Research Progress on the Dynamic Characteristics of Circulating Fluidized Bed Boilers While Processing Rapid Variable Loads
Abstract
:1. Introduction
2. Inertia Sources in Circulating Fluidized Bed Boilers While Processing Rapid Variable Loads
2.1. Flow Inertia
2.2. Combustion Inertia
2.3. Heat Transfer Inertia
3. Experimental Study and Analysis of Dynamic Characteristics of Circulating Fluidized Bed Boilers While Processing Rapid Variable Loads
3.1. Experimental Study and Analysis of Flow Characteristics
3.2. Experimental Study and Analysis of Combustion Characteristics
3.3. Experimental Study and Analysis of Heat Transfer Characteristics
3.4. Experimental Study and Analysis of Pollutant Emissions
4. Development of a Numerical Model for the Dynamic Characteristics of Circulating Fluidized Bed Boilers While Processing Rapid Variable Loads
4.1. Fluidization Model
4.1.1. Zero-Dimensional Model
4.1.2. One-Dimensional Model
4.1.3. Core–Annulus Model
4.1.4. Two-Dimensional Model
4.2. Computational Fluid Dynamics Model
4.3. Computational Particle Fluid Dynamics Model
5. Numerical Simulation Study on the Dynamic Characteristics of a Circulating Fluidized Bed Boiler While Processing Rapid Variable Load Conditions
5.1. Simulation Study and Analysis of Flow Characteristics
5.2. Simulation Study and Analysis of Combustion and Heat Transfer Characteristics
5.3. Simulation Study and Analysis of Pollutant Emissions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- 14th Five-Year Plan for a Modern Energy System. Available online: https://www.gov.cn/zhengce/zhengceku/2022-03/23/content_5680759.htm (accessed on 28 May 2024).
- Wang, Y.; Zhao, M.; Chang, J.; Wang, X.; Tian, Y. Study on the combined operation of a hydro-thermal-wind hybrid power system based on hydro-wind power compensating principles. Energy Convers. Manag. 2019, 194, 94–111. [Google Scholar] [CrossRef]
- Yue, G.; Cai, R.; Lu, J.; Zhang, H. From a CFB reactor to a CFB boiler—The review of R&D progress of CFB coal combustion technology in China. Powder Technol. 2016, 316, 18–28. [Google Scholar]
- Cai, R.; Zhang, H.; Zhang, M.; Yang, H.; Lyu, J.; Yue, G. Development and application of the design principle of fluidization state specification in CFB coal combustion. Fuel Process. Technol. 2018, 174, 41–52. [Google Scholar] [CrossRef]
- Johnsson, J.E. Formation and reduction of nitrogen-oxides in fluidized-bed combustion. Fuel 1994, 73, 1398–1415. [Google Scholar] [CrossRef]
- Wang, D. Thermal Power Plant Modelling and Control Strategy of Ouick load Change. Ph.D. Thesis, Northeast Electric Power University, Changchun, China, 2018. [Google Scholar]
- Xin, S.; Wang, H.; Li, J.; Wang, G.; Wang, Q.; Cao, P.; Zhang, P.; Lu, X. Discussion on the Feasibility of Deep Peak Regulation for Ultra-Supercritical Circulating Fluidized Bed Boiler. Energies 2022, 15, 7720. [Google Scholar] [CrossRef]
- Gao, M.; Hong, F.; Liu, J. Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units. Appl. Energy 2017, 185, 463–471. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, M.; Hong, F.; Liu, J.; Wang, X. Control-oriented modelling and investigation on quick load change control of subcritical circulating fluidized bed unit. Appl. Therm. Eng. 2019, 163, 114420. [Google Scholar] [CrossRef]
- Hirvonen, J. Dynamic Modelling of Circulating Fluidized Bed Plant with Gas Turbine Repowering. Master Thesis, Lappeenrannan University of Technology, Lappeenranta, Finland, 2016. [Google Scholar]
- Beiron, J.; Montañés, R.M.; Normann, F.; Johnsson, F. Dynamic modeling for assessment of steam cycle operation in waste-fired combined heat and power plants. Energy Convers. Manag. 2019, 198, 111926. [Google Scholar] [CrossRef]
- Kim, S.; Choi, S.; Yang, J. Dynamic simulation of a circulating fluidized bed boiler system Part II: Simulation of a boiler system operating in a power plant. J. Mech. Sci. Technol. 2016, 30, 5793–5801. [Google Scholar] [CrossRef]
- Castilla, G.M.; Montañés, R.M.; Pallarès, D.; Johnsson, F. Comparison of the Transient Behaviors of Bubbling and Circulating Fluidized Bed Combustors. Heat Transf. Eng. 2023, 44, 303–316. [Google Scholar] [CrossRef]
- Lu, J.F.; Zhang, J.S.; Yue, G.; Liu, Q.; Yu, L.; Lin, X.D.; Li, W.J.; Tang, Y.; Luo, T.Y.; Ge, R.S. Method of calculation of heat transfer coefficient of the heater in a circulating fluidized bed furnace. Heat Transf. 2002, 31, 540–550. [Google Scholar] [CrossRef]
- Yang, H.; Yue, G.; Xiao, X.; Lu, J.; Liu, Q. 1D modeling on the material balance in CFB boiler. Chem. Eng. Sci. 2005, 60, 5603–5611. [Google Scholar] [CrossRef]
- Li, D.; Han, H.; Wang, J.; Yang, F. Research Progress of Numerical Simulation of Circulating Fluidized Bed Boiler. Coal Convers. 2021, 44, 83–95. [Google Scholar]
- Rossbach, V.; Becker, S.L.; Padoin, N.; Meier, H.F.; Soares, C. Influence of Ultrasonic Waves and Airfoil-Shaped Ring Baffles on the Gas-Solid Dispersion in a CFB Riser. In Advances in Turbulence; Springer: Cham, Switzerland, 2023; pp. 177–190. [Google Scholar] [CrossRef]
- Wei, B.; Sun, L.; Lv, G.; Meng, X.; Khalid, Z.; Huang, Q.; Jiang, X. Effects of tube configurations on the heat transfer and hydrodynamic behavior in a gas-solid fluidized bed. Powder Technol. 2024, 436, 119439. [Google Scholar] [CrossRef]
- Tian, C. Research on the Effect of Furnace Structural Features on the Hvdrodvnamics of CFB Boiler. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2011. [Google Scholar]
- Zheng, Y.; Zhang, M. Analysis on Combusting Process for CFB Boilers. Northeast Electr. Power Technol. 2009, 30, 37–41. [Google Scholar]
- Zhuang, H.; He, H.; Li, Z.; Zou, Z. Influence of the Particle Size of Fujian Anthracite Coal on Its Burnout in CFB Boiler. Chin. J. Process Eng. 2013, 13, 846–850. [Google Scholar]
- Zhang, J.; Zhu, J.; Liu, J. Experimental Studies on Preheating Combustion Characteristics of Low-Rank Coal with Different Particle Sizes and Kinetic Simulation of Nitrogen Oxide. Energies 2023, 16, 7078. [Google Scholar] [CrossRef]
- Zhu, S.; Hui, J.; Lyu, Q.; Ouyang, Z.; Liu, J.; Zhu, J.; Zeng, X.; Zhang, X.; Ding, H.; Liu, Y.; et al. Experimental study on pulverized coal combustion preheated by a circulating fluidized bed: Preheating characteristics for peak shaving. Fuel 2022, 324, 124684. [Google Scholar] [CrossRef]
- Tang, Z.; Song, G.; Song, W.; Sun, L.; Ji, Z.; Ji, Y.; Zhang, Y. Experimental study on variation characteristics of combustion heat load in circulating fluidized bed under fuel high-temperature preheating modification. J. Energy Inst. 2024, 114, 101610. [Google Scholar] [CrossRef]
- Hui, J.; Zhu, S.; Zhang, X.; Liu, Y.; Lin, J.; Ding, H.; Su, K.; Cao, X.; Lyu, Q. Experimental study of deep and flexible load adjustment on pulverized coal combustion preheated by a circulating fluidized bed. J. Clean. Prod. 2023, 418, 138040. [Google Scholar] [CrossRef]
- Tang, Z.H.; Song, G.L.; Jiang, Y.; Yang, X.T.; Ji, Z.C.; Sun, L.W. Experimental Study on the Effect of Bed Material Amount and Fuel Particle Size on Load Change of Circulating Fluidized Bed. J. Therm. Sci. 2023, 32, 1758–1770. [Google Scholar] [CrossRef]
- Lu, J.; Shang, M.; Ke, X.; Zhou, T.; Huang, Z.; Zhang, H.; Zhang, M.; Zhang, Y.; Wu, Y.; Yue, G. Powdered coal circulating fluidized bed combustion technology. J. China Coal Soc. 2023, 48, 430–437. [Google Scholar]
- Yang, H.; Lu, J.; Zhang, H.; Yue, G.; Guo, Y. Coal ignition characteristics in CFB boiler. Fuel 2005, 84, 1849–1853. [Google Scholar] [CrossRef]
- Zhang, R. Research on Bed-to-Wall Heat Transfer in Gas-Solid Flow with Various Flow Patterns. Ph.D. Thesis, Tsinghua University, Beijing, China, 2014. [Google Scholar]
- Deng, B.; Zhang, M.; Li, S.; Lyu, J.; Yang, H. Analysis on the Safety of the Water Wall in a 350MW Supercritical CFB Boiler Under Electricity Failure Condition. Proc. Chin. Soc. Electr. Eng. 2019, 39, 4799–4807. [Google Scholar]
- Sun, G.; Wu, H.; Liu, S.; Liu, T.; Liu, J.; Yang, H.; Zhang, M. Thermal Inertia of 330 MW Circulating Fluidized Bed Boiler during Load Change. J. Therm. Sci. 2023, 32, 1771–1783. [Google Scholar] [CrossRef]
- Dong, Z.; Lu, X.; Shi, L.; Yang, Z.; Kong, F.; Wang, P.; Lin, G.; Zhao, P. Influence of Thermal Inertia of Refractory Material in Furnace on the Peak Regulating Rate of Circulating Fluidized Bed Boiler. Power Gener. Technol. 2023, 44, 514–524. [Google Scholar]
- Liu, X.; Zhang, M.; Zhang, S.; Ding, Y.; Huang, Z.; Zhou, T.; Yang, H.; Yue, G. Measuring Technologies for CFB Solid Circulation Rate: A Review and Future Perspectives. Energies 2022, 15, 417. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, H.; Zhou, T.; Huang, Z.; Li, S.; Zhang, M. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler. CIESC J. 2022, 73, 3731–3738. [Google Scholar]
- Yang, H.; Zhang, H.; Yang, S.; Yue, G.; Su, J.; Fu, Z. Effect of Bed Pressure Drop on Performance of a CFB Boiler. Energy Fuels 2009, 23, 2886–2890. [Google Scholar] [CrossRef]
- Song, T.X. Effect of Bed Material Size on Gas-Solid Flow Behavior in Circulating Fluidized Bed. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2021. [Google Scholar]
- Jiang, D.H.; Zhang, H.X.; Wang, X.F.; Zhu, Z.P.; Cao, X.Y. Influence of Air Staging on the Operation Characteristics of the CFB System. J. Therm. Sci. 2023, 32, 1889–1898. [Google Scholar] [CrossRef]
- Deng, B.; Zhou, T.; Zhang, Y.; Zhang, M.; Huang, Z.; Yang, H. Hydrodynamic characteristics in the full-loop circulating fluidized bed under load regulation. Part 1: Experimental investigation. Chem. Eng. Sci. 2023, 268, 118361. [Google Scholar] [CrossRef]
- Deng, B.; Zhou, T.; Zhang, Y.; Zhang, M.; Huang, Z.; Yang, H. Hydrodynamic characteristics in the full-loop circulating fluidized bed under load regulation. Part 2: Simulation. Chem. Eng. Sci. 2022, 264, 118158. [Google Scholar] [CrossRef]
- Peters, J.; Langner, E.; Stroehle, J.; Epple, B. Acceleration of Load Changes by Controlling the Operating Parameters in CFB Co-Combustion. Front. Energy Res. 2021, 9, 677950. [Google Scholar] [CrossRef]
- Tang, Z.; Song, G.; Yang, X.; Ji, Z. Research on combustion and emission characteristics of circulating fluidized bed during load changes. J. Energy Inst. 2022, 105, 334–341. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, S.; Pan, X.; Chen, J. Experimental study on the load response rate under the dynamic combined combustion of PC coal and CFB coal in a CFB boiler. Fuel 2019, 236, 445–451. [Google Scholar] [CrossRef]
- Tourunen, A.; Saastamoinen, J.; Nevalainen, H. Experimental trends of NO in circulating fluidized bed combustion. Fuel 2009, 88, 1333–1341. [Google Scholar] [CrossRef]
- Ke, X.; Zhu, S.; Huang, Z.; Zhang, M.; Lyu, J.; Yang, H.; Zhou, T. Issues in deep peak regulation for circulating fluidized bed combustion: Variation of NOx emissions with boiler load. Environ. Pollut. 2023, 318, 120912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Fan, H.D.; Yu, Y.; He, J.P.; Du, J.J.; Xin, S.W.; Zhang, M.; Yang, H.R. Performance of 350 MW supercritical circulating fluidized bed boiler under different loads. Clean Coal Technol. 2021, 27, 93–99. [Google Scholar] [CrossRef]
- Gómez-Barea, A.; Leckner, B. Modeling of biomass gasification in fluidized bed. Energy Combust. Sci. 2009, 36, 444–509. [Google Scholar] [CrossRef]
- Hong, F.; Long, D.; Chen, J.; Gao, M. Modeling for the bed temperature 2D-interval prediction of CFB boilers based on long-short term memory network. Energy 2020, 194, 116733. [Google Scholar] [CrossRef]
- Grochowalski, J.; Jachymek, P.; Andrzejczyk, M.; Klajny, M.; Widuch, A.; Morkisz, P.; Hernik, B.; Zdeb, J.; Adamczyk, W. Towards application of machine learning algorithms for prediction temperature distribution within CFB boiler based on specified operating conditions. Energy 2021, 237, 121538. [Google Scholar] [CrossRef]
- Chen, Y.; Gou, X. Dynamic modeling and simulation of a 410t/h Pyroflow CFB boiler. Comput. Chem. Eng. 2006, 31, 21–31. [Google Scholar] [CrossRef]
- Saastamoinen, J.J. Modelling of dynamics of combustion of biomass in fluidized beds. Therm. Sci. 2004, 8, 107–126. [Google Scholar] [CrossRef]
- Sandberg, J.; Fdhila, R.B.; Dahlquist, E.; Avelin, A. Dynamic simulation of fouling in a circulating fluidized biomass-fired boiler. Appl. Energy 2011, 88, 1813–1824. [Google Scholar] [CrossRef]
- Weiss, V.; Fett, F.N.; Helmrich, H.; Janssen, K. Mathematical-modeling of circulating fluidized-bed reactors by reference to a solids decomposition reaction and coal combustion. Chem. Eng. Process. Process Intensif. 1987, 22, 79–90. [Google Scholar] [CrossRef]
- Li, Z. Modeling, Simulation and Performance Prediction of a Complete Cfbc Boiler. Ph.D. Thesis, Tsinghua University, Beijing, China, 1994. [Google Scholar]
- Deng, B.; Zhang, M.; Shan, L.; Wei, G.; Lyu, J.; Yang, H.; Gao, M. Modeling study on the dynamic characteristics in the full-loop of a 350 MW supercritical CFB boiler under load regulation. J. Energy Inst. 2021, 97, 117–130. [Google Scholar] [CrossRef]
- Hu, X.; Li, C.; Zhang, S.H.; Zhang, M.; Yang, H.R. Unraveling the Mystery of Inertia Generation in CFB Boilers: A Whole-loop Dynamic Modeling Methodology. J. Electr. Power 2023, 38, 451–459. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, M.; Deng, B.; Huang, Z.; Ding, Y.; Wang, G.; Yang, H.; Yue, G. Development and validation of a dynamic flowsheet model for a 350 MWe supercritical circulating fluidized bed boiler. Appl. Therm. Eng. 2022, 209, 118265. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, M.; Yu, H.; Fan, H.; Zhang, J. A dynamic nonlinear model used for controller design of a 600 MW supercritical circulating fluidized bed boiler-turbine unit. Appl. Therm. Eng. 2022, 212, 118547. [Google Scholar] [CrossRef]
- Park, C.K.; Basu, P. A model for prediction of transient response to the change of fuel feed rate to a circulating fluidized bed boiler furnace. Chem. Eng. Sci. 1997, 52, 3499–3509. [Google Scholar] [CrossRef]
- Kim, S.; Choi, S.; Lappalainen, J.; Song, T.H. Dynamic simulation of the circulating fluidized bed loop performance under the various operating conditions. Proc. Inst. Mech. Eng. Part A J. Power Energy 2019, 233, 901–913. [Google Scholar] [CrossRef]
- Peters, J.; Alobaid, F.; Epple, B. Operational Flexibility of a CFB Furnace during Fast Load Change-Experimental Measurements and Dynamic Model. Appl. Sci. 2020, 10, 5972. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Yang, C.; Wu, H.C.; Deng, K.J. Modeling and simulation of the start-up process of a 660MW ultra-supercritical circulating fluidized bed boiler. Comput. Chem. Eng. 2023, 169, 108079. [Google Scholar] [CrossRef]
- Gungor, A.; Eskin, N. Two-dimensional coal combustion modeling of CFB. Int. J. Therm. Sci. 2008, 47, 157–174. [Google Scholar] [CrossRef]
- Schoenfelder, H.; Kruse, M.; Werther, J. Two-dimensional model for circulating fluidized-bed reactors. AIChE J. 1996, 42, 1875–1888. [Google Scholar] [CrossRef]
- Li, Z.; Wen, C.; Xu, Z.; Xue, Y.; Liu, P. Dynamic Simulation Research on Large Circulating Fluidized Bed Boiler Considering Transverse Mass Transfer. J. Chin. Soc. Power Eng. 2021, 41, 818–823,841. [Google Scholar]
- Tu, Q.; Wang, H.; Ocone, R. Application of three-dimensional full-loop CFD simulation in circulating fluidized bed combustion reactors—A review. Powder Technol. 2022, 399, 117181. [Google Scholar] [CrossRef]
- Huttunen, M.; Peltola, J.; Kallio, S.; Karvonen, L.; Niemi, T.; Ylä-Outinen, V. Analysis of the processes in fluidized bed boiler furnaces during load changes. Energy Procedia 2017, 120, 580–587. [Google Scholar] [CrossRef]
- Du, W.; Ma, L.; Dai, Q.; Li, W.; Liu, H.; Xie, L.; Yang, J.; Zhang, W. Three-dimensional transient CFD simulation of lignite chemical looping gasification in a circulating fluidized bed. Energy 2024, 291, 130376. [Google Scholar] [CrossRef]
- Chang, J.; Ma, X.; Wang, X.; Li, X. CPFD modeling of hydrodynamics, combustion and NOx emissions in an industrial CFB boiler. Particuology 2023, 81, 174–188. [Google Scholar] [CrossRef]
- Ding, H.; Ouyang, Z.; Su, K.; Zhang, J. Investigation of gas-solid flow characteristics in a novel internal fluidized bed combustor by experiment and CPFD simulation. Adv. Powder Technol. 2023, 34, 103962. [Google Scholar] [CrossRef]
- Lee, B.-H.; Bae, Y.-H.; Kim, K.-M.; Jiang, Y.; Ahn, Y.-H.; Jeon, C.-H. Application of the CPFD method to analyze the effects of bed material density on gas-particle hydrodynamics and wall erosion in a CFB boiler. Fuel 2023, 342, 127878. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, H.; Lu, J. Application of CPFD Approach on Gas-solid Flow and Combustion in Industrial CFB Boilers. Proc. Chin. Soc. Electr. Eng. 2013, 33, 10. [Google Scholar]
- Shen, X.; Zhao, Q.; Qiao, X.; Yang, H.; Zhang, M.; Jia, L.; Jin, Y. Field test and numerical simulation of banked fire characteristics of supercritical CFB boiler. J. China Coal Soc. 2022, 47, 2797–2807. [Google Scholar]
- Shen, X.; Guo, B.; Jia, L.; Zhang, Y.; Yang, H.; Zhang, M.; Jin, Y. Dynamic characteristics of pollutant emissions from CFB boilers during periodic fire banking and start-up. Chem. Eng. Res. Des. 2023, 199, 162–174. [Google Scholar] [CrossRef]
- Shen, X.; Li, J.; Jia, L.; Wang, Y.L.; Guo, B.H.; Qiao, X.L.; Yang, H.R.; Zhang, M.; Jin, Y. Numerical simulation of NO and SO2 emission dynamic characteristics during thermal start-up of CFB boiler. Part. Sci. Technol. 2023, 41, 53–63. [Google Scholar] [CrossRef]
- Castilla, G.M.; Montañés, R.M.; Pallarès, D.; Johnsson, F. Dynamic Modeling of the Reactive Side in Large-Scale Fluidized Bed Boilers. Ind. Eng. Chem. Res. 2021, 60, 3936–3956. [Google Scholar] [CrossRef]
- Panday, R.; Breault, R.; Shadle, L.J. Dynamic modeling of the circulating fluidized bed riser. Powder Technol. 2016, 291, 522–535. [Google Scholar] [CrossRef]
- Mo, X.; Wang, P.; Yang, H.; Lv, J.; Zhang, M.; Liu, Q. A hydrodynamic model for circulating fluidized beds with low riser and tall riser. Powder Technol. 2015, 274, 146–153. [Google Scholar] [CrossRef]
- Collado, F.J. Hydrodynamics model for the dilute zone of circulating fluidized beds. Powder Technol. 2018, 328, 108–113. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, T.; Li, C.; Zhang, M.; Zhu, S.; Yang, H. Investigation on the dynamic characteristics under load regulation in CFB boiler with whole loop model. Chem. Eng. Sci. 2024, 287, 119784. [Google Scholar] [CrossRef]
- Shen, X.; Jia, L.; Wang, Y.; Guo, B.; Fan, H.; Qiao, X.; Zhang, M.; Jin, Y. Study on Dynamic Characteristics of Residual Char of CFB Boiler Based on CPFD Method. Energies 2020, 13, 5883. [Google Scholar] [CrossRef]
- Stefanitsis, D.; Nesiadis, A.; Nikolopoulos, A.; Nikolopoulos, N. Simulation of a circulating fluidized bed power plant integrated with a thermal energy storage system during transient operation. J. Energy Storage 2021, 43, 103239. [Google Scholar] [CrossRef]
- Stefanitsis, D.; Nesiadis, A.; Koutita, K.; Nikolopoulos, A.; Nikolopoulos, N.; Peters, J.; Ströhle, J.; Epple, B. Simulation of a CFB Boiler Integrated With a Thermal Energy Storage System During Transient Operation. Front. Energy Res. 2020, 8, 169. [Google Scholar] [CrossRef]
- Alobaid, F.; Peters, J.; Amro, R.; Epple, B. Dynamic process simulation for Polish lignite combustion in a 1 MWth circulating fluidized bed during load changes. Appl. Energy 2020, 278, 115662. [Google Scholar] [CrossRef]
- Yang, L. Study on Energy Storage Analysis and Load Control Ofcirculating Fluidized Bed Unit. Master’s Thesis, North China Electric Power University, Beijing, China, 2023. [Google Scholar]
- Zhang, C.C. Study on Dynamic Characteristics of Pollutant Emissionfrom CFB Boiler under Variable Load. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2019. [Google Scholar]
- Ke, X.W.; Yao, Y.G.; Huang, Z.; Zhang, M.; Lyu, J.; Yang, H.R.; Zhou, T. Prediction and minimization of NOx emission in a circulating fluidized bed combustor: Improvement of bed quality by optimizing cyclone performance and coal particle size. Fuel 2022, 328, 125287. [Google Scholar] [CrossRef]
- Liu, C.; Gao, M.; Zhang, H.F.; Zhang, G.H.; Yue, G. NOx emission model of 300 MW subcritical circulating fluidized bed unit. Clean Coal Technol. 2023, 29, 109–115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Zhu, S.; Mao, Y.; Gao, J.; Shen, Z.; Li, J.; Yang, H. Research Progress on the Dynamic Characteristics of Circulating Fluidized Bed Boilers While Processing Rapid Variable Loads. Energies 2024, 17, 3549. https://doi.org/10.3390/en17143549
Wei H, Zhu S, Mao Y, Gao J, Shen Z, Li J, Yang H. Research Progress on the Dynamic Characteristics of Circulating Fluidized Bed Boilers While Processing Rapid Variable Loads. Energies. 2024; 17(14):3549. https://doi.org/10.3390/en17143549
Chicago/Turabian StyleWei, Huanzhou, Shahong Zhu, Yulin Mao, Junjie Gao, Zifan Shen, Jiaxing Li, and Hairui Yang. 2024. "Research Progress on the Dynamic Characteristics of Circulating Fluidized Bed Boilers While Processing Rapid Variable Loads" Energies 17, no. 14: 3549. https://doi.org/10.3390/en17143549
APA StyleWei, H., Zhu, S., Mao, Y., Gao, J., Shen, Z., Li, J., & Yang, H. (2024). Research Progress on the Dynamic Characteristics of Circulating Fluidized Bed Boilers While Processing Rapid Variable Loads. Energies, 17(14), 3549. https://doi.org/10.3390/en17143549