Multi-Port Energy Router in Mobile Energy Storage for Emergency Power Outage in Urban Cities
Abstract
:1. Introduction
2. Topology Configuration
2.1. Bidirectional AC/DC Converter
2.2. PPP-Based TAB Converter
3. Control Method Analysis
3.1. Bidirectional AC/DC Converter
3.2. PPP-Based TAB Converter
3.3. Power Efficiency Analysis
4. Simulation Results
4.1. AC/DC Conversion of Bidirectional AC/DC Converter
4.2. DC/AC Conversion of Bidirectional AC/DC Converter
4.3. DC/DC Conversion of PPP-Based TAB Converter
4.3.1. When Port 2 and 3 Are Output Ports
4.3.2. When Port 2 Is Input Port and Port 3 Is Output Port
4.3.3. When Port 1 and 3 Are Output Ports
5. Experimental Verification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MER | Multi-port energy router |
ER | Energy router |
EEPS | Emergency electric power source |
PPP | Partial power processing |
TAB | Triple active bridge |
DAB | Dual active bridge |
SOC | State of charge |
P2P | Peer-to-peer |
EV | Electric vehicle |
PWM | Pulse-width modulation |
CCM | Continuous conduction mode |
ERSU | Energy router storage unit |
PLL | Phase-locked loop |
PD | Phase angle detector |
LF | Loop filter |
VCO | Voltage-controlled oscillator |
SOGI | Second-order generalized integrator |
FPG | Frequency/phase angle generator |
QSG | Quadrature signal generator |
AD | Adaptive filter |
References
- Zhou, B.; Gu, L.; Ding, Y.; Shao, L.; Wu, Z.; Yang, X.; Li, C.; Li, Z.; Wang, X.; Cao, Y.; et al. The Great 2008 Chinese Ice Storm: Its Socioeconomic–Ecological Impact and Sustainability Lessons Learned. Bull. Am. Meteorol. Soc. 2011, 92, 47–60. [Google Scholar] [CrossRef]
- Byrd, H.; Matthewman, S. Exergy and the City: The Technology and Sociology of Power (Failure). J. Urban Technol. 2014, 21, 85–102. [Google Scholar] [CrossRef]
- Buragohain, B.; Mahanta, P.; Moholkar, V. Biomass gasification for decentralized power generation: The Indian perspective. Renew. Sustain. Energy Rev. 2010, 14, 73–92. [Google Scholar] [CrossRef]
- Graham, S.; Thrift, N. Out of Order. Theory Cult. Soc. 2007, 24, 1–25. [Google Scholar] [CrossRef]
- Nie, Y.; Xu, H.; Hu, Y.; Ye, X. Energy Router for Emergency Energy Supply in Urban Cities: A Review. Power Electron. Drives 2022, 7, 246–266. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Myrzik, J.M.A.; Kling, W.L. Consequences of poor power quality-an overview. In Proceedings of the 2007 42nd International Universities Power Engineering Conference, Brighton, UK, 4–6 September 2007. [Google Scholar]
- Nye, D.E. When the Lights Went Out; MIT Press: Cambridge, MA, USA, 2010; Volume 8, pp. 103405–103418. [Google Scholar]
- Halperin, D.; Heydt-Benjamin, T.S.; Ransford, B.; Clark, S.S.; Defend, B.; Morgan, W.; Fu, K.; Kohno, T.; Maisel, W.H. Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In Proceedings of the 2008 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 18–21 May 2008. [Google Scholar]
- Yue, W.; Zhao, C.; Lu, Y.; Li, G. A scheme of connecting microgird to AC grid via flexible power electronics interface. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010. [Google Scholar]
- Zhao, Y.; Li, C.; Zhao, M.; Xu, S.; Gao, H.; Song, L. Model design on emergency power supply of electric vehicle. Math. Probl. Eng. 2017, 2017, 9697051. [Google Scholar] [CrossRef]
- Bulatov, Y.; Kryukov, A.; Suslov, K. Isolated Power Supply System with Energy Routers and Renewable Energy Sources. Vestnik IzhGTU imeni M.T. Kalashnikova 2021, 23, 124. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Wang, W.; Juneja, A.; Bhattacharya, S. Energy router: Architectures and functionalities toward Energy Internet. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, Belgium, 17–20 October 2011. [Google Scholar]
- Ahmad, J.; Tahir, M.; Mazumder, S.K. Improved Dynamic Performance and Hierarchical Energy Management of Microgrids With Energy Routing. IEEE Trans. Ind. Inform. 2019, 15, 3218–3229. [Google Scholar] [CrossRef]
- Yang, R.; Liu, Z.; Liu, J. The methodology of decoupling fuel and thermal nitrogen oxides in multi-dimensional computational fluid dynamics combustion simulation of ammonia-hydrogen spark ignition engines. Int. J. Hydrogen Energy 2024, 55, 300–318. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z. In-cylinder thermochemical fuel reforming for high efficiency in ammonia spark-ignited engines through hydrogen generation from fuel-rich operations. Int. J. Hydrogen Energy 2024, 54, 837–848. [Google Scholar] [CrossRef]
- Ansari, S.; Chandel, A.; Tariq, M. A Comprehensive Review on Power Converters Control and Control Strategies of AC/DC Microgrid. IEEE Access 2021, 9, 17998–18015. [Google Scholar] [CrossRef]
- Abdella, J.; Shuaib, K. Peer to peer distributed energy trading in smart grids: A survey. Energies 2018, 11, 1560. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Badri, A.; Parvania, M. A survey on mobile energy storage systems (MESS): Applications, challenges and solutions. Renew. Sustain. Energy Rev. 2014, 40, 161–170. [Google Scholar] [CrossRef]
- Bie, Z.; Lin, Y.; Li, G.; Li, F. Battling the Extreme: A Study on the Power System Resilience. Proc. IEEE 2017, 105, 1253–1266. [Google Scholar] [CrossRef]
- Nadeem, F.; Hussain, S.M.S.; Tiwari, P.K.; Goswami, A.K.; Ustun, T.S. Comparative Review of Energy Storage Systems, Their Roles, and Impacts on Future Power Systems. IEEE Access 2019, 7, 4555–4585. [Google Scholar] [CrossRef]
- Seal, S.; Boulet, B.; Dehkordi, V.R.; Bouffard, F.; Joos, G. Centralized MPC for Home Energy Management With EV as Mobile Energy Storage Unit. IEEE Trans. Sustain. Energy 2023, 14, 1425–1435. [Google Scholar] [CrossRef]
- Zientarski, J.R.R.; Martins, M.L.D.S.; Pinheiro, J.R.; Hey, H.L. Evaluation of Power Processing in Series-Connected Partial-Power Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 343–352. [Google Scholar] [CrossRef]
- Anzola, J.; Aizpuru, I.; Romero, A.A.; Loiti, A.A.; Lopez-Erauskin, R.; Bernal, C. Review of Architectures Based on Partial Power Processing for DC-DC Applications. IEEE Access 2020, 8, 103405–103418. [Google Scholar] [CrossRef]
- Qi, J.; Lu, D.D.-C. A flyback converter based partial power processing structure for BESS with voltage/current regulation and battery balancing functionalities. In Proceedings of the 2017 IEEE International Telecommunications Energy Conference (INTELEC), Broadbeach, QLD, Australia, 22–26 October 2017. [Google Scholar]
- Mishra, S.; Tamballa, S.; Pallantala, M.; Raju, S.; Mohan, N. Cascaded Dual-Active. In Proceedings of the 20th Workshop on Control and Modeling for Power Electronics (COMPEL), Toronto, ON, USA, 17–20 June 2019. [Google Scholar]
- Honarmand, S.; Rajaei, A.; Shahparasti, M.; Luna, A.; Pouresmaeil, E. A modified partial power structure for quasi Z-source converter to improve voltage gain and power rating. Energies 2019, 12, 2139. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Chen, G.; Wen, H. Partial Power Processing Multiport DC–DC Converter With Radial Module Connections. IEEE Trans. Power Electron. 2022, 37, 13398–13412. [Google Scholar] [CrossRef]
- Uno, M.; Sato, M.; Tada, Y.; Iyasu, S.; Kobayashi, N.; Hayashi, Y. Partially Isolated Multiport Converter With Automatic Current Balancing Interleaved PWM Converter and Improved Transformer Utilization for EV Batteries. IEEE Trans. Transp. Electrif. 2023, 9, 1273–1288. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, Y.; Hu, Y. Integrated Power/Signal Transmission in Triple Active Bridge Converters Based on Partial Power Processing for Energy Routers. In Proceedings of the 2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Haining, China, 17–20 June 2022. [Google Scholar]
- Liu, B.; Peng, Y.; Xu, J.; Mao, C.; Wang, D.; Duan, Q. Design and Implementation of Multiport Energy Routers Toward Future Energy Internet. IEEE Trans. Ind. Appl. 2021, 57, 1945–1957. [Google Scholar] [CrossRef]
- Kai, Y.; Wang, Y.; Liu, B. GreenRouter: Reducing Power by Innovating Router’s Architecture. IEEE Comput. Archit. Lett. 2013, 12, 51–54. [Google Scholar] [CrossRef]
- Karbozov, A.; Majumder, M.G.; Krishnamoorthy, H.S.; Rajashekara, K. Triple Active Bridge Based Multiport Energy Router for Subsea–Renewable Interconnection. IEEE Trans. Ind. Appl. 2023, 59, 4528–4538. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, P.; Elasser, Y.; Chen, M. Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture. IEEE Trans. Power Electron. 2020, 35, 13210–13224. [Google Scholar] [CrossRef]
Parameter Name | Parameter Value |
---|---|
V1/V2/V3 (Port voltages) | 400/410/420 V |
Vac (Voltage of the main power grid) | 311 V |
SOC (Initial state of charge) | 50% |
RL (Initial resistance of load) | 200 Ω |
N1:N2:N3 (Transformer turns ratio) | 1:1:1 |
fs (Converter switching frequency) | 10 kHz |
fac (AC power frequency) | 50 Hz |
Lad (AC/DC converter inductance) | 360 μH |
L1/L2/L3 (Series inductance) | 300 μH |
Cad (AC/DC converter capacitance) | 9 mF |
C1/C2 (Series capacitance) | 100 μF |
Vref (Reference voltage) | 400 V |
Iref (Reference current) | 30√2 A |
Time (s) | Value of SOC (%) |
---|---|
0 | 40 |
20 | 41.2 |
30 | 41.8 |
40 | 42.4 |
60 | 43.6 |
Time (s) | Value of SOC (%) |
---|---|
0 | 40 |
20 | 38.8 |
30 | 38.2 |
40 | 37.6 |
60 | 36.4 |
Time (s) | Value of SOC (%) |
---|---|
0 | 40 |
20 | 38.8 |
30 | 38.2 |
40 | 37.6 |
60 | 36.4 |
Parameter Name | Parameter Value |
---|---|
V1/V2/V3 (Port voltages) | 10/10/10 V |
N1:N2:N3 (Transformer turns ratio) | 10:8:8 |
fs (Converter switching frequency) | 10 kHz |
L1/L2/L3 (Series inductance) | 33 μH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Y.; Nasr Esfahani, M.; Hu, Y.; Li, X.; Alkahtani, M. Multi-Port Energy Router in Mobile Energy Storage for Emergency Power Outage in Urban Cities. Energies 2024, 17, 2927. https://doi.org/10.3390/en17122927
Nie Y, Nasr Esfahani M, Hu Y, Li X, Alkahtani M. Multi-Port Energy Router in Mobile Energy Storage for Emergency Power Outage in Urban Cities. Energies. 2024; 17(12):2927. https://doi.org/10.3390/en17122927
Chicago/Turabian StyleNie, Yu, Mohammad Nasr Esfahani, Yihua Hu, Xinian Li, and Mohammed Alkahtani. 2024. "Multi-Port Energy Router in Mobile Energy Storage for Emergency Power Outage in Urban Cities" Energies 17, no. 12: 2927. https://doi.org/10.3390/en17122927
APA StyleNie, Y., Nasr Esfahani, M., Hu, Y., Li, X., & Alkahtani, M. (2024). Multi-Port Energy Router in Mobile Energy Storage for Emergency Power Outage in Urban Cities. Energies, 17(12), 2927. https://doi.org/10.3390/en17122927