Superior Electrochemical Performance and Cyclic Stability of WS2@CoMgS//AC Composite on the Nickel-Foam for Asymmetric Supercapacitor Devices
Abstract
:1. Introduction
2. Experimental Analyses
2.1. Material
2.2. Synthesis of WS2 Nanosheets
2.3. Synthesis of CoMgS and WS2@CoMgS Composite
2.4. Preparation of Working Electrode
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. XRD, SEM, and BET Analysis
3.2. Electrochemical Analysis of Supercapattery Device
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bose, R.; Patil, B.; Jothi, V.R.; Kim, T.H.; Arunkumar, P.; Ahn, H.; Yi, S.C. Co3Se4 nanosheets embedded on N-CNT as an efficient electroactive material for hydrogen evolution and supercapacitor applications. J. Ind. Eng. Chem. 2018, 65, 62–71. [Google Scholar] [CrossRef]
- Jayaraman, T.; Murthy, A.P.; Elakkiya, V.; Chandrasekaran, S.; Nithyadharseni, P.; Khan, Z.; Senthil, R.A.; Shanker, R.; Raghavender, M.; Kuppusami, P.; et al. Recent development on carbon based heterostructures for their applications in energy and environment: A review. J. Ind. Eng. Chem. 2018, 64, 16–59. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Karuppasamy, K.; Durai, G.; Rana AU, H.S.; Arunachalam, P.; Sangeetha, K.; Kuppusami, P.; Kim, H.-S. Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: A brief review. Nanomaterials 2018, 8, 256. [Google Scholar] [CrossRef] [PubMed]
- Durai, G.; Kuppusami, P.; Theerthagiri, J. Microstructural and supercapacitive properties of reactive magnetron co-sputtered Mo3N2 electrodes: Effects of Cu doping. Mater. Lett. 2018, 220, 201–204. [Google Scholar] [CrossRef]
- Thiagarajan, K.; Theerthagiri, J.; Senthil, R.; Madhavan, J. Simple and low cost electrode material based on Ca2V2O7/PANI nanoplatelets for supercapacitor applications. J. Mater. Sci. Mater. Electron. 2017, 28, 17354–17362. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Y.; Zhang, F.; Lee, C.-S. A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 2016, 6, 1502588. [Google Scholar] [CrossRef]
- Sousa, R.E.; Costa, C.M.; Lanceros-Méndez, S. Advances and future challenges in printed batteries. ChemSusChem 2015, 8, 3539–3555. [Google Scholar] [CrossRef] [PubMed]
- Dehghani-Sanij, A.; Tharumalingam, E.; Dusseault, M.; Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 2019, 104, 192–208. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, C.; Zhang, S.; Song, X.; Tang, Y.; Cheng, H.-M. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 2018, 10, 667–672. [Google Scholar] [CrossRef]
- Ates, M.; Chebil, A.; Yoruk, O.; Dridi, C.; Turkyilmaz, M. Reliability of electrode materials for supercapacitors and batteries in energy storage applications: A review. Ionics 2022, 28, 27–52. [Google Scholar] [CrossRef]
- Raghavendra, K.V.G.; Vinoth, R.; Zeb, K.; Gopi, C.V.M.; Sambasivam, S.; Kummara, M.R.; Obaidat, I.M.; Kim, H.J. An intuitive review of supercapacitors with recent progress and novel device applications. J. Energy Storage 2020, 31, 101652. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Aslam, M.; Mahmood, A.; Zhang, Y.; Ouyang, Z.; Guo, Z.; Zhang, H. Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Prog. Solid State Chem. 2020, 58, 100254. [Google Scholar] [CrossRef]
- Mirzaei-Saatlo, M.; Asghari, E.; Shekaari, H.; Pollet, B.G.; Vinodh, R. Performance of ethanolamine-based ionic liquids as novel green electrolytes for the electrochemical energy storage applications. Electrochim. Acta 2024, 474, 143499. [Google Scholar] [CrossRef]
- Oyedotun, K.; Madito, M.; Bello, A.; Momodu, D.; Mirghni, A.; Manyala, N. Investigation of graphene oxide nanogel and carbon nanorods as electrode for electrochemical supercapacitor. Electrochim. Acta 2017, 245, 268–278. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, W.; Zhou, Y.; Cheng, X.; Yang, J. Cobalt sulfide/reduced graphene oxide nanocomposite with enhanced performance for supercapacitors. J. Electron. Mater. 2019, 48, 1531–1539. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Wei, T.; Fan, Z.; Yan, P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 2016, 19, 165–175. [Google Scholar] [CrossRef]
- Chen, Q.; Cai, D.; Zhan, H. Construction of reduced graphene oxide nanofibers and cobalt sulfide nanocomposite for pseudocapacitors with enhanced performance. J. Alloys Compd. 2017, 706, 126–132. [Google Scholar] [CrossRef]
- Yu, Z.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730. [Google Scholar] [CrossRef]
- Ali, M.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Imran, M.; Ashraf, F.; Ur Rehman, A.; Muhammad, F. 2D-TMDs based electrode material for supercapacitor applications. Int. J. Energy Res. 2022, 46, 22336–22364. [Google Scholar] [CrossRef]
- Imran, M.; Afzal, A.M.; Iqbal, M.W.; Hegazy, H.H.; Iqbal, M.Z.; Mumtaz, S.; Qureshi, R. Manganese (Sulfide/Oxide) based electrode materials advancement in supercapattery devices. Mater. Sci. Semicond. Process. 2023, 158, 107366. [Google Scholar] [CrossRef]
- Alsaiari, M.; Imran, M.; Afzal, A.M.; Iqbal, M.W.; Algethami, J.S.; Harraz, F.A. Effect of MoS2 and electrolyte temperature on the electrochemical performance of NiCoS@rGO-based electrode material for energy storage, oxygen reduction reaction and electrochemical glucose sensor. Mater. Today Chem. 2024, 35, 101909. [Google Scholar] [CrossRef]
- Yang, J.; Shang, J.; Liu, Q.; Yang, X.; Tan, Y.; Zhao, Y.; Liu, C.; Tang, Y. Variant-Localized High-Concentration Electrolyte without Phase Separation for Low-Temperature Batteries. Angew. Chem. 2024, e202406182. [Google Scholar] [CrossRef]
- Xu, X.; Dong, Y.; Hu, Q.; Si, N.; Zhang, C. Electrochemical hydrogen storage materials: State-of-the-art and future perspectives. Energy Fuels 2024, 38, 7579–7613. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Wang, X.; Chen, D.; Chen, X.; Li, D.; Shen, G. Three-dimensional structural engineering for energy-storage devices: From microscope to macroscope. ChemElectroChem 2014, 1, 975–1002. [Google Scholar] [CrossRef]
- Moosavifard, S.E.; El-Kady, M.F.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 4851–4860. [Google Scholar] [CrossRef]
- He, C.; Han, X.; Kong, X.; Jiang, M.; Lei, D.; Lei, X. Fe-doped Co3O4@ C nanoparticles derived from layered double hydroxide used as efficient electrocatalyst for oxygen evolution reaction. J. Energy Chem. 2019, 32, 63–70. [Google Scholar] [CrossRef]
- Moosavifard, S.E.; Shamsi, J.; Fani, S.; Kadkhodazade, S. 3D ordered nanoporous NiMoO 4 for high-performance supercapacitor electrode materials. RSC Adv. 2014, 4, 52555–52561. [Google Scholar] [CrossRef]
- Wu, X.; He, G.; Ding, Y. Dealloyed nanoporous materials for rechargeable lithium batteries. Electrochem. Energy Rev. 2020, 3, 541–580. [Google Scholar] [CrossRef]
- Huang, H.; Shi, H.; Das, P.; Qin, J.; Li, Y.; Wang, X.; Su, F.; Wen, P.; Li, S.; Lu, P. The chemistry and promising applications of graphene and porous graphene materials. Adv. Funct. Mater. 2020, 30, 1909035. [Google Scholar] [CrossRef]
- Ikkurthi, K.D.; Rao, S.S.; Jagadeesh, M.; Reddy, A.E.; Anitha, T.; Kim, H.-J. Synthesis of nanostructured metal sulfides via a hydrothermal method and their use as an electrode material for supercapacitors. New J. Chem. 2018, 42, 19183–19192. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Z.; Huang, J.; Chen, Z.; Xiang, T.; Feng, Z.; Wang, J.; Wang, S.; Ma, Y.; Yang, H. S/N-co-doped graphite nanosheets exfoliated via three-roll milling for high-performance sodium/potassium ion batteries. J. Mater. Sci. Technol. 2023, 147, 47–55. [Google Scholar] [CrossRef]
- Bai, X.; Xu, M.; Li, Q.; Yu, L. Trajectory-battery integrated design and its application to orbital maneuvers with electric pump-fed engines. Adv. Space Res. 2022, 70, 825–841. [Google Scholar] [CrossRef]
- Xu, X.; Gao, J.; Huang, G.; Qiu, H.; Wang, Z.; Wu, J.; Pan, Z.; Xing, F. Fabrication of CoWO4@NiWO4 nanocomposites with good supercapacitve performances. Electrochim. Acta 2015, 174, 837–845. [Google Scholar] [CrossRef]
- Asad Ur, R.; Afzal, A.M.; Iqbal, M.W.; Imran, M.; Ali, M. Transition Metal Dichalcogenides, Conducting Polymers, and Their Nanocomposites as Supercapacitor Electrode Materials. Polym. Sci. Ser. A 2023, 65, 447–471. [Google Scholar] [CrossRef]
- Li, L.; Gao, J.; Cecen, V.; Fan, J.; Shi, P.; Xu, Q.; Min, Y. Hierarchical WS2@NiCo2O4 core–shell heterostructure arrays supported on carbon cloth as high-performance electrodes for symmetric flexible supercapacitors. ACS Omega 2020, 5, 4657–4667. [Google Scholar] [CrossRef]
- Anitha, T.; Reddy, A.E.; Durga, I.K.; Rao, S.S.; Nam, H.W.; Kim, H.-J. Facile synthesis of ZnWO4@WS2 cauliflower-like structures for supercapacitors with enhanced electrochemical performance. J. Electroanal. Chem. 2019, 841, 86–93. [Google Scholar] [CrossRef]
- Raghavendra, K.V.G.; Sreekanth, T.; Kim, J.; Yoo, K. Novel hydrothermal synthesis of jasmine petal-like nanoflower WS2/ZnCo2O4 as efficient electrode material for high-performance supercapacitors. Mater. Lett. 2021, 285, 129133. [Google Scholar] [CrossRef]
- Krishnan, S.G.; Harilal, M.; Pal, B.; Misnon, I.I.; Karuppiah, C.; Yang, C.-C.; Jose, R. Improving the symmetry of asymmetric supercapacitors using battery-type positive electrodes and activated carbon negative electrodes by mass and charge balance. J. Electroanal. Chem. 2017, 805, 126–132. [Google Scholar] [CrossRef]
- Francis, S.; Koshy, E.P.; Mathew, B. Electroanalytical techniques: A tool for nanomaterial characterization. In Design, Fabrication, and Characterization of Multifunctional Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 163–175. [Google Scholar]
- Nnamchi, P.S.; Obayi, C.S. Electrochemical characterization of nanomaterials. In Characterization of Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 103–127. [Google Scholar]
- Imran, M.; Khan, M.S.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Habila, M.A.; Ahmad, Z. Binary metallic sulphide-based nanocomposites with ZnO additives: A dual-functioning electrode material for energy storage and glucose sensing. Can. J. Chem. Eng. 2024, 102, 2184–2196. [Google Scholar] [CrossRef]
- Alsaiari, M.; Imran, M.; Afzal, A.M.; Mumtaz, S.; Algethami, J.S.; Harraz, F.A. Designing high-performance polyaniline@MoS2@AC hybrid electrode for electrochemical–based Next-generation battery-supercapacitor hybrid energy storage device and hydrogen evolution reaction. Phys. Scr. 2024, 99, 035938. [Google Scholar] [CrossRef]
- Hegazy, H.; Afzal, A.M.; Shaaban, E.; Iqbal, M.W.; Muhammad, S.; Alahmari, A. Synthesis of MXene and design the high-performance energy harvesting devices with multifunctional applications. Ceram. Int. 2023, 49, 1710–1719. [Google Scholar] [CrossRef]
- Yasmeen, A.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Ouladsmane, M.; Usman, M.; Wabaidur, S.M. Cauliflower like porous structure of cobalt niobium sulfide@carbon nanotubes for electrode materials to enhance the redox activity in the battery-supercapacitor hybrid device. Appl. Nanosci. 2023, 13, 6471–6487. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Faisal, M.M.; Ali, S.R.; Afzal, A.M.; Karim, M.R.A.; Kamran, M.A.; Alharbi, T. Strontium phosphide-polyaniline composites for high performance supercapattery devices. Ceram. Int. 2020, 46, 10203–10214. [Google Scholar] [CrossRef]
- Lannelongue, P.; Bouchal, R.; Mourad, E.; Bodin, C.; Olarte, M.; Le Vot, S.; Favier, F.; Fontaine, O. “Water-in-Salt” for supercapacitors: A compromise between voltage, power density, energy density and stability. J. Electrochem. Soc. 2018, 165, A657. [Google Scholar] [CrossRef]
- Aftab, U.; Tahira, A.; Mazzaro, R.; Morandi, V.; Abro, M.I.; Baloch, M.M.; Yu, C.; Ibupoto, Z.H. Nickel–cobalt bimetallic sulfide NiCo2S4 nanostructures for a robust hydrogen evolution reaction in acidic media. RSC Adv. 2020, 10, 22196–22203. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Muhammad, Z.; Muzafar, N.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Munnaf, S.A.; Albaqami, M.D.; Ahmad, Z. Enhanced the electrochemical performance of CoMgS nanocomposite electrode with the doping of ZnO for supercapacitor-battery hybrid device and photochemical activity. J. Appl. Electrochem. 2024, 54, 1501–1515. [Google Scholar] [CrossRef]
- Miranda, M.; Sasaki, J.M. The limit of application of the Scherrer equation. Acta Crystallogr. Sect. A Found. Adv. 2018, 74, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yu, X.; Zhao, Z.; Ji, S.; Feng, L. Hierarchical architecture of coupling graphene and 2D WS2 for high-performance supercapacitor. Electrochim. Acta 2019, 298, 313–320. [Google Scholar] [CrossRef]
- Afzal, A.M.; Awais, M.; Yasmeen, A.; Iqbal, M.W.; Mumtaz, S.; Ouladsmane, M.; Usman, M. Exploring the redox characteristics of porous ZnCoS@ rGO grown on nickel foam as a high-performance electrode for energy storage applications. RSC Adv. 2023, 13, 21236–21248. [Google Scholar] [CrossRef]
- Philip, A.; Kumar, A.R. Recent advancements and developments employing 2D-materials in enhancing the performance of electrochemical supercapacitors: A review. Renew. Sustain. Energy Rev. 2023, 182, 113423. [Google Scholar] [CrossRef]
- Abdullah, M.; Khan, S.; Jabbour, K.; Imran, M.; Ashiq, M.F.; John, P.; Manzoor, S.; Munawar, T.; Ashiq, M.N. Development of binder-free MoTe2/rGO electrode via hydrothermal route for supercapacitor application. Electrochim. Acta 2023, 466, 143020. [Google Scholar] [CrossRef]
- Cui, Y.; Shi, Q.; Liu, Z.; Lv, J.; Wang, C.; Xie, X.; Zhang, S. MXene/biomass/chitosan carbon aerogel (MBC) with shared cathode and anode for the construction of high-efficiency asymmetric supercapacitor. Chem. Eng. J. 2023, 472, 144701. [Google Scholar] [CrossRef]
- ur Rehman, A.; Batool, Z.; Ahmad, M.; Iqbal, M.W.; ul Haq, A.; Hegazy, H. Impact of ZnO on structural and electrochemical properties of silver spinel ferrites for asymmetric supercapacitors. J. Electroanal. Chem. 2023, 931, 117206. [Google Scholar] [CrossRef]
- Baraneedharan, P.; Reddy, B. Redox-based supercapacitor materials: A review. Mater. Res. Innov. 2024, 28, 49–69. [Google Scholar] [CrossRef]
- Elkholy, A.E.; Heakal, F.E.-T.; Allam, N.K. A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors. Electrochim. Acta 2019, 296, 59–68. [Google Scholar] [CrossRef]
- Prasanna, A.L.; Raghavendra, K.V.G.; Himasree, P.; Durga, I.K.; Gopi, C.V.M.; Rao, S.S.; Kim, H.-J. One-pot facile synthesis of nanorice-like structured CuS@WS2 as an advanced electroactive material for high-performance supercapacitors. SN Appl. Sci. 2020, 2, 409. [Google Scholar] [CrossRef]
- Hussain, S.; Rabani, I.; Vikraman, D.; Feroze, A.; Ali, M.; Seo, Y.-S.; Kim, H.-S.; Chun, S.-H.; Jung, J. One-pot synthesis of W2C/WS2 hybrid nanostructures for improved hydrogen evolution reactions and supercapacitors. Nanomaterials 2020, 10, 1597. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Liu, B.; Gan, Y.; Ma, H.; Chen, D.; Qi, J.; Li, S. One-step hydrothermal synthesis of Ni3S2/MoS2 nanocomposites on rGO: Structural evolution and supercapacitor performance. Surf. Coat. Technol. 2020, 403, 126442. [Google Scholar] [CrossRef]
- Shrivastav, V.; Sundriyal, S.; Goel, P.; Shrivastav, V.; Tiwari, U.K.; Deep, A. ZIF-67 derived Co3S4 hollow microspheres and WS2 nanorods as a hybrid electrode material for flexible 2V solid-state supercapacitor. Electrochim. Acta 2020, 345, 136194. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Amjad, N.; Ali, R.; Khan, M.W.; Siddique, S.; Aftab, S.; Wabaidur, S.M. Elucidating binder-free magnetron sputtered molybdenum-tungsten-disulfide thin films for battery-supercapacitor devices. J. Alloys Compd. 2023, 942, 168929. [Google Scholar] [CrossRef]
- Wan, L.; Liu, J.; Li, X.; Zhang, Y.; Chen, J.; Du, C.; Xie, M. Fabrication of core-shell NiMoO4@MoS2 nanorods for high-performance asymmetric hybrid supercapacitors. Int. J. Hydrog. Energy 2020, 45, 4521–4533. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Alzaid, M.; Abbasi, U.; Alam, S.; Ali, R.; Afzal, A.M.; Aftab, S. Investigation of magnetron sputtered Ni@ Cu/WS2 as an electrode material for potential supercapattery devices. Int. J. Energy Res. 2022, 46, 7334–7347. [Google Scholar] [CrossRef]
- Lin, T.W.; Sadhasivam, T.; Wang, A.Y.; Chen, T.Y.; Lin, J.Y.; Shao, L.D. Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors. ChemElectroChem 2018, 5, 1024–1031. [Google Scholar] [CrossRef]
- Elkatlawy, S.M.; Sakr, A.A.; Wang, J.; Elshahawy, A.M. Constructive Electroactive 2D/2D MoS2-N-rGO and 1D/2D Bi2S3-N-rGO Heterostructure for Excellent Mo-Bi Supercapattery Applications. J. Inorg. Organomet. Polym. Mater. 2023, 33, 1741–1754. [Google Scholar] [CrossRef]
- Imran, M.; Waris, M.H.; Khan, R.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, M.A.; Ghfar, A.A.; Ali, A.; Mumtaz, S.; Hussain, Z. High-performance energy storage hybrid supercapacitor device based on NiCoS@CNT@graphene composite electrode material. Phys. Scr. 2023, 98, 115981. [Google Scholar] [CrossRef]
- He, G.; Qiao, M.; Li, W.; Lu, Y.; Zhao, T.; Zou, R.; Li, B.; Darr, J.A.; Hu, J.; Titirici, M.M.; et al. S, N-Co-doped graphene-nickel cobalt sulfide aerogel: Improved energy storage and electrocatalytic performance. Adv. Sci. 2017, 4, 1600214. [Google Scholar] [CrossRef]
- Li, J.; Liao, K.; Wang, X.; Shi, P.; Fan, J.; Xu, Q.; Min, Y. High-Performance Flexible All-Solid-State Supercapacitors Based on Ultralarge Graphene Nanosheets and Solvent-Exfoliated Tungsten Disulfide Nanoflakes. Adv. Mater. Interfaces 2017, 4, 1700419. [Google Scholar] [CrossRef]
Samples | 5 mV/s (C/g) | 1.5 A/g (C/g) | 5 mV/s (F/g) | 1.5 A/g (F/g) |
---|---|---|---|---|
WS2 | 318.84 | 501.40 | 531.40 | 833.33 |
CoMgS | 389.64 | 766.28 | 649.40 | 1277.13 |
WS2@CoMgS | 549.74 | 874.39 | 916.24 | 1457.31 |
MATERIALS | QS (F G−1) | ED. (WH KG−1) | PD. (W KG−1) | REFERENCE |
---|---|---|---|---|
W2C@WS2 | 1018 | 45.5 | 500 | [59] |
RGO/NI3S2/MOS2 | 6.451 | 32.6 | 399.8 | [60] |
CO3S4/WS2 | 412.7 | 47.3 | 512 | [61] |
WS2-MOS2 | 511 | 32 | 5100 | [62] |
NIMNO4 @ MOS2 | 2246.7 | 47.5 | 44 | [63] |
NI/CU/WS2 | 116.12 | 43.9 | 425 | [64] |
RGO@MOS2-WS2 | 365 | 15 | 373 | [65] |
MOS2-N-RGO | 438 | 33.4 | 850 | [66] |
NICOS@MOS2@RGO | 1896.66 | 65.44 | 1267.18 | [21] |
NICOS@CNT@GR | 190 | 40.5 | 2000 | [67] |
NI-CO-S/SNG | - | 17.5 | 1.95 | [68] |
GR/WS2 | 312.4 | 23.1 | 83.2 | [69] |
WS2@NICOS@ZNS//AC | 1457.31 | 49.47 | 1212.30 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, M.; Afzal, A.M.; Iqbal, M.W.; Mumtaz, S.; Alqarni, A.S. Superior Electrochemical Performance and Cyclic Stability of WS2@CoMgS//AC Composite on the Nickel-Foam for Asymmetric Supercapacitor Devices. Energies 2024, 17, 3363. https://doi.org/10.3390/en17143363
Imran M, Afzal AM, Iqbal MW, Mumtaz S, Alqarni AS. Superior Electrochemical Performance and Cyclic Stability of WS2@CoMgS//AC Composite on the Nickel-Foam for Asymmetric Supercapacitor Devices. Energies. 2024; 17(14):3363. https://doi.org/10.3390/en17143363
Chicago/Turabian StyleImran, Muhammad, Amir Muhammad Afzal, Muhammad Waqas Iqbal, Sohail Mumtaz, and Areej S. Alqarni. 2024. "Superior Electrochemical Performance and Cyclic Stability of WS2@CoMgS//AC Composite on the Nickel-Foam for Asymmetric Supercapacitor Devices" Energies 17, no. 14: 3363. https://doi.org/10.3390/en17143363
APA StyleImran, M., Afzal, A. M., Iqbal, M. W., Mumtaz, S., & Alqarni, A. S. (2024). Superior Electrochemical Performance and Cyclic Stability of WS2@CoMgS//AC Composite on the Nickel-Foam for Asymmetric Supercapacitor Devices. Energies, 17(14), 3363. https://doi.org/10.3390/en17143363