Analysis of the Measurement of Transportation Carbon Emissions and the Emission Reduction Path in the Yangtze River Economic Belt under the Background of “Dual Carbon” Goals
Abstract
:1. Introduction
2. Methods
2.1. TCE Accounting Methods
2.2. Extended STIRPAT Model
2.3. Data Sources
3. Empirical Analysis
3.1. Analysis of Changes in Carbon Emissions from Transportation in the Yangtze River Economic Belt
3.2. Construction of a Carbon Emission Prediction Model
3.2.1. Multicollinearity Test
3.2.2. Ridge Regression Analysis
3.2.3. Test of Fit Effect
4. Projections of Peak Carbon Emissions
4.1. Scenario Analysis
- (1)
- P:
- (2)
- U:
- (3)
- AGDP:
- (4)
- TVA:
- (5)
- ES:
- (6)
- EI:
- (7)
- TI:
4.2. Analysis of Prediction Results
5. Conclusions and Recommendations
5.1. Conclusions
- (1)
- From 2006 to 2019, the TCE in the YEB showed a fluctuating growth trend and decreased slightly in 2020. Ranking the carbon emissions of the regions in descending order, the downstream is the highest, the midstream the second, and the upstream the lowest, a phenomenon that is mainly associated with the level of development of each region.
- (2)
- Each influencing factor exhibited different impacts on TCE in different regions. P, U, AGDP, and TVA all contributed to an increase in carbon emissions in the upstream, midstream, and downstream regions. In terms of technology, each factor showed a different level of influence, i.e., the upstream region is mainly affected by TI, the midstream region by EI, and the downstream region by TI.
- (3)
- Under different scenarios, there are significant differences in the carbon peak condition of the transport industry in different regions, not only in terms of peak carbon emissions, but also in terms of peak time. To better realize the requirements of the 14th Five-Year Plan and to achieve the “double carbon” goals, adopting a low-carbon scenario or a strengthened low-carbon scenario may be more in line with the future development trend.
5.2. Recommendations
- (1)
- Promote the organic integration of urban development with the construction of low-carbon cities and transportation.
- (2)
- Enhance the utilization of clean energy and the optimize the pattern of energy consumption.
- (3)
- Improve the efficacy of energy-saving technology and reduce energy intensity.
- (4)
- Develop smart transportation and improve transport efficiency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Li, X.; Zhang, Y. A novel integrated optimization model for carbon emission prediction: A case study on the group of 20. J. Environ. Manag. 2023, 344, 118422. [Google Scholar] [CrossRef] [PubMed]
- Miao, L. Examining the impact factors of urban residential energy consumption and CO2 emissions in China—Evidence from city-level data. Ecol. Indic. 2017, 73, 29–37. [Google Scholar] [CrossRef]
- Li, J.; Lin, B. Does energy and CO2 emissions performance of China benefit from regional integration? Energy Policy 2017, 101, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shuai, C.; Wu, Y.; Zhang, Y. Analysis on the carbon emission peaks of China’s industrial, building, transport, and agricultural sectors. Sci. Total Environ. 2020, 709, 135768. [Google Scholar] [CrossRef]
- Li, F.; Cai, B.; Ye, Z.; Wang, Z.; Zhang, W.; Zhou, P.; Chen, J. Changing patterns and determinants of transportation carbon emissions in Chinese cities. Energy 2019, 174, 562–575. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, T.; Yang, S. Carbon emission and its decoupling research of transportation in Jiangsu Province. J. Clean. Prod. 2017, 142, 907–914. [Google Scholar] [CrossRef]
- Bai, C.; Chen, Z.; Wang, D. Transportation carbon emission reduction potential and mitigation strategy in China. Sci. Total Environ. 2023, 873, 162074. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, M.; Yang, R.; Li, X.; Zhang, L.; Li, M. Decoupling water environment pressures from economic growth in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 122, 107314. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J. Measurement and analysis of ecological pressure due to industrial development in the Yangtze River economic belt from 2010 to 2018. J. Clean. Prod. 2022, 353, 131614. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Zhu, L.; Zhang, F.; Zhang, Y. Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions: 5. Energies 2018, 11, 1157. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Li, L. Grey Correlation Analysis of Transportation Carbon Emissions under the Background of Carbon Peak and Carbon Neutrality: 9. Energies 2022, 15, 3064. [Google Scholar] [CrossRef]
- Solís, J.C.; Sheinbaum, C. Energy consumption and greenhouse gas emission trends in Mexican road transport. Energy Sustain. Dev. 2013, 17, 280–287. [Google Scholar] [CrossRef]
- Alam, M.S.; Hyde, B.; Duffy, P.; McNabola, A. Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland. Appl. Energy 2017, 189, 283–300. [Google Scholar] [CrossRef]
- González Palencia, J.C.; Otsuka, Y.; Araki, M.; Shiga, S. Scenario analysis of lightweight and electric-drive vehicle market penetration in the long-term and impact on the light-duty vehicle fleet. Appl. Energy 2017, 204, 1444–1462. [Google Scholar] [CrossRef]
- Cai, B.; Cao, L.; Lei, Y.; Wang, C.; Zhang, L.; Zhu, J.; Li, M.; Du, M.; Lv, C.; Jiang, H.; et al. China’s carbon emission pathway under the carbon neutrality target. China Popul. Resour. Environ. 2021, 31, 7–14. [Google Scholar]
- Xu, B.; Lin, B. Differences in regional emissions in China’s transport sector: Determinants and reduction strategies. Energy 2016, 95, 459–470. [Google Scholar] [CrossRef]
- Xie, R.; Fang, J.; Liu, C. The effects of transportation infrastructure on urban carbon emissions. Appl. Energy 2017, 196, 199–207. [Google Scholar] [CrossRef]
- Yang, S.; Cao, D.; Lo, K. Analyzing and optimizing the impact of economic restructuring on Shanghai’s carbon emissions using STIRPAT and NSG-Ⅱ. Sustain. Cities Soc. 2018, 40, 44–53. [Google Scholar] [CrossRef]
- Li, Y.; Du, Q.; Lu, X.; Wu, J.; Han, X. Relationship between the development and CO2 emissions of transport sector in China. Transp. Res. Part D Transp. Environ. 2019, 74, 1–14. [Google Scholar] [CrossRef]
- Solaymani, S. CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector. Energy 2019, 168, 989–1001. [Google Scholar] [CrossRef]
- Bai, C.; Du, K.; Yu, Y.; Feng, C. Understanding the trend of total factor carbon productivity in the world: Insights from convergence analysis. Energy Econ. 2019, 81, 698–708. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhao, E. Pathways to achieve low-carbon transition in the transportation sector under the constraints of carbon peak and carbon neutrality targets: A comprehensive analysis of intra- and extra-industry factors. Sustain. Energy Technol. Assess. 2023, 60, 103490. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, D.; Zhang, F.; Zhao, N.; Wang, L.; Guo, Z.; Zhang, J.; An, B.; Xiao, Y. Spatiotemporal differentiation of carbon emission efficiency and influencing factors: From the perspective of 136 countries. Sci. Total Environ. 2023, 879, 163032. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, S.; Liu, D.; Fang, Z.; Xu, H. Modelling and forecasting CO2 emissions in the BRICS (Brazil, Russia, India, China, and South Africa) countries using a novel multi-variable grey model. Energy 2015, 79, 489–495. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.; Li, H.; He, P. CO2 emission trends of China’s primary aluminum industry: A scenario analysis using system dynamics model. Energy Policy 2017, 105, 225–235. [Google Scholar] [CrossRef]
- Wu, C.B.; Huang, G.H.; Xin, B.G.; Chen, J.K. Scenario analysis of carbon emissions’ anti-driving effect on Qingdao’s energy structure adjustment with an optimization model, Part I: Carbon emissions peak value prediction. J. Clean. Prod. 2018, 172, 466–474. [Google Scholar] [CrossRef]
- Fang, Y.; Lu, X.; Li, H. A random forest-based model for the prediction of construction-stage carbon emissions at the early design stage. J. Clean. Prod. 2021, 328, 129657. [Google Scholar] [CrossRef]
- Gao, M.; Yang, H.; Xiao, Q.; Goh, M. A novel fractional grey Riccati model for carbon emission prediction. J. Clean. Prod. 2021, 282, 124471. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, P.; Wang, J.; Zhang, L. Ensemble system for short term carbon dioxide emissions forecasting based on multi-objective tangent search algorithm. J. Environ. Manag. 2022, 302, 113951. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of Population Growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Liu, S.; Li, Q. Research on Transportation Carbon Emission Peak Prediction and Judgment System in China. Sustainability 2023, 15, 14880. [Google Scholar] [CrossRef]
- Qian, Y.; Sun, L.; Qiu, Q.; Tang, L.; Shang, X.; Lu, C. Analysis of CO2 Drivers and Emissions Forecast in a Typical Industry-Oriented County: Changxing County, China. Energies 2020, 13, 1212. [Google Scholar] [CrossRef]
- Zhang, X.; Zhai, Z.; Tao, T. Trends and Patterns of Negative Population Growth in China. Popul. Res. 2020, 44, 3–20. [Google Scholar]
- Lin, N. The influence of the downward tendency of the gross labor force on long-term competitiveness of major countries—An International comparative study on the UN World Population Prospects (2017). Macroecon. Manag. 2019, 3, 31–37. [Google Scholar]
Characteristic | Variant | Description and Calculation Method |
---|---|---|
I | C (CO2 emissions) | CO2 emissions from transportation energy consumption |
P | P (population size) | Regional population |
P | U (urbanization rate) | Urban population as a percentage of total population |
A | AGDP (GDP per capita) | Ratio of gross regional product to population size |
A | TVA (transportation added value) | Gross product of the transportation sector |
T | ES (energy structure) | Share of clean energy consumption in total energy consumption (including natural gas and electricity) |
T | EI (energy intensity) | Ratio of transportation turnover to energy consumption |
T | TI (transportation intensity) | Ratio of transportation turnover to GDP |
Energy Type | Net Calorific Value (kJ/kg) | Carbon Content per Unit of Calorific Value (t-C/TJ) | Carbon Oxidation Rate (%) | Carbon Emission Coefficient (kgCO2/kg) | Reduced Standard Coal Coefficient (kgce/kg) |
---|---|---|---|---|---|
Raw coal | 20,908 | 26.37 | 94 | 1.9003 | 0.7143 |
Coke | 28,435 | 29.42 | 93 | 2.8527 | 0.9714 |
Gasoline | 43,070 | 18.90 | 98 | 2.9251 | 1.4714 |
Kerosene | 43,070 | 19.50 | 98 | 3.0179 | 1.4714 |
Diesel oil | 42,652 | 20.20 | 98 | 3.0959 | 1.4571 |
Fuel Oil | 41,816 | 21.10 | 98 | 3.1705 | 1.4286 |
Liquefied petroleum gas | 50,179 | 17.20 | 98 | 3.1013 | 1.7143 |
Natural gas | 38,931 | 15.32 | 99 | 2.1650 | 1.3300 |
Mode of Transport | Highway | Waterway | Railway |
---|---|---|---|
Passenger and cargo conversion factor | 0.1 | 0.33 | 1 |
Region | Variant | B | Standard Error | Beta | T | Sig. | VIF |
---|---|---|---|---|---|---|---|
Upstream | Constant | −0.496 | 33.031 | − | −0.015 | 0.988 | − |
lnP | 0.236 | 3.647 | 0.019 | 0.065 | 0.95 | 45.561 | |
lnU | 0.364 | 1.275 | 0.219 | 0.286 | 0.783 | 317.824 | |
lnAGDP | 0.603 | 0.394 | 1.279 | 1.533 | 0.169 | 377.246 | |
lnTVA | 0.225 | 0.256 | 0.436 | 0.881 | 0.408 | 133.254 | |
lnES | −0.364 | 0.182 | −0.236 | −1.998 | 0.086 | 7.541 | |
lnEI | −0.681 | 0.289 | −0.277 | −2.355 | 0.051 | 7.477 | |
lnTI | 0.770 | 0.406 | 0.610 | 1.895 | 0.100 | 56.273 | |
Midstream | Constant | −19.383 | 23.217 | − | −0.835 | 0.431 | − |
lnP | 2.521 | 2.379 | 0.130 | 1.06 | 0.324 | 218.380 | |
lnU | −0.27 | 0.415 | −0.134 | −0.649 | 0.537 | 620.513 | |
lnAGDP | 1.002 | 0.179 | 1.956 | 5.608 | <0.001 | 1765.983 | |
lnTVA | −0.009 | 0.071 | −0.016 | −0.130 | 0.900 | 208.486 | |
lnES | −0.039 | 0.116 | −0.037 | −0.340 | 0.744 | 170.884 | |
lnEI | −0.94 | 0.141 | −0.650 | −6.681 | <0.001 | 137.368 | |
lnTI | 0.906 | 0.175 | 0.822 | 5.176 | 0.001 | 365.768 | |
Downstream | Constant | −4.910 | 0.823 | − | −5.964 | <0.001 | − |
lnP | 0.881 | 0.083 | 0.170 | 10.644 | <0.001 | 187.120 | |
lnU | 0.013 | 0.018 | 0.006 | 0.721 | 0.495 | 47.166 | |
lnAGDP | 1.030 | 0.012 | 2.122 | 87.515 | <0.001 | 430.171 | |
lnTVA | −0.022 | 0.013 | −0.040 | −1.711 | 0.131 | 406.817 | |
lnES | −0.031 | 0.015 | −0.052 | −2.118 | 0.072 | 441.346 | |
lnEI | −1.006 | 0.015 | −0.528 | −67.850 | <0.001 | 44.270 | |
lnTI | 1.007 | 0.016 | 0.850 | 62.407 | <0.001 | 135.618 |
Region | R2 | Variant | B | Standard Error | Beta | T Value | F Value |
---|---|---|---|---|---|---|---|
Upstream | 0.979 | constant | −3.17843 | 9.34772 | 0.00000 | −0.34002 | 23.096 |
LnP | 1.05714 | 0.94632 | 0.08400 | 1.11711 | |||
LnU | 0.40774 | 0.06667 | 0.24476 | 6.11545 | |||
LnAGDP | 0.12926 | 0.02161 | 0.27386 | 5.98198 | |||
LnTVA | 0.13140 | 0.02404 | 0.25456 | 5.46511 | |||
LnES | −0.15681 | 0.13987 | −0.10154 | −1.12111 | |||
LnEI | 0.12170 | 0.17710 | 0.04945 | 0.68720 | |||
LnTI | −0.19240 | 0.07173 | −0.15258 | −2.68235 | |||
Midstream | 0.993 | constant | −37.56379 | 9.58705 | 0.00000 | −3.91818 | 70.238 |
LnP | 4.52064 | 0.98358 | 0.23316 | 4.59612 | |||
LnU | 0.47867 | 0.07649 | 0.23824 | 6.25802 | |||
LnAGDP | 0.09107 | 0.01131 | 0.17784 | 8.05492 | |||
LnTVA | 0.10925 | 0.01792 | 0.18424 | 6.09530 | |||
LnES | 0.11890 | 0.04414 | 0.11149 | 2.69396 | |||
LnEI | −0.15688 | 0.06375 | −0.10854 | −2.46086 | |||
LnTI | −0.08953 | 0.05153 | −0.08122 | −1.73760 | |||
Downstream | 0.985 | constant | −1.83044 | 1.40804 | 0.00000 | −1.30000 | 32.627 |
LnP | 1.00646 | 0.14606 | 0.19440 | 6.89068 | |||
LnU | 0.22497 | 0.09038 | 0.10093 | 2.48923 | |||
LnAGDP | 0.09361 | 0.00944 | 0.19295 | 9.92000 | |||
LnTVA | 0.10607 | 0.01370 | 0.19725 | 7.74396 | |||
LnES | 0.08477 | 0.01161 | 0.14020 | 7.30097 | |||
LnEI | −0.01215 | 0.11026 | −0.00637 | −0.11018 | |||
LnTI | −0.16616 | 0.05056 | −0.14024 | −3.28621 |
Region | Scenario | Forecast Intervals | P | U | AGDP | TVA | ES | EI | TI |
---|---|---|---|---|---|---|---|---|---|
Upstream | BM | 2021–2025 | 0.33 | 2.58 | 8.30 | 7.80 | 7.76 | −3.09 | −3.50 |
2026–2030 | 0.14 | 1.18 | 6.30 | 5.80 | 6.76 | −2.59 | −2.50 | ||
2031–2035 | −0.40 | 0.35 | 4.50 | 4.30 | 6.16 | −1.89 | −1.50 | ||
LC | 2021–2025 | 0.28 | 2.28 | 7.30 | 7.30 | 8.76 | −3.59 | −4.50 | |
2026–2030 | 0.12 | 0.98 | 5.80 | 5.80 | 7.76 | −3.09 | −3.50 | ||
2031–2035 | −0.40 | 0.45 | 3.50 | 4.30 | 6.76 | −2.59 | −2.50 | ||
SLC | 2021–2025 | 0.26 | 2.18 | 6.80 | 6.80 | 9.76 | −4.09 | −5.50 | |
2026–2030 | 0.12 | 0.88 | 5.30 | 5.30 | 8.76 | −3.59 | −4.50 | ||
2031–2035 | −0.40 | 0.45 | 3.20 | 3.80 | 7.76 | −3.09 | −3.50 | ||
HC | 2021–2025 | 0.38 | 2.78 | 9.30 | 8.30 | 6.76 | −3.09 | −2.50 | |
2026–2030 | 0.18 | 1.28 | 7.30 | 6.30 | 5.76 | −2.59 | −1.50 | ||
2031–2035 | −0.35 | 0.35 | 5.50 | 4.30 | 5.16 | −2.09 | −0.50 | ||
Midstream | BM | 2021–2025 | 0.30 | 2.03 | 6.00 | 6.89 | 3.32 | −4.91 | −7.30 |
2026–2030 | 0.13 | 0.85 | 4.50 | 4.89 | 2.82 | −3.91 | −5.30 | ||
2031–2035 | −0.35 | −0.85 | 3.25 | 2.89 | 2.32 | −2.91 | −3.30 | ||
LC | 2021–2025 | 0.20 | 1.83 | 5.50 | 5.89 | 4.32 | −6.91 | −8.30 | |
2026–2030 | 0.05 | 0.65 | 4.00 | 4.39 | 3.82 | −5.41 | −6.30 | ||
2031–2035 | −0.40 | −0.85 | 2.75 | 2.89 | 3.32 | −3.91 | −4.30 | ||
SLC | 2021–2025 | 0.10 | 1.63 | 5.00 | 7.39 | 5.39 | −7.91 | −9.30 | |
2026–2030 | −0.05 | 0.55 | 3.50 | 5.39 | 3.89 | −6.41 | −7.30 | ||
2031–2035 | −0.40 | −0.85 | 2.25 | 1.39 | 2.89 | −4.91 | −5.30 | ||
HC | 2021–2025 | 0.40 | 2.23 | 7.00 | 7.89 | 2.82 | −3.91 | −5.30 | |
2026–2030 | 0.17 | 1.03 | 5.50 | 5.89 | 2.32 | −2.91 | −3.30 | ||
2031–2035 | −0.30 | −0.85 | 3.50 | 3.39 | 1.82 | −1.91 | −2.30 | ||
Downstream | BM | 2021–2025 | 0.63 | 1.10 | 8.73 | 6.20 | 6.50 | −4.00 | −3.58 |
2026–2030 | 0.23 | 0.42 | 6.73 | 5.20 | 5.50 | −3.00 | −2.08 | ||
2031–2035 | −1.20 | −1.30 | 4.73 | 4.20 | 3.50 | −2.00 | −1.08 | ||
LC | 2021–2025 | 0.43 | 0.90 | 7.73 | 5.70 | 7.50 | −5.00 | −4.58 | |
2026–2030 | 0.13 | 0.20 | 5.73 | 4.70 | 6.00 | −4.00 | −2.58 | ||
2031–2035 | −1.20 | −1.30 | 3.73 | 3.70 | 4.00 | −3.00 | −1.58 | ||
SLC | 2021–2025 | 0.33 | 0.80 | 7.23 | 5.20 | 8.00 | −6.00 | −5.08 | |
2026–2030 | 0.03 | 0.15 | 5.23 | 4.20 | 6.50 | −5.00 | −2.58 | ||
2031–2035 | −1.20 | −1.30 | 3.23 | 3.20 | 4.00 | −4.00 | −1.58 | ||
HC | 2021–2025 | 0.73 | 1.20 | 7.73 | 9.73 | 5.50 | −3.00 | −3.08 | |
2026–2030 | 0.33 | 0.42 | 6.73 | 7.23 | 4.50 | −2.00 | −2.08 | ||
2031–2035 | −1.20 | −1.30 | 3.73 | 4.73 | 3.50 | −1.00 | −1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, G. Analysis of the Measurement of Transportation Carbon Emissions and the Emission Reduction Path in the Yangtze River Economic Belt under the Background of “Dual Carbon” Goals. Energies 2024, 17, 3364. https://doi.org/10.3390/en17143364
Sun Y, Zhang G. Analysis of the Measurement of Transportation Carbon Emissions and the Emission Reduction Path in the Yangtze River Economic Belt under the Background of “Dual Carbon” Goals. Energies. 2024; 17(14):3364. https://doi.org/10.3390/en17143364
Chicago/Turabian StyleSun, Yanming, and Guangzhen Zhang. 2024. "Analysis of the Measurement of Transportation Carbon Emissions and the Emission Reduction Path in the Yangtze River Economic Belt under the Background of “Dual Carbon” Goals" Energies 17, no. 14: 3364. https://doi.org/10.3390/en17143364
APA StyleSun, Y., & Zhang, G. (2024). Analysis of the Measurement of Transportation Carbon Emissions and the Emission Reduction Path in the Yangtze River Economic Belt under the Background of “Dual Carbon” Goals. Energies, 17(14), 3364. https://doi.org/10.3390/en17143364