Intelligent Integration of Vehicle-to-Grid (V2G) and Vehicle-for-Grid (V4G) Systems: Leveraging Artificial Neural Networks (ANNs) for Smart Grid
Abstract
:1. Introduction
2. Model of ANN Based on Input and Output of PID
- Summation function;
- Activation function.
3. Topology Design of Charger (V2G and V4G)
4. Controller Architecture
4.1. AC–DC Controller
4.2. DC–DC Controller
5. Proposed System in Simulation and Experimental Modes
5.1. Proposed System in Simulation Mode
5.2. Implementation of the Proposed System
6. Results and Discussion
6.1. Results of Proposed Model
6.2. Simulation Results
6.3. Experimental Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahman, K.; Hashimoto, J.; Orihara, D.; Ustun, T.S.; Otani, K.; Kikusato, H.; Kodama, Y. Reviewing Control Paradigms and Emerging Trends of Grid-Forming Inverters—A Comparative Study. Energies 2024, 17, 2400. [Google Scholar] [CrossRef]
- Pan, W.; Yu, X.; Guo, Z.; Qian, T.; Li, Y. Online EVs Vehicle-to-Grid Scheduling Coordinated with Multi-Energy Microgrids: A Deep Reinforcement Learning-Based Approach. Energies 2024, 17, 2491. [Google Scholar] [CrossRef]
- Amiruddin, A.; Dargaville, R.; Liebman, A.; Gawler, R. Integration of Electric Vehicles and Renewable Energy in Indonesia’s Electrical Grid. Energies 2024, 17, 2037. [Google Scholar] [CrossRef]
- Rathore, A.K.; Prasanna, U.R. Comparison of soft-switching voltage-fed and current-fed bi-directional isolated dc/dc converters for fuel cell vehicles. In Proceedings of the IEEE International Symposium on Industrial Electronics, Hangzhou, China, 28–31 May 2012; pp. 252–257. [Google Scholar]
- Salmasi, F.R. Control strategies for hybrid electric vehicles: Evolution, classification, comparison, and future trends. IEEE Trans. Veh. Technol. 2007, 56, 2393–2404. [Google Scholar] [CrossRef]
- Yilmaz, M.; Krein, P.T. Review of battery charger topologies, charging power levels and infra-structure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 2013, 28, 2151–2169. [Google Scholar] [CrossRef]
- Asthana, P.; Verma, V. PV Fed Current Controlled Low Stress High Gain Converter for Battery Charging Applications. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, 2–4 January 2020; pp. 1–4. [Google Scholar]
- Tran, V.T.; Islam, M.R.; Muttaqi, K.M.; Sutanto, D. An on-board V2X electric vehicle charger based on amorphous alloy high-frequency magnetic-link and SiC power devices. In Proceedings of the 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 29 September–3 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ahessab, H.; Hakam, Y.; Gaga, A.; Elhadadi, B. ANN-Fuzzy Hybrid Control Strategy for MPPT of Grid-connected PV System with Battery Storage under Fast-charging Atmospheric Condition. In Recent Advances in Electrical and Electronic Engineering; Betham Science: Sharjah, United Arab Emirates, 2024. [Google Scholar] [CrossRef]
- Tran, V.T.; Rabiul, I.M.; Muttaqi, K.M.; Sutanto, D. A novel universal magnetic power plug to facilitate V2V/ V2G/ G2V/ V2H connectivity for future grid infrastructure. In Proceedings of the 2020 IEEE Industry Applications Society Annual Meeting, Detroit, MI, USA, 10–16 October 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Dicorato, M.; Forte, G.; Trovato, M.; Muñoz, C.B.; Coppola, G. An integrated DC microgrid solution for electric vehicle fleet management. IEEE Trans. Ind. Appl. 2019, 55, 7347–7355. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Kao, S.-C.; Ho, C.-Y.; Jhou, P.-H.; Lu, M.-Z.; Liaw, C.-M. On an electric scooter with G2V/ V2H/ V2G and energy harvesting functions. IEEE Trans. Power Electron. 2018, 33, 6910–6925. [Google Scholar] [CrossRef]
- Kesler, M.; Kisacikoglu, M.C.; Tolbert, L.M. Vehicle-to-grid reactive power operation using plug-in electric vehicle bidirectional offboard charger. IEEE Trans. Ind. Electron. 2014, 61, 6778–6784. [Google Scholar] [CrossRef]
- Monteiro, V.; Pinto, J.G.; Afonso, J.L. Operation modes for the electric vehicle in smart grids and smart homes: Present and proposed modes. IEEE Trans. Veh. Technol. 2016, 65, 1007–1020. [Google Scholar] [CrossRef]
- Yilmaz, M.; Krein, P.T. Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces. IEEE Trans. Power Electron. 2013, 28, 5673–5689. [Google Scholar] [CrossRef]
- Yuan, J.; Dorn-Gomba, L.; Callegaro, A.D.; Reimers, J.; Emadi, A. A review of bidirectional on-board chargers for electric vehicles. IEEE Access 2021, 9, 51501–51518. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Qian, W.; Wang, B.; Lu, X.; Zou, K.; González-Santini, N.; Karki, U.; Peng, F.Z.; Chen, C. A 25 kW SiC universal power converter building block for G2V, V2G, and V2L applications. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Qian, W.; Janabi, A.; Wang, B.; Lu, X.; Zou, K.; Chen, C.; Peng, F.Z. DC voltage control of inverter interfaced dual active bridge converter for V2L applications. In Proceedings of the 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, NC, USA, 29–31 October 2019; pp. 319–324. [Google Scholar]
- Yazdani, A.; Iravani, R. Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Longo, M.; Foiadelli, F.; Yaïci, W. Electric vehicles integrated with renewable energy sources for sustainable mobility. In New Trends in Electrical Vehicle Powertrains; Martinez, L.R., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Ces, T. Transportation options in a carbon constrained world: Hybrids, plug-in hybrids, biofu-els, fuel cell electric vehicles, and battery electric vehicles. Int. J. Hydrogen Energy 2009, 34, 9279–9296. [Google Scholar] [CrossRef]
- Liu, L.; Kong, F.; Liu, X.; Peng, Y.; Wang, Q. A review on electric vehicles interacting with renew-able energy in smart grid. Renew. Sustain. Energy Rev. 2015, 51, 648–661. [Google Scholar] [CrossRef]
- Williamson, S.S.; Rathore, A.K.; Musavi, F. Industrial Electronics for Electric Transportation: Current State-of-the-Art and Future Challenges. IEEE Trans. Ind. Electron. 2015, 62, 3021–3032. [Google Scholar] [CrossRef]
- Chan, C.C.; Bouscayrol, A.; Chen, K. Electric, hybrid, and fuel-cell vehicles: Architectures and modeling. IEEE Trans. Veh. Technol. 2010, 59, 589–598. [Google Scholar] [CrossRef]
- Clement-Nyns, K.; Haesen, E.; Driesen, J. The impact of charging plug-in hybrid electric vehi-cles on a residential distribution grid. IEEE Trans. Power Syst. 2010, 25, 371–380. [Google Scholar] [CrossRef]
- Khaligh, A.; Dusmez, S. Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Trans. Veh. Technol. 2012, 61, 3475–3489. [Google Scholar] [CrossRef]
- Kisacikoglu, M.C.; Ozpineci, B.; Tolbert, L.M. Examination of a PHEV bidirectional charger for V2G reactive power compensation. In Proceedings of the IEEE APEC Expo, Palm Springs, CA, USA, 21–25 February 2010; pp. 458–465. [Google Scholar]
- Xingwu, Y.; Hongchao, J.; Wei, G. Model Predictive Control of Single Phase Grid-connected Inverter. In Proceedings of the 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, China, 7–10 December 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Sayed, K.; Gabbar, A.H. Electric Vehicle to Power Grid Integration Using Three-Phase Three-Level AC/DC Converter and PI-Fuzzy Controller. Energies 2016, 9, 532. [Google Scholar] [CrossRef]
Description | Variable | Value |
---|---|---|
Supply voltage | 380 V | |
Sypply frequency | f | 50 Hz |
DC link capacitor voltage | 800 V | |
DC link capacitor | 470 µF | |
Sampling time | 0.0002 s | |
Inductor Filter | 10 mH | |
Capacitor Filter | 1.2 µF | |
Power of grid | P | 12 kVA |
Description | Variable | Value |
---|---|---|
Supply voltage | 380 V | |
Sypply frequency | f | 50 Hz |
DC link capacitor voltage | 540 V | |
DC link capacitor | 470 µF | |
Inductor | 5 mH | |
Resistor | R | 0.1 ohm |
Sampling time | 0.0002 s | |
power of motor | S | 1.1 kVA |
Inductor Filter | 5 mH | |
Inductor capacitor | 1 µF |
Algorithms | Response Time | THD |
---|---|---|
MPC [28] | 0.8 | |
Algorithm proposed | 0.01 |
Parameters | Control | Response Time (s) | Peak Overshoot |
---|---|---|---|
DC voltage | PI [29] | 0.75 | |
PI-FUZZY [29] | 0.25 | ||
Utilized PI controller | 0.90 | ||
proposed control (ANN) | 0.1 | ||
DC current | PI [29] | 0.85 | |
PI-FUZZY [29] | 0.25 | ||
Utilized PI controller | 0.1 | ||
proposed control (ANN) | 0.01 | ||
Active Power | PI [29] | 0.76 | |
PI-FUZZY [29] | 0.5 | ||
Utilized PI controller | 0.74 | ||
proposed control (ANN) | |||
Reactive Power | PI [29] | 1.2 | |
PI-FUZZY [29] | 0.6 | ||
Utilized PI controller | 0.3 | ||
proposed control (ANN) | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakam, Y.; Gaga, A.; Tabaa, M.; Elhadadi, B. Intelligent Integration of Vehicle-to-Grid (V2G) and Vehicle-for-Grid (V4G) Systems: Leveraging Artificial Neural Networks (ANNs) for Smart Grid. Energies 2024, 17, 3095. https://doi.org/10.3390/en17133095
Hakam Y, Gaga A, Tabaa M, Elhadadi B. Intelligent Integration of Vehicle-to-Grid (V2G) and Vehicle-for-Grid (V4G) Systems: Leveraging Artificial Neural Networks (ANNs) for Smart Grid. Energies. 2024; 17(13):3095. https://doi.org/10.3390/en17133095
Chicago/Turabian StyleHakam, Youness, Ahmed Gaga, Mohamed Tabaa, and Benachir Elhadadi. 2024. "Intelligent Integration of Vehicle-to-Grid (V2G) and Vehicle-for-Grid (V4G) Systems: Leveraging Artificial Neural Networks (ANNs) for Smart Grid" Energies 17, no. 13: 3095. https://doi.org/10.3390/en17133095
APA StyleHakam, Y., Gaga, A., Tabaa, M., & Elhadadi, B. (2024). Intelligent Integration of Vehicle-to-Grid (V2G) and Vehicle-for-Grid (V4G) Systems: Leveraging Artificial Neural Networks (ANNs) for Smart Grid. Energies, 17(13), 3095. https://doi.org/10.3390/en17133095