potential of dairy wastewater for denitrification. Mljekarstvo 2010, 60, 191–197. [Google Scholar]
- Khan, I.A.; Spalding, R.F. Enhanced in situ denitrification for a municipal well. Water Res. 2004, 38, 3382–3388. [Google Scholar] [CrossRef]
- Kishida, N.; Kim, J.H.; Kimochi, Y.; Nishimura, O.; Sasaki, H.; Sudo, R. Effect of C/N Ratio on Nitrous Oxide Emission from Swine Wastewater Treatment Process. Water Sci. Technol. 2004, 49, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Carrera, J.; Baeza, J.A.; Vicent, T.; Lafuente, J. Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Res. 2003, 37, 4211–4221. [Google Scholar] [CrossRef]
- Ortmeyer, F.; Begerow, D.; Guerreiro, M.A.; Wohnlich, S.; Banning, A. Comparison of Denitrification Induced by Various Organic Substances—Reaction Rates, Microbiology, and Temperature Effect. Water Resour. Res. 2021, 57, e2021WR029793. [Google Scholar] [CrossRef]
- Schroeder, A.; Souza, D.H.; Fernandes, M.; Rodrigues, E.B.; Trevisan, V.; Skoronski, E. Application of glycerol as carbon source for continuous drinking water denitrification using microorganism from natural biomass. J. Environ. Manag. 2020, 256, 109964. [Google Scholar] [CrossRef]
- Karanasios, K.A.; Vasiliadou, I.A.; Tekerlekopoulou, A.G.; Akratos, C.S.; Pavlou, S.; Vayenas, D.V. Effect of C/N ratio and support material on heterotrophic denitrification of potable water in bio-filters using sugar as carbon source. Int. Biodeterior. Biodegrad. 2016, 111, 62–73. [Google Scholar] [CrossRef]
- Carrey, R.; Otero, N.; Vidal-Gavilan, G.; Ayora, C.; Soler, A.; Gómez-Alday, J.J. Induced nitrate attenuation by glucose in groundwater: Flow-through experiment. Chem. Geol. 2014, 370, 19–28. [Google Scholar] [CrossRef]
- Ge, S.; Peng, Y.; Wang, S.; Lu, C.; Cao, X.; Zhu, Y. Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/NO3-N. Bioresour. Technol. 2012, 114, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Mokhayeri, Y.; Riffat, R.; Murthy, S.; Bailey, W.; Takacs, I.; Bott, C. Balancing yield, kinetics and cost for three external carbon sources used for suspended growth post-denitrification. Water Sci. Technol. 2009, 60, 2485–2491. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, S.G.; Varesche, M.B.A.; Zaiat, M.; Foresti, E. Comparison of methanol, ethanol, and methane as electron donors for denitrification. Environ. Eng. Sci. 2004, 21, 313–320. [Google Scholar] [CrossRef]
- Xiang, H.; Li, J.; You, Z.; Qiu, Y.; Feng, J.; Zhao, J.; Chu, G.; Wang, X. Effect of Carbon Source on Endogenous Partial Denitrification Process: Characteristics of Intracellular Carbon Transformation and Nitrite Accumulation. Water 2024, 16, 1645. [Google Scholar] [CrossRef]
- Li, T.; Li, W.; Chai, X.; Dai, X.; Wu, B. PHA stimulated denitrification through regulation of preferential cofactor provision and intracellular carbon metabolism at different dissolved oxygen levels by Pseudomonas stutzeri. Chemosphere 2022, 309, 136641. [Google Scholar] [CrossRef] [PubMed]
- Dyagelev, M.Y.; Isakov, V.G.; Grakhova, E.V. Denitrification rates determination in the process of removing nitrogen from wastewater. IOP Conf. Ser. Mater. Sci. Eng. 2019, 687, 066072. [Google Scholar] [CrossRef]
- Hu, B.; Wang, T.; Ye, J.; Zhao, J.; Yang, L.; Wu, P.; Duan, J.; Ye, G. Effects of carbon sources and operation modes on the performances of aerobic denitrification process and its microbial community shifts. J. Environ. Manag. 2019, 239, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.L.; Liu, D.; Qi, Y.J.; Zhang, Y.; Liu, X.; Zhao, M. The effect of anaerobic–aerobic and feast–famine cultivation pattern on bacterial diversity during poly-β-hydroxybutyrate production from domestic sewage sludge. Environ. Sci. Pollut. Res. Int. 2016, 23, 12966–12975. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhai, X.; Li, B.; Jiang, C.; Guan, Y. Endogenous nitrous oxide emission for denitrifiers acclimated with different organic carbons. Procedia Environ. Sci. 2014, 21, 26–32. [Google Scholar] [CrossRef]
- Wu, G.; Zhai, X.; Jiang, C.; Guan, Y. Effect of ammonium on nitrous oxide emission during denitrification with different electron donors. J. Environ. Sci. 2013, 25, 1131–1138. [Google Scholar] [CrossRef]
- Jiang, Y.; Marang, L.; Kleerebezem, R.; Muyzer, G.; van Loosdtrecht, M.C.M. Polyhydroxybutyrate production from lactate using a mixed microbial culture. Biotechnol. Bioeng. 2011, 108, 2022–2035. [Google Scholar] [CrossRef]
- Bernat, K.; Wojnowska-Baryła, I. Carbon source in aerobic denitrification. Biochem. Eng. J. 2007, 36, 116–122. [Google Scholar] [CrossRef]
- Richardson, D.J.; Berks, B.C.; Russell, D.A.; Spiro, S.; Taylor, C.J. Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell. Mol. Life Sci. 2001, 58, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wang, L.; Yan, W.; Zhou, Y. Primary sludge as solid carbon source for biological denitrification: System optimization at micro-level. Environ. Res. 2020, 191, 110160. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Wang, C.; Cao, J.; Luo, J.; Feng, Q.; Fang, F.; Li, C.; Zhang, Q. An alternative carbon source withdrawn from anaerobic fermentation of soybean wastewater to improve the deep denitrification of tail water. Biochem. Eng. J. 2018, 132, 217–224. [Google Scholar] [CrossRef]
- Fernández-Nava, Y.; Marañón, E.; Soons, J.; Castrillón, L. Denitrification of high nitrate concentration wastewater using alternative carbon sources. J. Hazard. Mater. 2010, 173, 682–688. [Google Scholar] [CrossRef]
- Zhang, H.W.; Jiang, J.; Li, M.; Yan, F.; Gong, C. Biological nitrate removal using a food waste-derived carbon source in synthetic wastewater and real sewage. J. Environ. Manag. 2016, 166, 407–413. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Wang, X.C.C.; Cheng, Z.; Li, Y.Y.; Tang, J.L. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment. Chemosphere 2016, 144, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Cherchi, C.; Onnis-Hayden, A.; El-Shawabkeh, I.; Gu, A.Z. Implication of using different carbon sources for denitrification in wastewater treatments. Water Environ. Res. 2009, 81, 788–799. [Google Scholar] [CrossRef]
- Mokhayeri, Y.; Nichols, A.; Murthy, S.; Riffat, R.; Dold, P.; Takacs, I. Examining the Influence of Substrates and Temperature on Maximum Specific Growth Rate of Denitrifiers. Water Sci. Technol. 2006, 54, 155–162. [Google Scholar] [CrossRef]
- Christensson, M.; Lie, E.; Welander, T. A Comparison between Ethanol and Methanol as Carbon-Sources for Denitrification. Water Sci. Technol. 1994, 30, 83–90. [Google Scholar] [CrossRef]
- CDM. Evaluation of Methanol Feed, Storage and Handling Costs at Municipal Wastewater Treatment Facilities; CDM: Cambridge, MA, USA, 2007. [Google Scholar]
- METHANEX. Methanex Monthly Average Regional Posted Contract Price History; Methanex: Vancouver, BC, Canada, 2008. [Google Scholar]
- Cao, S.; Qian, T.; Zhou, Y. New insights on the sludge fermentation liquid driven denitrification: Evaluation of the system performance and effluent organic matter (EfOM). Bioresour. Technol. 2019, 289, 121621. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, H.; Hu, L.; Yu, L.; Chen, Y.; Gu, G. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal. Environ. Sci. Technol. 2011, 45, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wu, Q.; Yu, P.; Zhang, L.; Ye, L.; Zhang, X.X.; Ren, H. Denitrification using excess activated sludge as carbon source: Performance and the microbial community dynamics. Bioresour. Technol. 2017, 238, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dong, W.; Li, T.; Liu, T. Enhanced synergistic denitrification and chemical precipitation in a modified BAF process by using Fe2+. Bioresour. Technol. 2014, 151, 258–264. [Google Scholar] [CrossRef]
- Zhang, Q.; Ji, F.; Xu, X. Effects of physicochemical properties of poly-ε-caprolactone on nitrate removal efficiency during solid-phase denitrification. Chem. Eng. J. 2016, 283, 604–613. [Google Scholar] [CrossRef]
- Chu, L.; Wang, J. Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor. Chem. Eng. J. 2011, 170, 220–225. [Google Scholar] [CrossRef]
- Akunna, J.C.; Bizeau, C.; Moletta, R. Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: Glucose, glycerol, acetic acid, lactic acid and methanol. Water Res. 1993, 27, 1303–1312. [Google Scholar] [CrossRef]
- Costa, D.D.; Gomes, A.A.; Fernandes, M.; da Costa Bortoluzzi, R.L.; de Lourdes Borba Magalhães, M.; Skoronski, E. Using natural biomass microorganisms for drinking water denitrification. J. Environ. Manag. 2018, 217, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Trois, C.; Pisano, G.; Oxarango, L. Alternative solutions for the bio-denitrification of landfill leachates using pine bark and com post. J. Hazard. Mater. 2010, 178, 1100–1105. [Google Scholar] [CrossRef]
- Schipper, L.A.; Vojvodić-Vuković, M. Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecol. Eng. 2000, 14, 269–278. [Google Scholar] [CrossRef]
- Beauchamp, E.G.; Trevors, J.T.; Paul, J.W. Carbon sources for bacterial denitrification. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1989; pp. 113–142. [Google Scholar]
- Majone, M.; Beccari, M.; Dionisi, D.; Levantesi, C.; Renzi, V. Role of storage phenomena on removal of different substrates during pre-denitrification. Water Sci. Technol. 2001, 43, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Srinandan, C.S.; D’souza, G.; Srivastava, N.; Nayak, B.B.; Nerurkar, A.S. Carbon sources influence the nitrate removal activity, community structure and biofilm architecture. Bioresour. Technol. 2012, 117, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Obaja, D.; Macé, S.; Mata-Alvarez, J. Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater. Bioresour. Technol. 2005, 96, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Dai, X.; Chai, X. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci. Total Environ. 2018, 634, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ma, C.; Huang, X.; Liu, J.; Lu, L.; Peng, K.; Li, S. Research progress in solid carbon source–based denitrification technologies for different target water bodies. Sci. Total Environ. 2021, 782, 146669. [Google Scholar] [CrossRef]
- Dlamini, J.C.; Chadwick, D.; Hawkins, J.M.B.; Martinez, J.; Scholefield, D.; Ma, Y.; Cárdenas, L.M. Evaluating the potential of different carbon sources to promote denitrification. J. Agric. Sci. 2020, 158, 194–205. [Google Scholar] [CrossRef]
- Kumar, B.S.K.; Sarma, V.V.S.S. Variations in concentrations and sources of bioavailable organic compounds in the Indian estuaries and their fluxes to coastal waters. Cont. Shelf Res. 2018, 166, 22–33. [Google Scholar] [CrossRef]
- Elefsiniotis, P.; Li, D. The Effect of Temperature and Carbon Source on Denitrification Using Volatile Fatty Acids. Biochem. Eng. J. 2006, 28, 148–155. [Google Scholar] [CrossRef]
- Onnis-Hayden, A.; Gu, A.Z. Comparisons of Organic Sources for Denitrification: Biodegradability, Denitrification Rates, Kinetic Constants and Practical Implication for Their Application in WWTPs. Proc. Water Environ. Fed. 2008, 2008, 253–273. [Google Scholar] [CrossRef]
- Elefsiniotis, P.; Wareham, D.G.; Smith, M.O. Use of volatile fatty acids from an acid-phase digester for denitrification. J. Biotechnol. 2004, 114, 289–297. [Google Scholar] [CrossRef]
- Kits, K.D.; Campbell, D.J.; Rosana, A.R.; Stein, L.Y. Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front. Microbiol. 2015, 6, 1072. [Google Scholar] [CrossRef] [PubMed]
- King, G.M.; Schnell, S. Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations. Appl. Environ. Microbiol. 1994, 60, 3508–3513. [Google Scholar] [CrossRef] [PubMed]
- Nyerges, G.; Han, S.K.; Stein, L.Y. Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl. Environ. Microbiol. 2010, 76, 5648–5651. [Google Scholar] [CrossRef] [PubMed]
- Cammack, R.; Joannou, C.L.; Cui, X.Y.; Martinez, C.T.; Maraj, S.R.; Hughes, M.N. Nitrite and nitrosyl compounds in food preservation. Biochim. Biophys. Acta—Bioenerg. 1999, 1411, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Dunfield, P.; Knowles, R. Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Appl. Environ. Microbiol. 1995, 61, 3129–3135. [Google Scholar] [CrossRef]
- Stein, L.Y.; Klotz, M.G. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem. Soc. Trans. 2011, 39, 1826–1831. [Google Scholar] [CrossRef] [PubMed]
- Sutka, R.L.; Ostrom, N.E.; Ostrom, P.H.; Gandhi, H.; Breznak, J.A. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rapid Commun. Mass Spectrom. 2003, 17, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Mountfort, D.O. Oxidation of aromatic alcohols by purified methanol dehydrogenase from Methylosinus trichosporium. J. Bacteriol. 1990, 172, 3690–3694. [Google Scholar] [CrossRef] [PubMed]
- Dalton, H. Oxidation of hydrocarbons by methane monooxygenases from a variety of microbes. Advan. Appl. Microbiol. 1980, 26, 71–87. [Google Scholar] [CrossRef]
- Whittenbury, R.; Phillips, K.C.; Wilkinson, J.F. Enrichment, isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 1970, 61, 205–218. [Google Scholar] [CrossRef]
- Campbell, M.A.; Nyerges, G.; Kozlowski, J.A.; Poret-Peterson, A.T.; Stein, L.Y.; Klotz, M.G. Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. FEMS Microbiol. Lett. 2011, 322, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Poret-Peterson, A.T.; Graham, J.E.; Gulledge, J.; Klotz, M.G. Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath. ISME J. 2008, 2, 1213–1220. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Cai, H.; Chai, X.; Tang, J.; Zhuo, L.; Jia, H. Summertime dissolved oxygen concentration and hypoxia in the Zhejiang coastal area. Front. Mar. Sci. 2022, 9, 1051549. [Google Scholar] [CrossRef]
- Dalton, H. Ammonia oxidation by methane oxidising bacterium Methylococcus capsulatus strain Bath. Arch. Microbiol. 1977, 114, 273–279. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Choi, H.; Cho, K.S. Effects of carbon source, C/N ratio, nitrate, temperature, and pH on N2O emission and functional denitrifying genes during heterotrophic denitrification. J. Environ. Sci. Health A 2018, 54, 16–29. [Google Scholar] [CrossRef]
- Chu, L.; Wang, J. Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity. Chemosphere 2016, 155, 463–470. [Google Scholar] [CrossRef]
- Chang, J.; Ma, L.; Zhou, Y.; Zhang, S.; Wang, W. Remediation of nitrate-contaminated wastewater using denitrification biofilters with straws of ornamental flowers added as carbon source. Water Sci. Technol. 2016, 74, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Christianson, L.E.; Bhandari, A.; Helmers, M. A practice-oriented review of woodchip bioreactors for subsurface agricultural drainage. Appl. Eng. Agric. 2012, 28, 861–874. [Google Scholar] [CrossRef]
- Chun, J.A.; Cooke, R.A.; Eheart, J.W.; Cho, J. Estimation of flow and transport parameters for woodchip-based bioreactors: I. laboratory-scale bioreactor. Biosyst. Eng. 2009, 104, 384–395. [Google Scholar] [CrossRef]
- Gómez, M.A.; González-López, J.; Hontoria-Garcıía, E. Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J. Hazard. Mater. 2000, 80, 69–80. [Google Scholar] [CrossRef]
- Shen, Z.; Zhou, Y.; Liu, J.; Xiao, Y.; Cao, R.; Wu, F. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland. Bioresour. Technol. 2015, 175, 239–244. [Google Scholar] [CrossRef]
- Li, P.; Zuo, J.; Xing, W.; Tang, L.; Ye, X.; Li, Z.; Yuan, L.; Wang, K.; Zhang, H. Starch/polyvinyl alcohol blended materials used as solid carbon source for tertiary denitrification of secondary effluent. J. Environ. Sci. 2013, 25, 1972–1979. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Wing, M.T.; Malone, R.F.; Rusch, K.A. Evaluation of polyhydroxybutyrate as a carbon source for recirculating aquaculture water denitrification. Aquac. Eng. 2012, 51, 36–43. [Google Scholar] [CrossRef]
- Xu, Z.; Dai, X.; Chai, X. Effect of influent pH on biological denitrification using bio degradable PHBV/PLA blends as electron donor. Biochem. Eng. J. 2018, 131, 24–30. [Google Scholar] [CrossRef]
- Wu, W.; Yang, F.; Yang, L. Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier. Bioresour. Technol. 2012, 118, 136–140. [Google Scholar] [CrossRef]
- Marušincová, H.; Husárová, L.; Růžička, J.; Ingr, M.; Navrátil, V.; Buňková, L.; Koutny, M. Polyvinyl alcohol biodegradation under denitrifying conditions. Int. Biodeterior. Biodegrad. 2013, 84, 21–28. [Google Scholar] [CrossRef]
- Wu, W.; Yang, L.; Wang, J. Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor. Environ. Sci. Pollut. Res. Int. 2013, 20, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.D.; Guo, L.; Sun, M.; Zhao, Y.; Gao, M.; She, Z. Effects of hydraulic retention time (HRT) on denitrification using waste activated sludge thermal hydrolysis liquid and acidogenic liquid as carbon sources. Bioresour. Technol. 2017, 224, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Wang, X.C.C.; Cheng, Z.; Li, Y.Y.; Tang, J.L. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment. Environ. Sci. Pollut. Res. 2016, 23, 12890–12899. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, A.J.; Valentina, L.V.O.D.; Schulz, A.A.H.; Duarte, M.A.T. From obtaining to degradation of PHB: A literature review. Part II. Ingeniería y Ciencia 2018, 14, 207–228. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef] [PubMed]
- Hocking, P.J.; Marchessault, R.H.; Timmins, M.R.; Lenz, R.W.; Fuller, R.C.R. Enzymatic degradation of single crystals of bacterial and synthetic poly(β-hydroxybutyrate). Macromolecules 1996, 29, 2472–2478. [Google Scholar] [CrossRef]
- Takahashi, M.; Yamada, T.; Tanno, M.; Tsuji, H.; Hiraishi, A. Nitrate removal efficiency and bacterial community dynamics in denitrification processes using poly (L-lactic acid) as the solid substrate. Microbes Environ. 2011, 26, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J.E. Polymer biodegradation: Mechanisms and estimation techniques—A review. Chemosphere 2008, 73, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhou, Y.; Wang, J. Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal. Bioresour. Technol. 2013, 131, 33–39. [Google Scholar] [CrossRef]
- Xu, Z.; Chai, X. Effect of weight ratios of PHBV/PLA polymer blends on nitrate removal efficiency and microbial community during solid-phase denitrification. Int. Biodeterior. Biodegrad. 2017, 116, 175–183. [Google Scholar] [CrossRef]
- Wang, J.J.; Chu, L. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol. Adv. 2016, 34, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.T.; Horiba, Y.; Takahashi, N.; Hiraishi, A. Activity and community composition of the denitrifying bacteria in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using solid-phase denitrification process. Microbes Environ. 2007, 22, 20–31. [Google Scholar] [CrossRef]
- Hossain, M.B.; Rahman, M.M.; Biswas, J.C.; Miah, M.M.U.; Akhter, S.; Maniruzzaman, M.; Choudhury, A.K.; Ahmed, F.; Shiragi, M.H.K.; Kalra, N. Carbon mineralization and carbon dioxide emission from organic matter added soil under different temperature regimes. Int. J. Recycl. Org. Waste Agricult. 2017, 6, 311–319. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Angers, D.A.; Rochette, P. Fate of carbon and nitrogen from animal manure and crop residues in wet and cold soils. Soil Biol. Biochem. 2002, 34, 509–517. [Google Scholar] [CrossRef]
- Zhu, J.; Jacobson, L.D. Correlating microbes to major odorous compounds in swine manure. J. Environ. Qual. 1999, 28, 737–744. [Google Scholar] [CrossRef]
- Chen, S.; Harrison, J.; Liao, W.; Elliott, D.; Liu, C.; Brown, M.; Wen, Z.; Solana, A.; Kincaid, R.; Stevens, D. Value-Added Chemicals from Animal Manure; Final Technical Report; Pacific Northwest National Laboratory: Richland, WA, USA, 2003. [Google Scholar]
- Hristov, A.N.; Vander Pol, M.; Agle, M.; Zaman, S.; Schneider, C.; Ndegwa, P.; Vaddella, V.K.; Johnson, K.; Shingfield, K.J.; Karnati, S.K.R. Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows. J. Dairy Sci. 2009, 92, 5561–5582. [Google Scholar] [CrossRef] [PubMed]
- Sradnick, A.; Murugan, R.; Oltmanns, M.; Raupp, J.; Joergensen, R.G. Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer. Appl. Soil Ecol. 2013, 63, 23–28. [Google Scholar] [CrossRef]
- Dijkstra, J.; Oenema, O.; van Groenigen, J.W.; Spek, J.W.; van Vuuren, A.M.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. Animal 2013, 7, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, K.M.; Guyton, A.D.; McKinney, J.M.; Knowlton, K.F. The effect of steam flaked or dry ground corn and supplemental phytic acid on nitrogen partitioning in lactating cows and ammonia emission from manure. J. Dairy Sci. 2004, 87, 2546–2553. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Futamura, Y.; Fujioka, K.; Yamamoto, K. Novel production method for plant polyphenol from livestock excrement using subcritical water reaction. Int. J. Chem. Eng. 2008, 2008, 603957. [Google Scholar] [CrossRef]
- Dendooven, L.; Bonhomme, E.; Merckx, R.; Vlassak, K. N dynamics and sources of N2O production following pig slurry application to a loamy soil. Biol. Fertil. Soils 1998, 26, 224–228. [Google Scholar] [CrossRef]
- Chadwick, D.R.; Pain, B.F.; Brookman, S.K.E. Nitrous oxide and methane emissions following application of animal manures to grassland. J. Environ. Qual. 2000, 29, 277–287. [Google Scholar] [CrossRef]
- Tusneem, M.E. Nitrogen Transformations in Waterlogged Soil. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 1970. [Google Scholar]
- Meinhold, J.; Filipe, C.D.M.; Daigger, G.T.; Isaacs, S. Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal. Water Sci. Technol. 1999, 39, 31–42. [Google Scholar] [CrossRef]
- Kuba, T.; Smolders, G.; van Loosdrecht, M.C.M.; Heijnen, J.J. Biological Phosphorus Removal from Wastewater by Anaerobic-anoxic Sequencing Batch Reactor. Water Sci. Technol. 1993, 27, 241–252. [Google Scholar] [CrossRef]
- Rodriguez Mora, F.; de Giner, G.F.; Rodriguez, A.A.; Esteban, J.L. Effect of organic carbon shock loading on endogenous de nitrification in sequential batch reactors. Bioresour. Technol. 2003, 88, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Santorio, S.; Fra-Vázquez, A.; Val del Rio, A.; Mosquera-Corral, A. Potential of endogenous PHA as electron donor for denitrification. Sci. Total Environ. 2019, 695, 133747. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Ye, L.; Yuan, Z. Effect of H2S on N2O Reduction and Accumulation during Denitrification by Methanol Utilizing Denitrifiers. Environ. Sci. Technol. 2013, 47, 8408–8415. [Google Scholar] [CrossRef] [PubMed]
- Serafim, L.S.; Lemos, P.C.; Oliveira, R.; Reis, M.A.M. Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol. Bioeng. 2004, 87, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.A.; van Neil, E.W.J.; Torremans, R.A.M.; Kuenen, J.G. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Environ. Microbiol. 1988, 54, 2812–2818. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.Y.; Liu, Y.; Sun, G.D.; Gao, X.Y.; Zhang, Q.L.; Liu, Z.P. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium. J. Environ. Sci. 2011, 23, 1888–1893. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yao, K.; Yu, J.; Dong, W.; Zhao, Z. Nitrogen removal performance and microbial characteristics during simultaneous chemical phosphorus removal process using Fe3+. Bioresour. Technol. 2022, 363, 127972. [Google Scholar] [CrossRef]
- Alzate Marin, J.C.; Caravelli, A.H.; Zaritzky, N.E. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor. Bioresour. Technol. 2016, 200, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.J.; Ferguson, S.J. The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grown Thiosphaera pantotropha. Arch. Microbiol. 1992, 157, 535–537. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zou, Z.C.; Chen, D.; Yang, K. Effects of temperature on aerobic denitrification in a bio-ceramsite reactor. Energ. Source. Part A 2016, 38, 3236–3241. [Google Scholar] [CrossRef]
- Ji, B.; Yang, K.; Zhu, L.; Jiang, Y.; Wang, H.Y.; Zhou, J.; Zhang, H.N. Aerobic denitrification: A review of important advances of the last 30 years. Biotechnol. Bioproc. Eng. 2015, 20, 643–651. [Google Scholar] [CrossRef]
- Stein, L.Y. Heterotrophic nitrification and nitrifier denitrification. In Nitrification; Ward, B.B., Arp, D.J., Klotz, M.G., Eds.; ASM Press: Washington, DC, USA, 2011; pp. 95–114. [Google Scholar]
- Wan, C.L.; Yang, X.; Lee, D.J.; Du, M.A.; Wan, F.; Chen, C. Aerobic denitrification by novel isolated strain using NO2-N as nitrogen source. Bioresour. Technol. 2011, 102, 7244–7248. [Google Scholar] [CrossRef]
- Ellington, M.J.K.; Sawers, G.; Sears, H.J.; Spiro, S.; Richardson, D.J.; Ferguson, S.J. Characterization of the expression and activity of the periplasmic nitrate reductase of Paracoccus pantotrophus in chemostat cultures. Microbiology 2003, 149, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.; Lemos, P.C.; Reis, M.A.M.; Crespo, J.P.S.G.; Carrondo, M.J.T.; Santos, H. Model for carbon metabolism in biological phosphorous removal processes based on in vivo 13C-NMR labelling experiments. Water Res. 1996, 30, 2128–2138. [Google Scholar] [CrossRef]
- Ellington, M.J.K.; Bhakoo, K.K.; Sawers, G.; Richardson, D.J.; Ferguson, S.J. Hierarchy of carbon source selection in Paracoccus pantotrophus: Strict correlation between reduction state of the carbon substrate and aerobic expression of the nap operon. J. Bacteriol. 2002, 184, 4767–4774. [Google Scholar] [CrossRef]
- Saleh-Lakha, S.; Shannon, K.E.; Henderson, S.L.; Goyer, C.; Trevors, J.T.; Zebarth, B.J.; Burton, D.L. Effect of pH and Temperature on Denitrification Gene Expression and Activity in Pseudomonas mandelii. Appl. Environ. Microbiol. 2009, 75, 3903–3911. [Google Scholar] [CrossRef]
- Holtan-Hartwig, L.; Dörsch, P.; Bakken, L.R. Low Temperature Control of Soil Denitrifying Communities: Kinetics of N2O Production and Reduction. Soil Biol. Biochem. 2002, 34, 1797–1806. [Google Scholar] [CrossRef]
- Glass, C.; Silverstein, J. Denitrification Kinetics of High Nitrate Concentration Water: pH Effect on Inhibition and Nitrite Accumulation. Water Res. 1998, 32, 831–839. [Google Scholar] [CrossRef]
- Li, W.; Lin, X.Y.; Chen, J.J.; Cai, C.Y.; Abbas, G.; Hu, Z.Q.; Zhao, H.P.; Zheng, P. Enrichment of Denitratating Bacteria from a Methylotrophic Denitrifying Culture. Appl. Microbiol. Biotechnol. 2016, 100, 10203–10213. [Google Scholar] [CrossRef]
- Osaka, T.; Yoshie, S.; Tsuneda, S.; Hirata, A.; Iwami, N.; Inamori, Y. Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microb. Ecol. 2006, 52, 253–266. [Google Scholar] [CrossRef]
- Ginige, M.P.; Keller, J.; Blackall, L.L. Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Appl. Environ. Microbiol. 2005, 71, 8683–8691. [Google Scholar] [CrossRef]
- Świątczak, P.; Cydzik-Kwiatkowska, A. Performance and microbial characteristics of biomass in a full-scale aerobic granular sludge wastewater treatment plant. Environ. Sci. Pollut. Res. 2018, 25, 1655–1669. [Google Scholar] [CrossRef]
- Sponza, D.T. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions. Enzym. Microb. Technol. 2003, 32, 375–385. [Google Scholar] [CrossRef]
- Law, Y.; Ye, L.; Pan, Y.; Yuan, Z. Nitrous Oxide Emissions from Wastewater Treatment Processes. Philos. Trans. R. Soc. B. Biol. Sci. 2012, 367, 1265–1277. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: The Scientific Basis; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Anthropogenic and Natural Radiative Forcing. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Jacob, D., Ravishankara, A.R., Shine, K., Eds.; Cambridge University Press: New York, NY, USA, 2014; pp. 659–740. [Google Scholar]
- Gagnon, B.; Ziadi, N.; Rochette, P.; Chantigny, M.H.; Angers, D.A.; Bertrand, N.; Smith, W.N. Soil-surface carbon dioxide emission following nitrogen fertilization in corn. Can. J. Soil Sci. 2016, 96, 219–232. [Google Scholar] [CrossRef]
- Rastogi, M.; Singh, S.; Pathak, H. Emission of carbon dioxide from soil. Curr. Sci. 2002, 82, 510–517. [Google Scholar]
- Kampschreur, M.J.; Temmink, H.; Kleerebezem, R.; Jetten, M.S.M.; van Loosdrecht, M.C.M. Nitrous Oxide Emission During Wastewater Treatment. Water Res. 2009, 43, 4093–4103. [Google Scholar] [CrossRef]
- Mohan, T.V.K.; Nancharaiah, Y.V.; Venugopalan, V.P.; Satya Sai, P.M. Effect of C/N Ratio on Denitrification of High-Strength Nitrate Wastewater in Anoxic Granular Sludge Sequencing Batch Reactors. Ecol. Eng. 2016, 91, 441–448. [Google Scholar] [CrossRef]
- Gong, L.; Huo, M.; Yang, Q.; Li, J.; Ma, B.; Zhu, R.; Wang, S.; Peng, Y. Performance of Heterotrophic Partial Denitrificaiton under Feast-Famine Condition of Electron Donor: A Case Study Using Acetate as External Carbon Source. Bioresour. Technol. 2013, 133, 263–269. [Google Scholar] [CrossRef]
- Conthe, M.; Lycus, P.; Arntzen, M.Ø.; da Silva, A.R.; Frostegård, Å.; Bakken, L.R.; Kleerebezem, R.; van Loosdrecht, M.C.M. Denitrification as an N2O sink. Water Res. 2019, 151, 381–387. [Google Scholar] [CrossRef]
- Alinsafi, A.; Adouani, N.; Béline, F.; Lendormi, T.; Limousy, L.; Sire, O. Nitrite effect on nitrous oxide emission from denitrifying activated sludge. Process Biochem. 2008, 43, 683–689. [Google Scholar] [CrossRef]
- He, J.X.; Zhou, S.F.; Huang, S.B.; Zhang, Y.Q. Pretreated corn hush hydrolysate as the carbon source for aerobic denitrification with low levels of N2O emission by thermophilic Chelatococcus daeguensis TAD1. Water Air Soil Pollut. 2016, 227, 314. [Google Scholar] [CrossRef]
- Ye, J.; Zhao, B.; An, Q.; Huang, Y.S. Nitrogen removal by Providencia rettgeri strain YL with heterotrophic nitrification and aerobic denitrification. Environ. Technol. 2016, 37, 2206–2213. [Google Scholar] [CrossRef]
- Foglar, L.; Briški, F.; Sipos, L.; Vuković, M. High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresour. Technol. 2005, 96, 879–888. [Google Scholar] [CrossRef]
- Xu, Z.X.; Shao, L.; Yin, H.L.; Chu, H.Q.; Yao, Y.J. Biological denitrification using corncobs as a carbon source and biofilm carrier. Water Environ. Res. 2009, 81, 242–247. [Google Scholar] [CrossRef]
- Christianson, L.E.; Bhandari, A.; Helmers, M.J. Pilot-scale evaluation of denitrification drainage bioreactors: Reactor geometry and performance. J. Environ. Eng. 2011, 137, 213–220. [Google Scholar] [CrossRef]
- Zhao, J.; He, Q.; Chen, N.; Peng, T.; Feng, C. Denitrification behavior in a woodchip-packed bioreactor with gradient filling for nitrate-contaminated water treatment. Biochem. Eng. J. 2020, 154, 107454. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Yang, W.; Wei, Y.; Li, W. Denitrification Performance and Microbiological Mechanisms Using Polyglycolic Acid as a Carbon Source. Water 2024, 16, 1277. [Google Scholar] [CrossRef]
- Fang, D.; Wu, A.; Huang, L.; Shen, Q.; Zhang, Q.; Jiang, L.; Ji, F. Polymer substrate reshapes the microbial assemblage and metabolic patterns within a biofilm denitrification system. Chem. Eng. J. 2020, 387, 124128. [Google Scholar] [CrossRef]
- Mycielski, R.; Blaszczyk, M.; Jackowska, A.; Olkowska, H. Denitrification of high concentrations of nitrites and nitrates in synthetic medium with different sources of organic carbon. Acta Microbiol. Polon. 1983, 32, 381–388. [Google Scholar] [PubMed]
- Kim, I.S.; Son, J.H. Impact of COD/N/S ratio on denitrification by the mixed cultures of sulphate reducing bacteria and sulphur denitrifying bacteria. Water Sci. Technol. 2000, 42, 69–76. [Google Scholar] [CrossRef]
- Grady, C.P.L.; Lim, H.C. Biological Wastewater Treatment; Chapter 22; Denitrification. M. Dekker, Inc.: New York, NY, USA, 1981; pp. 887–923. [Google Scholar]
- Timmermans, P.; Van Haute, A. Denitrification with methanol, fundamental study of the growth and denitrification capacity of Hyphomicrobium sp. Water Res. 1983, 17, 1249–1255. [Google Scholar] [CrossRef]
- Dold, P.; Takacs, I.; Mokhayeri, Y.; Nichols, A.; Hinojosa, J.; Riffat, R.; Bott, C.; Bailey, W.; Murthy, S. Denitrification with carbon addition—Kinetic considerations. Water Environ. Res. 2008, 80, 417–427. [Google Scholar] [CrossRef]
- Chu, C.F.; Li, Y.Y.; Xu, K.Q.; Ebie, Y.; Inamori, Y.H.; Kong, H.N. A pH- and temperature-phased and two-stage, process for hydrogen and methane production from food waste. Int. J. Hydrogen Energy 2008, 33, 4739–4746. [Google Scholar] [CrossRef]
- Liu, X.Y.; Li, R.Y.; Ji, M.; Han, L. Hydrogen and methane production by codigestion of waste activated sludge and food waste in the two-stage fermentation process: Substrate conversion and energy yield. Bioresour. Technol. 2013, 146, 317–323. [Google Scholar] [CrossRef]
- Jiang, J.G.; Zhang, Y.J.; Li, K.M.; Wang, Q.; Gong, C.X.; Li, M.L. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour. Technol. 2013, 143, 525–530. [Google Scholar] [CrossRef]
- Henze, M.; Kristensen, G.H.; Strube, R. Rate capacity characterization of wastewater for nutrient removal process. Water Sci. Technol. 1994, 29, 101–107. [Google Scholar] [CrossRef]
- Rodríguez, L.; Villaseñor, J.; Fernández, F.J. Use of agro-food wastewaters for the optimisation of the denitrification process. Water Sci. Technol. 2007, 55, 63–70. [Google Scholar] [CrossRef]
- Kujawa, K.; Klapwijk, B. A method to estimate denitrification potential for predenitrification systems using NUR batch test. Water Res. 1999, 33, 2291–2300. [Google Scholar] [CrossRef]
- Zhang, B.X.; Fu, W.X. The investigation and analysis on per capita output of food waste in Beijing. Environ. Sci. Technol. 2010, 33, 651–654. [Google Scholar]
- Guo, L.; Guo, Y.; Sun, M.; Gao, M.; Zhao, Y.; She, Z. Enhancing denitrification with waste sludge carbon source: The substrate metabolism process and mechanisms. Environ. Sci. Pollut. Res. 2018, 25, 13079–13092. [Google Scholar] [CrossRef]
- Liu, F.; Tian, Y.; Ding, Y.; Li, Z. The use of fermentation liquid of wastewater primary sedimentation sludge as supplemental carbon source for denitrification based on enhanced anaerobic fermentation. Bioresour. Technol. 2016, 219, 6–13. [Google Scholar] [CrossRef]
- Liu, H.; Han, P.; Liu, H.; Zhou, G.; Fu, B.; Zheng, Z. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresour. Technol. 2018, 260, 105–114. [Google Scholar] [CrossRef]
- Wang, D.; Shuai, K.; Xu, Q.; Liu, X.; Li, Y.; Liu, Y.; Wang, Q.; Li, X.; Zeng, G.; Yang, Q. Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment. Bioresour. Technol. 2018, 262, 114–123. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, X.; Xiao, K.; Shen, N.; Zeng, R.J.; Zhou, Y. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase—Investigation on dissolved organic matter transformation and microbial community shift. Water Res. 2017, 112, 261–268. [Google Scholar] [CrossRef]
- Moorman, T.B.; Parkin, T.B.; Kaspar, T.C. Denitrification activity, wood loss, and N2O emissions over 9 years from a wood chip bioreactor. Ecol. Eng. 2010, 36, 1567–1574. [Google Scholar] [CrossRef]
- Nordström, A.; Herbert, R.B. Determination of major biogeochemical processes in a denitrifying woodchip bioreactor for treating mine drainage. Ecol. Eng. 2018, 110 (Suppl. C), 54–66. [Google Scholar] [CrossRef]
- Schipper, L.A.; Robertson, W.D.; Gold, A.J.; Jaynes, D.B.; Cameron, S.C. Denitrifying bioreactors—An approach for reducing nitrate loads to receiving waters. Ecol. Eng. 2010, 36, 1532–1543. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, C.; Hong, S.; Hao, H.; Yang, Y. Behavior of solid carbon sources for biological denitrification in groundwater remediation. Water Sci. Technol. 2012, 65, 1696–1704. [Google Scholar] [CrossRef]
Process | C Source | C/N Ratio Expression | Experimental Conditions | Findings | rDNI | Effectiveness, % DNI | Advantages/ Disadvantages | Price Ref. |
---|---|---|---|---|---|---|---|---|
Batch test | Acetate, 30 °C | 1998.4 mg C/L cca 250 mg NO3−-N/L | The C/N ratio was a key factor for N2O emission during the heterotrophic denitrification process | cca 53% | Inoculum: humic soil | 1 [78] | ||
Batch test | Methanol, 30 °C | 1998.4 mg C/L cca 290 mg NO3−-N/L | 100% | Inoculum: humic soil | 2 [78] | |||
Batch test | Ethanol, 30 °C | 1998.4 mg C/L cca 270 mg NO3−-N/L | 100% | Inoculum: humic soil | 3 [78] | |||
Batch test | Glucose, 30 °C | 1998.4 mg C/L 275 mg NO3−-N/L | 31% | Inoculum: humic soil | 4 [78] | |||
Batch test | Propionate, 30 °C | 1998.4 mg C/L cca 250 mg NO3−-N/L | cca 66% | Inoculum: humic soil | 5 [78] | |||
Batch test | Glycerol, 30 °C | 1998.4 mg C/L cca 250 mg NO3−-N/L | cca 83% | Inoculum: humic soil | 6 [78] | |||
Batch test, acclimatised sludge | MicroCTM h, 20 °C | COD/N 6.5 ± 3.7 | The ability of a specific carbon-acclimated denitrifying population to instantly use other carbon sources also was investigated, and the chemical-structure-associated behaviour patterns observed suggested that the complex biochemical pathways/enzymes involved in the denitrification process depended on the carbon sources used | 6.4 ± 3.6 mgN/g VSS,h | Presence of nitrite was minimal | 7 [38] | ||
Batch test, acclimatised sludge | MicroCTM h, 10 °C | COD/N 6.5 ± 3.7 | 2.5 mgN/g VSS,h | Presence of nitrite was minimal | 7 [38] | |||
Batch test, unacclimatised WWTP sludge | MicroCTM h, 20 °C | COD/N 4.0 | 4.3 mgN/g VSS,h | 7 [38] | ||||
Batch test, acclimatised WWTP sludge | MicroCTM h, 20 °C | COD/N 7.0 ± 1.4 | 4.7 mgN/g VSS,h | 7 [38] | ||||
Batch test, acclimatised sludge | Methanol, 10 °C | COD/N 4.8 ± 1.5 | 2.3 mgN/g VSS,h | No nitrite accumulation | 2 [38] | |||
Batch test, acclimatised sludge | Methanol, 20 °C | COD/N 4.8 ± 1.5 | 6.1 ± 0.7 mgN/g VSS,h | No nitrite accumulation | 2 [38] | |||
Batch test, acclimatised sludge | Acetate, 10 °C | COD/N 5.7 ± 1.3 | 3.6 mgN/g VSS,h | Significant nitrite accumulation | 1 [38] | |||
Batch test, acclimatised sludge | Acetate, 20 °C | COD/N 5.7 ± 1.3 | 13.6 ± 1.9 mgN/g VSS,h | Significant nitrite accumulation | 1 [38] | |||
Long-term SBR | Primary sludge, 30 °C | 6.0 g VSS/g NO3−-N | Cycle 24 h–48 h HRT 8 d–2 d | Cycle study suggests that an appropriate denitrification cycle/duration time would largely lower the effluent organics concentration, which can be achieved by monitoring the pH turning point | 6.4 mg N/g VSS,h | 100% | Reduction in primary sludge of 65.3–85.1% | [33] |
Batch test | Acetate, 10 °C | 2.5, 5, and 10 mmol C 250 mg NO3−/L | Addition of organic substances and temperature strongly modify the denitrifying microbial community | 0.01 mmol/L,d (2.5 mmol) 0.06 mmol/L,d (5 mmol) 0.09 mmol/L,d (10 mmol) | 31% (2.5 mmol) 38% (5 mmol) 45% (10 mmol) | Inoculum: sediment, column experiments | 1 [16] | |
Batch test | Acetate, 21.5 °C | 2.5, 5, and 10 mmol C 250 mg NO3−/L | 0.02 mmol/L,d (2.5 mmol) 0.08 mmol/L,d (5 mmol) 0.1 mmol/L,d (10 mmol) | 60% (2.5 mmol) 59% (5 mmol) 45% (10 mmol) | Inoculum: sediment, column experiments | 1 [16] | ||
Batch test | Ethanol, 21.5 °C | 2.5, 5, and 10 mmol C 250 mg NO3−/L | 0.05 mmol/L,d (2.5 mmol) 0.11 mmol/L,d (5 mmol) 0.21 mmol/L,d (10 mmol) | 54% (2.5 mmol) 55% (5 mmol) 45% (10 mmol) | Inoculum: sediment, column experiments | 3 [16] | ||
Batch test | Ethanol, 10 °C | 2.5, 5, and 10 mmol C 250 mg NO3−/L | 0.06 mmol/L,d (2.5 mmol) 0.17 mmol/L,d (5 mmol) 0.14 mmol/L,d (10 mmol) | 66% (2.5 mmol) 97% (5 mmol) 44% (10 mmol) | Inoculum: sediment, column experiments | 3 [16] | ||
Batch test | Glucose, 21.5 °C | 2.5, 5, and 10 mmol C 250 mg NO3−/L | 0.08 mmol/L,d (2.5 mmol) 0.28 mmol/L,d (5 mmol) 0.64 mmol/L,d (10 mmol) | 48% (2.5 mmol) 25% (5 mmol) 21% (10 mmol) | Inoculum: sediment, column experiments | 4 [16] | ||
Batch test | Glucose, 10 °C | 2.5, 5, and 10 mmol C 250 mg NO3−/L | 0.04 mmol/L,d (2.5 mmol) 0.05 mmol/L,d (5 mmol) 0.09 mmol/L,d (10 mmol) | 41% (2.5 mmol) 19% (5 mmol) 22% (10 mmol) | Inoculum: sediment, column experiments | 4 [16] | ||
Batch test | Ascorbic acid, 21.5 °C | 2.5, 5, and 10 mmol C 250 mg NO3−/L | <0.01 mmol/L,d (2.5 mmol) 0.05 mmol/L,d (5 mmol) 0.09 mmol/L,d (10 mmol) | 3% (2.5 mmol) 18% (5 mmol) 19% (10 mmol) | Inoculum: sediment, column experiments | 8 [16] | ||
Batch test | Ascorbic acid, 10 °C | 2.5, 5, and 10 mmol C 250 mg NO3−/L | 0.01 mmol/L,d (2.5 mmol) 0.02 mmol/L,d (5 mmol and 10 mmol) | 6% (2.5 mmol) 6% (5 mmol) 10% (10 mmol) | Inoculum: sediment, column experiments | 8 [16] | ||
Batch test | Easily oxidisable substrate, real wastewater of the sewage treatment facility | Not mentioned | The obtained denitrification rates allow calculation of the volumes of anoxic and aerobic structures. (When increasing the time of the sludge mixture in anoxic conditions, it becomes necessary to proportionally increase the volume of aerobic structures, in order to maintain the growth rate of autotrophs) | 0.71 ± 0.04 mg NO3-N/mg VSS,d | [25] | |||
Batch test | Not mentioned | 0.12 ± 0.02 mg NO3-N/mg VSS,d | Endogenous respiration | [25] | ||||
Batch test | Difficult-to-oxidise substrate | Not mentioned | 0.12 ± 0.01 mg NO3-N/mg VSS,d | [25] | ||||
Batch test | Methanol, 25 °C | MeOH/NO3−-N 3.5 | After acclimation to nitrate, the dominant strains were Pseudomonas and Paracoccus spp. | 21 mgNO3-N/g VSS,h | 100% | Mixed bacterial culture, originated from two-stage anaerobic–aerobic industrial yeasts production wastewater treatment plant, low accumulation of nitrite-N (0.1 mg/L) | 2 [152] | |
Continuous-flow stirred reactor | Methanol, 25 °C | MeOH/NO3−-N 3.0 | 142 mgNO3-N/g VSS,h | 100% | Mixed bacterial culture, originated from two-stage anaerobic–aerobic industrial yeasts production wastewater treatment plant, HRT 51.6 h, DO 2.5 mg/L | 2 [152] | ||
Denitrification biofilter, gravel as matrix, batch mode, straw of 5 cm | Flower straw | 57.0 ± 0.4 mg NO3−-N/L | Wastewater fed at the beginning of each batch within 30 min, and then drained with gravity after a retention time of 3 days (72 h) | Nitrate removal was efficiently enhanced by the addition of flower straws, but decreased gradually as the organic substances were consumed. | High nitrate removal rates | cca 35% | Optimisation of carbon source addition is required | 9 [80] |
SBR, feast/famine regime | PHA, 30 °C | CODPHA/N ratio higher than 5.4 g/g | HRT 24 h Allylthiourea added | PHA concentrations lower than 5% do not allow the obtainment of maximal specific endogenous denitrifying activity value | 0.26–0.39 g N/g VSS,d | 100% | No N2O was detected in the gas phase | [117] |
Up-flow lab reactor, corn cob granules of 2 cm | Corn cobs, 27–33 °C | 25.3 mg N/L | The weight and filling height of the substances were measured to determine the percentage loss of material during the experiment | A time-dependent decrease in nitrate removal efficiency was observed after 67 days of operation. The addition of fresh corn cobs brought about a rapid increase in nitrate removal efficiency | 0.203 kg/m3,d | cca 100% | Carbon source and biofilm carrier, low nitrite accumulation | 10 [153] |
Pilot-scale drainage bioreactor | Wood chips, 10–15 °C | 10.1 mg NO3−-N/L (mean) | Pilot-scale reactors with identical volumes (0.71 m3) and depths (0.6 m), and three cross-sectional geometries—channel, rectangular, and trapezoidal—were constructed with plywood | The percent reduction of the influent nitrate mass was linearly correlated to the theoretical HRT with 30 to 70% NO3−-N removals observed within the 4 to 8 h of retention time suggested for field installations | 3.8–5.6 g N/m3,d | 30–70% | Suitable for drained agriculture fields to surface water | [154] |
Woodchip solid-phase denitrification bioreactor with gradient filling or uniform filling bioreactor | Wood chips | 50.04 ± 0.81 mg NO3−-N/L | pH 7.89 ± 0.10 DO 7.21–8.89 mg/L Wood chips 1.0–5.0 mm size 150-day operation | Gradient filling improved the NO3− removal rate and reduced the bioreactor size. Better option than uniform filling bioreactor | 35.66–174.55 mg N/L,d—gradient filling bioreactor 25.17–111.72 mg N/L,d—uniform filling bioreactor | 100%—gradient filling bioreactor 100%—uniform filling bioreactor | Gradient filling bioreactor promoted complete denitrification with low NO2− accumulation | 11 [155] |
SBR | Industrial waste polyglycolic acid | C/N 3–5 | 12 h cycle, feeding 0, 2 h, anaerobic 5 h, aerobic 6 h, settling 0.6 h, drainage 0.2 h | An optimal denitrification performance in a methanol-fed activated sludge system was achieved with a polyglycolic acid dosage of 1.2 mL/L, pH 7–8, DO 3 ± 0.5 mg/L | 47–89% | Polyglycolic acid upregulated the expression of nitrogen-metabolism-related genera, including amo, hao, nar, and nor, which improved the denitrification performance of the system | [156] | |
Flat biofilm reactor | Polycaprolactone, 24 ± 2 °C | NO3−-N ~20.0 mg/L | HRT: 2.5, 2.0, 1.5, 1.0, and 0.5 h | Coexisting ecological assemblages and coupled metabolic patterns of polymer degradation and denitrification in the system | 12.58 mg/L,h | 30–100% | Dominant denitrifying bacteria replaced by Acidovorax, which is capable of metabolising polyester | [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brozinčević, A.; Grgas, D.; Štefanac, T.; Habuda-Stanić, M.; Zelić, B.; Landeka Dragičević, T. Cost Reduction in the Process of Biological Denitrification by Choosing Traditional or Alternative Carbon Sources. Energies 2024, 17, 3660. https://doi.org/10.3390/en17153660
Brozinčević A, Grgas D, Štefanac T, Habuda-Stanić M, Zelić B, Landeka Dragičević T. Cost Reduction in the Process of Biological Denitrification by Choosing Traditional or Alternative Carbon Sources. Energies. 2024; 17(15):3660. https://doi.org/10.3390/en17153660
Chicago/Turabian StyleBrozinčević, Andrijana, Dijana Grgas, Tea Štefanac, Mirna Habuda-Stanić, Bruno Zelić, and Tibela Landeka Dragičević. 2024. "Cost Reduction in the Process of Biological Denitrification by Choosing Traditional or Alternative Carbon Sources" Energies 17, no. 15: 3660. https://doi.org/10.3390/en17153660
APA StyleBrozinčević, A., Grgas, D., Štefanac, T., Habuda-Stanić, M., Zelić, B., & Landeka Dragičević, T. (2024). Cost Reduction in the Process of Biological Denitrification by Choosing Traditional or Alternative Carbon Sources. Energies, 17(15), 3660. https://doi.org/10.3390/en17153660