Decoding the Developmental Trajectory of Energy Trading in Power Markets through Bibliometric and Visual Analytics
Abstract
:1. Introduction
1.1. Motivation for the Study
1.2. Objectives of the Study
- Trace the developmental trajectory of energy trading in power markets.
- Identify key trends and strategies within the field.
- Analyze the impact of technological advancements and policy changes on energy trading.
- Provide insights into future challenges and opportunities in energy trading.
1.3. Contribution of the Current Work
2. Literature Review
2.1. Energy Trading Model
2.2. Energy Trading Mechanism
2.3. Tradable Green Certificates (TGC)
3. Materials and Methods
3.1. Data Collection
3.2. Research Methods
4. Results and Discussion
4.1. Worldwide Publication Analysis
4.2. Output of Publications
4.3. Authors and Institutional Analysis
4.3.1. Co-Authorship Analysis
4.3.2. Institutional Analysis
4.4. Journal Analysis
4.5. Keyword Analysis
4.5.1. Keyword Co-Linearity Analysis
4.5.2. Keyword Clustering Analysis
4.5.3. Timeline Visualization Map Analysis
5. Conclusions and Future Research Directions
5.1. Conclusions
5.2. Future Research Directions
Funding
Acknowledgments
Conflicts of Interest
References
- Gianfreda, A.; Grossi, L. Quantitative analysis of energy markets. Energy Econ. 2013, 35, 1–4. [Google Scholar] [CrossRef]
- Gong, J.; Li, Y.; Suo, C. Full-infinite interval two-stage credibility constrained programming for electric power system management by considering carbon emission trading. Int. J. Electr. Power Energy Syst. 2019, 105, 440–453. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, J.; Yu, H.; Wang, X. Operation Mechanism and Strategies for Transactive Electricity Market With Multi-Microgrid in Grid-Connected Mode. IEEE Access 2020, 8, 79594–79603. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, C.; Yan, X.; Li, F. Cournot oligopoly game-based local energy trading considering renewable energy uncertainty costs. Renew. Energy 2020, 159, 1117–1127. [Google Scholar] [CrossRef]
- Xiang, Y.; Wu, G.; Shen, X.; Ma, Y.; Gou, J.; Xu, W.; Liu, J. Low-carbon economic dispatch of electricity-gas systems. Energy 2021, 226, 120267. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Huang, G. Planning carbon emission trading for Beijing’s electric power systems under dual uncertainties. Renew. Sustain. Energy Rev. 2013, 23, 113–128. [Google Scholar] [CrossRef]
- Calamaro, N.; Donko, M.; Shmilovitz, D. Algorithms that transfer between different energy metering methods for simplification of energy trading and unified billing. Heliyon 2022, 8, e11542. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, L.; Xu, Y.; Wang, L.; Yang, N. Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids. Appl. Energy 2023, 331, 120282. [Google Scholar] [CrossRef]
- Pu, L.; Wang, S.; Huang, X.; Liu, X.; Shi, Y.; Wang, H. Peer-to-Peer Trading for Energy-Saving Based on Reinforcement Learning. Energies 2022, 15, 9633. [Google Scholar] [CrossRef]
- García-Muñoz, F.; Teng, F.; Junyent-Ferre, A.; Díaz-González, F.; Corchero, C. Stochastic energy community trading model for day-ahead and intraday coordination when offering DER’s reactive power as ancillary services. Sustain. Energy Grids Netw. 2022, 32, 100951. [Google Scholar] [CrossRef]
- Domènech Monfort, M.; De Jesús, C.; Wanapinit, N.; Hartmann, N. A Review of Peer-to-Peer Energy Trading with Standard Terminology Proposal and a Techno-Economic Characterisation Matrix. Energies 2022, 15, 9070. [Google Scholar] [CrossRef]
- Ali, F.S.; Aloqaily, M.; Alfandi, O.; Ozkasap, O. Cyberphysical Blockchain-Enabled Peer-to-Peer Energy Trading. Computer 2020, 53, 56–65. [Google Scholar] [CrossRef]
- Gupta, J.; Jain, S.; Chakraborty, S.; Panchenko, V.; Smirnov, A.; Yudaev, I. Advancing Sustainable Energy Transition: Blockchain and Peer-to-Peer Energy Trading in India’s Green Revolution. Sustainability 2023, 15, 13633. [Google Scholar] [CrossRef]
- Vanderveen, R.A.C.; Hakvoort, R.A. The electricity balancing market: Exploring the design challenge. Util. Policy 2016, 43, 186–194. [Google Scholar] [CrossRef]
- Lei, Y.; Ma, C.; Mirza, N.; Ren, Y.; Narayan, S.W.; Chen, X. A renewable energy microgrids trading management platform based on permissioned blockchain. Energy Econ. 2022, 115, 106375. [Google Scholar] [CrossRef]
- Condon, F.; Franco, P.; Martínez, J.M.; Eltamaly, A.M.; Kim, Y.C.; Ahmed, M.A. EnergyAuction: IoT-Blockchain Architecture for Local Peer-to-Peer Energy Trading in a Microgrid. Sustainability 2023, 15, 13203. [Google Scholar] [CrossRef]
- Qayyum, F.; Jamil, H.; Jamil, F.; Kim, D.H. Predictive Optimization Based Energy Cost Minimization and Energy Sharing Mechanism for Peer-to-Peer Nanogrid Network. IEEE Access 2022, 10, 23593–23604. [Google Scholar] [CrossRef]
- Noorfatima, N.; Choi, Y.J.; Onen, O.A.; Jung, J. Network cost allocation methods for pay-as-bid peer-to-peer energy trading: A comparison. Energy Rep. 2022, 8, 14442–14463. [Google Scholar] [CrossRef]
- Yu, L.; Li, Y.; Huang, G.; Li, Y.; Nie, S. Planning carbon dioxide mitigation of Qingdao’s electric power systems under dual uncertainties. J. Clean. Prod. 2016, 139, 473–487. [Google Scholar] [CrossRef]
- Lin, B.; Chen, Y. Dynamic linkages and spillover effects between CET market, coal market and stock market of new energy companies: A case of Beijing CET market in China. Energy 2019, 172, 1198–1210. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Y.; Li, X.; Li, X. Time-frequency Connectedness between Coal Market Prices, New Energy Stock Prices and CO2 Emissions Trading Prices in China. Sustainability 2020, 12, 2823. [Google Scholar] [CrossRef]
- Sun, P.; Hao, X.; Wang, J.; Shen, D.; Tian, L. Low-carbon economic operation for integrated energy system considering carbon trading mechanism. Energy Sci. Eng. 2021, 9, 2064–2078. [Google Scholar] [CrossRef]
- Guo, W.; Xu, X. Comprehensive Energy Demand Response Optimization Dispatch Method Based on Carbon Trading. Energies 2022, 15, 3128. [Google Scholar] [CrossRef]
- Lu, Q.; Guo, Q.; Zeng, W. Optimal dispatch of community integrated energy system based on Stackelberg game and integrated demand response under carbon trading mechanism. Appl. Therm. Eng. 2023, 219, 119508. [Google Scholar] [CrossRef]
- Yang, P.; Jiang, H.; Liu, C.; Kang, L.; Wang, C. Coordinated optimization scheduling operation of integrated energy system considering demand response and carbon trading mechanism. Int. J. Electr. Power Energy Syst. 2023, 147, 108902. [Google Scholar] [CrossRef]
- Muhsen, H.; Allahham, A.; Al-Halhouli, A.a.; Al-Mahmodi, M.; Alkhraibat, A.; Hamdan, M. Business Model of Peer-to-Peer Energy Trading: A Review of Literature. Sustainability 2022, 14, 1616. [Google Scholar] [CrossRef]
- Das, A.; Peu, S.D.; Mannan, A.; Abu, R.M. Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector. Energies 2023, 16, 2198. [Google Scholar] [CrossRef]
- Khorasany, M.; Najafi-Ghalelou, A.; Razzaghi, R. A Framework for Joint Scheduling and Power Trading of Prosumers in Transactive Markets. IEEE Trans. Sustain. Energy 2021, 12, 955–965. [Google Scholar] [CrossRef]
- Li, J.; Ye, Y.; Papadaskalopoulos, D.; Strbac, G. Computationally Efficient Pricing and Benefit Distribution Mechanisms for Incentivizing Stable Peer-to-Peer Energy Trading. IEEE Internet Things J. 2021, 8, 734–749. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Z.; Heijnen, P.; Warnier, M. A peer-to-peer market mechanism incorporating multi-energy coupling and cooperative behaviors. Appl. Energy 2022, 311, 118572. [Google Scholar] [CrossRef]
- Zha, D.; Feng, T.; Kong, J. Effects of enterprise carbon trading mechanism design on willingness to participate——Evidence from China. Front. Environ. Sci. 2022, 10, 986862. [Google Scholar] [CrossRef]
- Khorasany, M.; Razzaghi, R.; Gazafroudi, A.S. Two-stage mechanism design for energy trading of strategic agents in energy communities. Appl. Energy 2021, 295, 117036. [Google Scholar] [CrossRef]
- Wang, B.; Xu, J.; Jin, K.; Chen, P.; Wang, J.; Wang, N.; Li, X.; Zhang, F.; Li, L. CE-SDT: A new blockchain-based distributed community energy trading mechanism. Front. Energy Res. 2023, 10, 1091350. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Jiao, W.; Wang, G.; Zhao, J.; Wang, Y.; Li, K. An Efficient, Secured, and Infinitely Scalable Consensus Mechanism for Peer-to-Peer Energy Trading Blockchain. IEEE Trans. Ind. Appl. 2023, 59, 5215–5229. [Google Scholar] [CrossRef]
- Ping, J.; Li, D.; Yan, Z.; Wu, X.; Chen, S. A trusted peer-to-peer market of joint energy and reserve based on blockchain. Electr. Power Syst. Res. 2023, 214, 108802. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W.; Fan, X.; He, S.; Wang, H.; Wu, J.; Shi, R. Low-carbon optimal operation strategy of multi-park integrated energy system considering multi-energy sharing trading mechanism and asymmetric Nash bargaining. Energy Rep. 2023, 10, 255–284. [Google Scholar] [CrossRef]
- Satar, A.; Musadiq, M.A.; Hutahayan, B.; Solimun. A systematic literature review: Determinants of sustainability competitive advantage. Bus. Strategy Environ. 2024, 33, 1675–1687. [Google Scholar] [CrossRef]
- Kanakasabapathy, P. Economic impact of pumped storage power plant on social welfare of electricity market. Int. J. Electr. Power Energy Syst. 2013, 45, 187–193. [Google Scholar] [CrossRef]
- Vogstad, K.O. Combining System Dynamics and Experimental Economics to Analyse the Design of Tradable Green Certificates. In Proceedings of the 38th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 3–6 January 2005. [Google Scholar] [CrossRef]
- Oikonomou, V.; Mundaca, L. Tradable white certificate schemes: What can we learn from tradable green certificate schemes? Energy Effic. 2008, 1, 211–232. [Google Scholar] [CrossRef]
- Madlener, R.; Gao, W.; Neustadt, I.; Zweifel, P. Promoting renewable electricity generation in imperfect markets: Price vs. quantity policies. In RePEc: Research Papers in Economics; SOI-Working Papers 0809; Socioeconomic Institute-University of Zurich: Zurich, Switzerland, 2008. [Google Scholar] [CrossRef]
- Marzooni, M.H.; Hosseini, S.H. Trading strategies for wind capacity investment in a dynamic model of combined tradable green certificate and electricity markets. IET Gener. Transm. Distrib. 2012, 6, 320–330. [Google Scholar] [CrossRef]
- Liu, G.; Yu, C.; Li, X.; Wen, F. Impacts of emission trading and renewable energy support schemes on electricity market operation. IET Gener. Transm. Distrib. 2011, 5, 650. [Google Scholar] [CrossRef]
- Feng, T.-t.; Yang, Y.-s.; Yang, Y.-h. What will happen to the power supply structure and CO2 emissions reduction when TGC meets CET in the electricity market in China? Renew. Sustain. Energy Rev. 2018, 92, 121–132. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Y.; Zhang, B.; Bi, J. Understanding the Price Dynamics in the Jiangsu SO2 Emissions Trading Program in China: A Multiple Periods Analysis. Environ. Model. Assess. 2012, 18, 285–297. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y. Analysis of the effectiveness of Renewable Portfolio Standards: A perspective of shared mental model. J. Clean. Prod. 2021, 278, 124276. [Google Scholar] [CrossRef]
- Tu, Q.; Mo, J.; Liu, Z.; Gong, C.; Fan, Y. Using green finance to counteract the adverse effects of COVID-19 pandemic on renewable energy investment-The case of offshore wind power in China. Energy Policy 2021, 158, 112542. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.P.; Mahajan, A.; Singh, S.K.; Kumar, P. Renewable energy proliferation for sustainable development: Role of cross border electricity trade. Renew. Energy 2022, 201, 1189–1199. [Google Scholar] [CrossRef]
- Nerlinger, M.; Utz, S. The impact of the Russia-Ukraine conflict on energy firms: A capital market perspective. Financ. Res. Lett. 2022, 50, 103243. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, J.; Wang, L.; Wang, R. Impact assessment of energy sanctions in geo-conflict: Russian–Ukrainian war. Energy Rep. 2023, 9, 3082–3095. [Google Scholar] [CrossRef]
- Shang, Y.; Sang, S.; Tiwari, A.K.; Khan, S.; Zhao, X. Impacts of renewable energy on climate risk: A global perspective for energy transition in a climate adaptation framework. Appl. Energy 2024, 362, 122994. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Wang, Z.; Maqbool, B.; Hussain, A.; Khan, W.A. Bibliometric Analysis of the Research on the Impact of Environmental Regulation on Green Technology Innovation Based on CiteSpace. Int. J. Environ. Res. Public Health 2022, 19, 13273. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.; Liu, Z.; Hu, Z.; Wang, X. The methodology function of Cite Space mapping knowledge domains. Stud. Sci. Sci. 2015, 33, 242–253. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The Structure and Dynamics of Co-Citation Clusters: A Multiple-Perspective Co-Citation Analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef]
- Shafie-khah, M.; Siano, P.; Catalao, J.P.S. Optimal Demand Response Strategies to Mitigate Oligopolistic Behavior of Generation Companies Using a Multi-Objective Decision Analysis. IEEE Trans. Power Syst. 2018, 33, 4264–4274. [Google Scholar] [CrossRef]
- Ul-Haq, A.; Jalal, M.; Hassan, M.S.; Sindi, H.; Ahmad, S.; Ahmad, S. Implementation of Smart Grid Technologies in Pakistan under CPEC Project: Technical and Policy Implications. IEEE Access 2021, 9, 61594–61610. [Google Scholar] [CrossRef]
- Gomes, L.; Coelho, A.; Vale, Z. Assessment of Energy Customer Perception, Willingness, and Acceptance to Participate in Smart Grids—A Portuguese Survey. Energies 2023, 16, 270. [Google Scholar] [CrossRef]
- Oprea, S.-V.; Bâra, A. Generative literature analysis on the rise of prosumers and their influence on the sustainable energy transition. Util. Policy 2024, 90, 101799. [Google Scholar] [CrossRef]
- Monroe, J.G.; Hansen, P.; Sorell, M.; Berglund, E.Z. Agent-Based Model of a Blockchain Enabled Peer-to-Peer Energy Market: Application for a Neighborhood Trial in Perth, Australia. Smart Cities 2020, 3, 1072–1099. [Google Scholar] [CrossRef]
- Ratha, A.; Pinson, P.; Le Cadre, H.; Virag, A.; Kazempour, J. Moving from linear to conic markets for electricity. Eur. J. Oper. Res. 2022, 309, 762–783. [Google Scholar] [CrossRef]
- Radpour, S.; Gemechu, E.D.; Ahiduzzaman, M.; Kumar, A.M.S. Developing a framework to assess the long-term adoption of renewable energy technologies in the electric power sector: The effects of carbon price and economic incentives. Renew. Sustain. Energy Rev. 2021, 152, 111663. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Cimmino, L.; Dentice d’Accadia, M.; Vicidomini, M. Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells. Renew. Energy 2023, 214, 74–95. [Google Scholar] [CrossRef]
Search Set Subjects | Retrieve Set Contents and Results |
---|---|
Database | Science Citation Index Expanded (SCI-EXPANDED) Social Sciences Citation Index (SSCI) |
Search Mode | TS = (electricity market or power market) and (energy trading or energy transaction) |
Literature Type | Article, Review |
Language Type | English |
Time Span | 1996–2023 |
Search Result | 642 articles |
Rank | Country (Region) | Frequency | Centrality | Rank | Country (Region) | Frequency | Centrality |
---|---|---|---|---|---|---|---|
1 | Peoples R China | 217 | 0.29 | 6 | Singapore | 45 | 0.01 |
2 | USA | 112 | 0.31 | 7 | India | 39 | 0.10 |
3 | Australia | 69 | 0.10 | 8 | South Korea | 36 | 0.07 |
4 | England | 58 | 0.14 | 9 | Canada | 35 | 0.08 |
5 | Iran | 52 | 0.07 | 10 | Germany | 33 | 0.09 |
Rank | Author | Frequency | Rank | Author | Frequency |
---|---|---|---|---|---|
1 | Khorasany, Mohsen | 12 | 6 | Catalao, Joao P S | 8 |
2 | Gooi, Hoay Beng | 12 | 7 | Azim, M Imran | 7 |
3 | Shafie-khah, Miadreza | 10 | 8 | Gazafroudi, Amin Shokri | 6 |
4 | Razzaghi, Reza | 9 | 9 | Siano, Pierluigi | 6 |
5 | Xu, Qingshan | 8 | 10 | Yang, Qingyu | 5 |
Rank | Research Institution | Frequency | Rank | Research Institution | Frequency |
---|---|---|---|---|---|
1 | Nanyang Technological University | 33 | 6 | University of Sydney | 16 |
2 | National Institute of Education (NIE) Singapore | 33 | 7 | North China Electric Power University | 15 |
3 | Southeast University | 22 | 8 | University of Tabriz | 14 |
4 | Zhejiang University | 19 | 9 | National Institute of Technology | 14 |
5 | State Grid Corporation of China | 19 | 10 | Monash University | 13 |
Rank | Cited Journal | Frequency | Centrality | Impact Factor |
---|---|---|---|---|
1 | IEEE Transactions on Smart Grid | 487 | 0.19 | 10.4 |
2 | IEEE Transactions on Power Systems | 480 | 0.12 | 7.7 |
3 | Applied Energy | 455 | 0.22 | 11.2 |
4 | IEEE Transactions on Industrial Informatics | 332 | 0.03 | 12.3 |
5 | Renewable and Sustainable Energy Reviews | 307 | 0.03 | 16.9 |
6 | IEEE Access | 297 | 0.05 | 4.1 |
7 | International Journal of Electrical Power and Energy Systems | 262 | 0.15 | 5.2 |
8 | Energy | 258 | 0.03 | 8.9 |
9 | IEEE Transactions on Industrial Electronics | 257 | 0.07 | 8.6 |
10 | Energies | 244 | 0.08 | 3.3 |
Rank | Keyword | Frequency | Centrality | Rank | Keyword | Frequency | Centrality |
---|---|---|---|---|---|---|---|
1 | management | 129 | 0.15 | 6 | demand response | 71 | 0.11 |
2 | energy trading | 101 | 0.11 | 7 | peer-to-peer computing | 66 | 0.03 |
3 | peer-to-peer energy trading | 89 | 0.02 | 8 | system | 64 | 0.04 |
4 | market | 73 | 0.18 | 9 | model | 63 | 0.04 |
5 | optimization | 71 | 0.11 | 10 | framework | 58 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Ma, Z.; Chi, X.; Duan, J.; Li, M.; Khan, A.U. Decoding the Developmental Trajectory of Energy Trading in Power Markets through Bibliometric and Visual Analytics. Energies 2024, 17, 3605. https://doi.org/10.3390/en17153605
Sun Y, Ma Z, Chi X, Duan J, Li M, Khan AU. Decoding the Developmental Trajectory of Energy Trading in Power Markets through Bibliometric and Visual Analytics. Energies. 2024; 17(15):3605. https://doi.org/10.3390/en17153605
Chicago/Turabian StyleSun, Yu, Zhiqiang Ma, Xiaomeng Chi, Jiaqi Duan, Mingxing Li, and Asad Ullah Khan. 2024. "Decoding the Developmental Trajectory of Energy Trading in Power Markets through Bibliometric and Visual Analytics" Energies 17, no. 15: 3605. https://doi.org/10.3390/en17153605
APA StyleSun, Y., Ma, Z., Chi, X., Duan, J., Li, M., & Khan, A. U. (2024). Decoding the Developmental Trajectory of Energy Trading in Power Markets through Bibliometric and Visual Analytics. Energies, 17(15), 3605. https://doi.org/10.3390/en17153605