Energy Efficiency of Lignocellulosic Biomass Pyrolysis in Two Types of Reactors: Electrical and with Primary Forest Biomass Fuel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Energy Consumption
2.2. Pyrolysis Process
2.3. Pollutant Measurement
2.4. Treatment Combination
2.5. Experiment Setup
2.6. Quantification of the CO2 Emissions
2.7. Data Analysis
3. Results
3.1. ER and TR Energy Consumption
3.2. Concentration of Pollutants
3.3. Biomass to Biochar Conversion Rate
3.4. Quantification of the CO2 Emissions of Each Reactor (TR and ER)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foong, S.Y.; Liew, R.K.; Yang, Y.; Cheng, Y.W.; Yek, P.N.Y.; Wan Mahari, W.A.; Lee, X.Y.; Han, C.S.; Vo, D.-V.N.; Van Le, Q.; et al. Valorization of Biomass Waste to Engineered Activated Biochar by Microwave Pyrolysis: Progress, Challenges, and Future Directions. Chem. Eng. J. 2020, 389, 124401. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Casau, M.; Dias, M.F.; Matias, J.C.O.; Teixeira, L.C. Agroforest Woody Residual Biomass-to-Energy Supply Chain Analysis: Feasible and Sustainable Renewable Resource Exploitation for an Alternative to Fossil Fuels. Results Eng. 2023, 17, 101010. [Google Scholar] [CrossRef]
- Azeta, O.; Ayeni, A.O.; Agboola, O.; Elehinafe, F.B. A Review on the Sustainable Energy Generation from the Pyrolysis of Coconut Biomass. Sci. Afr. 2021, 13, e00909. [Google Scholar] [CrossRef]
- Saletnik, B.; Zagula, G.; Bajcar, M.; Tarapatskyy, M.; Bobula, G.; Puchalski, C. Biochar as a Multifunctional Component of the Environment-a Review. Appl. Sci. 2019, 9, 1139. [Google Scholar] [CrossRef]
- Mohan, I.; Panda, A.K.; Volli, V.; Kumar, S. An Insight on Upgrading of Biomass Pyrolysis Products and Utilization: Current Status and Future Prospect of Biomass in India. Biomass Convers. Biorefin. 2022, 14, 6185–6203. [Google Scholar] [CrossRef]
- Kung, C.-C.; Mu, J.E. Prospect of China’s Renewable Energy Development from Pyrolysis and Biochar Applications under Climate Change. Renew. Sustain. Energy Rev. 2019, 114, 109343. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, Z.; Lu, Y.; Shan, S.; Zhuang, H.; Gong, C.; Cui, X.; Zhang, F.; Li, P. Facilitating Mitigation of Agricultural Non-Point Source Pollution and Improving Soil Nutrient Conditions: The Role of Low Temperature Co-Pyrolysis Biochar in Nitrogen and Phosphorus Distribution. Bioresour. Technol. 2024, 394, 130179. [Google Scholar] [CrossRef] [PubMed]
- Oni, B.A.; Oziegbe, O.; Olawole, O.O. Significance of Biochar Application to the Environment and Economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Almutairi, A.A.; Ahmad, M.; Rafique, M.I.; Al-Wabel, M.I. Variations in Composition and Stability of Biochars Derived from Different Feedstock Types at Varying Pyrolysis Temperature. J. Saudi Soc. Agric. Sci. 2023, 22, 25–34. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and Its Importance on Nutrient Dynamics in Soil and Plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Jatav, H.S.; Rajput, V.D.; Minkina, T.; Singh, S.K.; Chejara, S.; Gorovtsov, A.; Barakhov, A.; Bauer, T.; Sushkova, S.; Mandzieva, S.; et al. Sustainable Approach and Safe Use of Biochar and Its Possible Consequences. Sustainability 2021, 13, 10362. [Google Scholar] [CrossRef]
- Flatabø, G.Ø.; Cornelissen, G.; Carlsson, P.; Nilsen, P.J.; Tapasvi, D.; Bergland, W.H.; Sørmo, E. Industrially Relevant Pyrolysis of Diverse Contaminated Organic Wastes: Gas Compositions and Emissions to Air. J. Clean. Prod. 2023, 423, 138777. [Google Scholar] [CrossRef]
- Mohtasham, J. Review Article-Renewable Energies. Energy Procedia 2015, 74, 1289–1297. [Google Scholar] [CrossRef]
- Wijitkosum, S. Biochar Derived from Agricultural Wastes and Wood Residues for Sustainable Agricultural and Environmental Applications. Int. Soil Water Conserv. Res. 2022, 10, 335–341. [Google Scholar] [CrossRef]
- Sen, S.; Ganguly, S. Opportunities, Barriers and Issues with Renewable Energy Development—A Discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181. [Google Scholar] [CrossRef]
- Kant Bhatia, S.; Palai, A.K.; Kumar, A.; Kant Bhatia, R.; Kumar Patel, A.; Kumar Thakur, V.; Yang, Y.-H. Trends in Renewable Energy Production Employing Biomass-Based Biochar. Bioresour. Technol. 2021, 340, 125644. [Google Scholar] [CrossRef] [PubMed]
- Dhyani, V.; Bhaskar, T. A Comprehensive Review on the Pyrolysis of Lignocellulosic Biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Hu, X.; Gholizadeh, M. Biomass Pyrolysis: A Review of the Process Development and Challenges from Initial Researches up to the Commercialisation Stage. J. Energy Chem. 2019, 39, 109–143. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Zhong, Z. CO<sub>2</sub> Emissions, Economic Growth, Renewable and Non-Renewable Energy Production and Foreign Trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Bekun, F.V.; Alola, A.A.; Sarkodie, S.A. Toward a Sustainable Environment: Nexus between CO2 Emissions, Resource Rent, Renewable and Nonrenewable Energy in 16-EU Countries. Sci. Total Environ. 2019, 657, 1023–1029. [Google Scholar] [CrossRef]
- Raza, M.; Inayat, A.; Ahmed, A.; Jamil, F.; Ghenai, C.; Naqvi, S.R.; Shanableh, A.; Ayoub, M.; Waris, A.; Park, Y.K. Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing. Sustainability 2021, 13, 11061. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Halder, P.K.; Rahim, A.; Paul, N. Solar Assisted Fast Pyrolysis: A Novel Approach of Renewable Energy Production. J. Eng. 2014, 2014, 252848. [Google Scholar] [CrossRef]
- Igliński, B.; Kujawski, W.; Kiełkowska, U. Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review. Energies 2023, 16, 1829. [Google Scholar] [CrossRef]
- Fahmy, T.Y.A.; Fahmy, Y.; Mobarak, F.; El-Sakhawy, M.; Abou-Zeid, R.E. Biomass Pyrolysis: Past, Present, and Future. Environ. Dev. Sustain. 2020, 22, 17–32. [Google Scholar] [CrossRef]
- Weldekidan, H.; Strezov, V.; Kan, T.; Town, G. Waste to Energy Conversion of Chicken Litter through a Solar-Driven Pyrolysis Process. Energy Fuels 2018, 32, 4341–4349. [Google Scholar] [CrossRef]
- Francisco Dias Júnior, A.; Rogério Andrade, C.; de Paula Protásio, T.; Cristina Nogueira Alves de Melo, I.; Otávio Brito, J.; Fernando Trugilho, P. Scientia Forestalis Pyrolysis and Wood By-Products of Species from the Brazilian Semi-Arid Region Pirólise e Subprodutos Da Madeira de Espécies Do Semiárido Brasileiro. Sci. For. 2018, 46, 65–75. [Google Scholar] [CrossRef]
- Leal Pérez, B.J.; Medrano Jiménez, J.A.; Bhardwaj, R.; Goetheer, E.; van Sint Annaland, M.; Gallucci, F. Methane Pyrolysis in a Molten Gallium Bubble Column Reactor for Sustainable Hydrogen Production: Proof of Concept & Techno-Economic Assessment. Int. J. Hydrog. Energy 2021, 46, 4917–4935. [Google Scholar] [CrossRef]
- Piersa, P.; Unyay, H.; Szufa, S.; Lewandowska, W.; Modrzewski, R.; Ślężak, R.; Ledakowicz, S. Review an Extensive Review and Comparison of Modern Biomass Torrefaction Reactors vs. Biomass Pyrolysis—Part 1. Energies 2022, 15, 2227. [Google Scholar] [CrossRef]
- Siguencia-Ortiz, C.A. Diseño y Construcción de Un Reactor Eléctrico de Conversión de Biomasa a Biochar Alimentado a Través de Energías Renovables; Universidad Católica de Cuenca: Cuenca, Ecuador, 2021. [Google Scholar]
- Silva, A.-D.; Otomar-Caron, B.; Sanquetta, C.R.; Behling, A.; Scmidt, D.; Bamberg, R.; Eloy, E.; Dalla-Corte, A.P. Ecuaciones Para Estimar El Poder Calorífico de La Madera de Cuatro Especies de Árboles. Rev. Chapingo. Ser. Cienc. For. Ambiente 2014, 20, 177–186. [Google Scholar]
- García-Pesántez, P.A.; Londa-Veletanga, K.E. Estación Meteorológica y de Calidad de Aire; Universidad Católica de Cuenca: Cuenca, Ecuador, 2020. [Google Scholar]
- Aguilar Ramón, J.A.; Illescas Barreto, W.S.; Espinoza Abad, J.L. Análisis Técnico y Económico para la Implementación de Sistemas de Generación Solar Fotovoltaica para Autoabastecimiento en la Planta Industrial y Granja Porcícola de la Empresa Italimentos CIA. LTDA. Bachelor’s Thesis, Universidad de Cuenca, Cuenca, Spain, 2021. [Google Scholar]
- Mastral, F.J.; Esperanza, E.; Garciía, P.; Juste, M. Pyrolysis of High-Density Polyethylene in a Fluidised Bed Reactor. Influence of the Temperature and Residence Time. J. Anal. Appl. Pyrolysis 2002, 63, 1–15. [Google Scholar] [CrossRef]
- Brasseur, G.P.; Orlando, J.J.; Tyndall, G.S. Middle Atmospheric Ozone. In Atmospheric Chemistry and Global Change; Oxford University Press: New York, NY, USA, 1999; pp. 487–514. [Google Scholar]
- Giwa, A.; Yusuf, A.; Ajumobi, O.; Dzidzienyo, P. Pyrolysis of Date Palm Waste to Biochar Using Concentrated Solar Thermal Energy: Economic and Sustainability Implications. Waste Manag. 2019, 93, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa, P.R.; Senthil Kumar, P.; Varjani, S.J.; Saravanan, A. Advances in Production and Application of Biochar from Lignocellulosic Feedstocks for Remediation of Environmental Pollutants. Bioresour. Technol. 2019, 292, 122030. [Google Scholar] [CrossRef]
- Yang, T.; Jia, K.; Kai, X.; Sun, Y.; Li, Y.; Li, R. A Study on the Migration Behavior of K, Na, and Cl during Biomass Gasification. Bioresources 2016, 11, 7133. [Google Scholar] [CrossRef]
- Ibarrola, R.; Shackley, S.; Hammond, J. Pyrolysis Biochar Systems for Recovering Biodegradable Materials: A Life Cycle Carbon Assessment. Waste Manag. 2012, 32, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, M.; Abbas, F.; Shakoor, M.B.; Farooque, A.A.; Rizwan, M. Biomass for Renewable Energy Production in Pakistan: Current State and Prospects. Arab. J. Geosci. 2020, 13, 77. [Google Scholar] [CrossRef]
- Banyasz, J.L.; Li, S.; Lyons-Hart, J.; Shafer, K.H. Gas Evolution and the Mechanism of Cellulose Pyrolysis. Fuel 2001, 80, 1757–1763. [Google Scholar] [CrossRef]
- Kumar, V.; Nanda, M. Biomass Pyrolysis-Current Status and Future Directions. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 2914–2921. [Google Scholar] [CrossRef]
- Akram, M.W.; Mondal, T.; Rahman, M.T.; Rahim, A.; Mursalin, R. Towards an Improved Pyrolysis System: Integrating Solar Energy Based Pre-Heating System. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2019; Volume 2121. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, S.; Qin, D.; Tan, H.; Lu, X. Evolution Behaviors of the Nitrogen-Containing Species and SO2 from Coal Fast Pyrolysis. J. Energy Inst. 2022, 105, 133–140. [Google Scholar] [CrossRef]
- Rodat, S.; Abanades, S.; Flamant, G. Experimental Evaluation of Indirect Heating Tubular Reactors for Solar Methane Pyrolysis. Int. J. Chem. Reactor Eng. 2010, 8, A25. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Horsfall, I.T.; Ubouh, E.A.; Orji, F.N.; Ekop, I.E.; Ezejiofor, N.R. Review of Solar-Biomass Pyrolysis Systems: Focus on the Configuration of Thermal-Solar Systems and Reactor Orientation. J. King Saud Univ.—Eng. Sci. 2021, 33, 413–423. [Google Scholar] [CrossRef]
- Al-Rumaihi, A.; Shahbaz, M.; Mckay, G.; Mackey, H.; Al-Ansari, T. A Review of Pyrolysis Technologies and Feedstock: A Blending Approach for Plastic and Biomass towards Optimum Biochar Yield. Renew. Sustain. Energy Rev. 2022, 167, 112715. [Google Scholar] [CrossRef]
- Dai, X.; Wu, C.; Li, H.; Chen, Y. The Fast Pyrolysis of Biomass in CFB Reactor. Energy Fuels 2000, 14, 552–557. [Google Scholar] [CrossRef]
- Jing-pei, C.; Jing-pei, C.; Xiao-yan, Z.; Xiao-yan, Z.; Kayoko, M.; Xian-yong, W.; Takayuki, T. Fractionation and Identification of Organic Nitrogen Species from Bio-Oil Produced by Fast Pyrolysis of Sewage Sludge. Bioresour. Technol. 2010, 101, 7648–7652. [Google Scholar]
Treatment [Treatment Reactor-Biomass] | Species RLB | Biomass (kg) | Biochar (kg) | % | Biomass Fuel (kg) | |
---|---|---|---|---|---|---|
Electrical Reactor | T1 ER-B1 | Eucalyptus | 1.95 | 0.53 | 27 | n/a |
2.04 | 0.55 | 27 | n/a | |||
1.95 | 0.51 | 26 | n/a | |||
Traditional Reactor | T2 TR-B1 | Eucalyptus | 8.1 | 1.9 | 23 | 20 |
8 | 2 | 25 | 20 | |||
8 | 1.9 | 24 | 20 | |||
Electrical Reactor | T3 ER-B2 | Capuli | 1.93 | 0.51 | 26 | n/a |
1.92 | 0.49 | 26 | n/a | |||
1.91 | 0.52 | 27 | n/a | |||
Traditional Reactor | T4 TR-B2 | Capuli | 8.1 | 1.9 | 23 | 20 |
8 | 1.9 | 24 | 20 | |||
7.9 | 1.8 | 23 | 20 | |||
Electrical Reactor | T5 ER-B3 | Acacias | 1.91 | 0.51 | 27 | n/a |
1.96 | 0.52 | 27 | n/a | |||
1.99 | 0.49 | 25 | n/a | |||
Traditional Reactor | T6 TR-B3 | Acacias | 7.9 | 1.8 | 23 | 20 |
7.9 | 1.8 | 23 | 20 | |||
7.8 | 1.8 | 23 | 20 |
Reactor | Energy Power (kWh) | Emission Factor CO2 (TCO2) | Hours per Treatment | Energy Consumption (kWh/4 h) | CO2 Emissions per Pyrolysis Process (TCO2) | # of Repetitions | Total CO2 Emissions (TCO2) |
---|---|---|---|---|---|---|---|
Electrical | 9.1 | 0.0002449 | 4 | 36.4 | 0.0089144 | 9 | 0.0802292 |
Traditional | 104.6 | 0.0002449 | 2 (2 firewood loads of 20 kg per treatment) | 209.2 | 0.0512331 | 9 | 0.4610977 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cobos-Torres, J.-C.; Izquierdo, J.; Alvarez-Vera, M. Energy Efficiency of Lignocellulosic Biomass Pyrolysis in Two Types of Reactors: Electrical and with Primary Forest Biomass Fuel. Energies 2024, 17, 2943. https://doi.org/10.3390/en17122943
Cobos-Torres J-C, Izquierdo J, Alvarez-Vera M. Energy Efficiency of Lignocellulosic Biomass Pyrolysis in Two Types of Reactors: Electrical and with Primary Forest Biomass Fuel. Energies. 2024; 17(12):2943. https://doi.org/10.3390/en17122943
Chicago/Turabian StyleCobos-Torres, Juan-Carlos, Juan Izquierdo, and Manuel Alvarez-Vera. 2024. "Energy Efficiency of Lignocellulosic Biomass Pyrolysis in Two Types of Reactors: Electrical and with Primary Forest Biomass Fuel" Energies 17, no. 12: 2943. https://doi.org/10.3390/en17122943
APA StyleCobos-Torres, J. -C., Izquierdo, J., & Alvarez-Vera, M. (2024). Energy Efficiency of Lignocellulosic Biomass Pyrolysis in Two Types of Reactors: Electrical and with Primary Forest Biomass Fuel. Energies, 17(12), 2943. https://doi.org/10.3390/en17122943