A Comprehensive Review of Load Frequency Control Technologies
Abstract
:1. Introduction
2. Evolution of the LFC Model Development
3. LFC and Deregulation
4. LFC According to the Topology of Power Systems
4.1. Single-Area LFC
4.2. Multi Area LFC Models
5. Decentralized Control
6. Robust Control
7. Optimal Control
8. Intelligent Algorithms
8.1. Fuzzy Logic
8.2. Artificial Neutral Networks (ANN)
8.3. Particle Swarm Optimization—PSO
8.4. Genetic Algorithms (GAs)
8.5. Other Intelligent Methods
9. LFC, Renewables and FACTS Devices
10. LFC Scheme with DC Links
11. LFC and Cybersecurity
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kothari, D.P.; Nagrath, I.J. Modern Power System Analysis, 3rd ed.; McGraw-Hill: Singapore, 2003. [Google Scholar]
- Jain, S.K.; Chakrabarti, S.; Singh, S.N. Review of Load Frequency Control Methods, Part-I: Introduction and Pre-Deregulation Scenario. In Proceedings of the 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE), Jabalpur, India, 16–18 December 2013. [Google Scholar] [CrossRef]
- Machowski, J.; Lubośny, Z.; Białek, J.; Bumby, J. Power System Dynamics. Stability and Control, 3rd ed.; John Wiley & Sons: Oxford, UK, 2020. [Google Scholar]
- Kundur, P. Power System Stability and Control; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Concordia, C.; Kirchmayer, L.K. Tie-Line Power and Frequency Control of Electric Power Systems—Part II. Trans. Am. Inst. Electr. Eng. Part III Power Appar. Syst. 1954, 73, 133–146. [Google Scholar] [CrossRef]
- Concordia, C.; Kirchmayer, L.K. Tie Line Power and Frequency Control of Electric Power Systems. Trans. Am. Inst. Electr. Eng. Part I 1953, 72, 562–572. [Google Scholar]
- Concordia, C.; Kirchmayer, L.K.; Szymanski, E.A. Effect of Speed Governor Dead-Band on Tie-Line Power and Frequency Control Performance. Trans. Am. Inst. Electr. Eng. Part III Power Appar. Syst. 1957, 76, 429–434. [Google Scholar]
- Cohn, N. Some Aspects of Tie-Line Bias Control on Interconnected Power Systems. Trans. Am. Inst. Electr. Eng. Part III Power Appar. Syst. 1956, 75, 1415–1436. [Google Scholar] [CrossRef]
- Kirchmayer, L.K. Economic Control of Interconnected Systems; Wiley: New York, NY, USA, 1959. [Google Scholar]
- Quazza, G. Noninteracting Controls of Interconnected Electric Power Systems. IEEE Trans. Power Appar. Syst. 1966, PAS-85, 727–741. [Google Scholar] [CrossRef]
- Aggarwal, R.P.; Bergseth, R. Large Signal Dynamics of Load-Frequency Systems and Their Optimization Using. IEEE Trans. Power Appar. Syst. 1968, PAS-87, 527–532. [Google Scholar] [CrossRef]
- Elgerd, O.I.; Fosha, C.E. Optimum Megawatt Frequency Control of Multi-Area Electric Energy Systems. IEEE Trans. Power Appar. Syst. 1970, PAS-90, 556–563. [Google Scholar] [CrossRef]
- Cohn, N. Considerations in the Regulation of Interconnected Area. IEEE Trans. Power Appar. Syst. 1967, PAS-86, 1527–1538. [Google Scholar] [CrossRef]
- Saha, D.; Saikia, L.C. Automatic Generation Control of a Multi-Area CCGT-Thermal Power System Using Stochastic Search Optimised Integral Minus Proportional Derivative Controller under Restructured Environment. IET Gener. Transm. Distrib. 2017, 11, 3801–3813. [Google Scholar] [CrossRef]
- Tasnin, W.; Saikia, L.C. Comparative Performance of Different Energy Storage Devices in AGC of Multi-Source System Including Geothermal Power Plant. J. Renew. Sustain. Energy 2018, 10, 024101. [Google Scholar] [CrossRef]
- Raju, M.; Saikia, L.C.; Sinha, N. Load Frequency Control of a Multi-Area System Incorporating Distributed Generation Resources, Gate Controlled Series Capacitor along with High-Voltage Direct Current Link Using Hybrid ALO-Pattern Search Optimised Fractional Order Controller. IET Renew. Power Gener. 2019, 13, 330–341. [Google Scholar] [CrossRef]
- Arya, Y. AGC of Restructured Multi-Area Multi-Source Hydrothermal Power Systems Incorporating Energy Storage Units via Optimal Fractional-Order Fuzzy PID Controller. Neural Comput. Appl. 2019, 31, 851–872. [Google Scholar] [CrossRef]
- Arya, Y. Impact of Ultra-Capacitor on Automatic Generation Control of Electric Energy Systems Using an Optimal FFOID Controller. Int. J. Energy Res. 2019, 43, 8765–8778. [Google Scholar] [CrossRef]
- Arya, Y. A New Optimized Fuzzy FOPI-FOPD Controller for Automatic Generation Control of Electric Power Systems. J. Frankl. Inst. 2019, 356, 5611–5629. [Google Scholar] [CrossRef]
- Morsali, J.; Zare, K.; Hagh, M.T. MGSO Optimised TID-Based GCSC Damping Controller in Coordination with AGC for Diverse-GENCOs Multi-DISCOs Power System with Considering GDB and GRC Non-Linearity Effects. IET Gener. Transm. Distrib. 2017, 11, 193–208. [Google Scholar] [CrossRef]
- Lal, D.K.; Barisal, A.K. Comparative Performances Evaluation of FACTS Devices on AGC with Diverse Sources of Energy Generation and SMES. Cogent Eng. 2017, 4, 1318466. [Google Scholar] [CrossRef]
- Khooban, M.H.; Niknam, T. A New Intelligent Online Fuzzy Tuning Approach for Multi-Area Load Frequency Control: Self Adaptive Modified Bat Algorithm. Int. J. Electr. Power Energy Syst. 2015, 71, 254–261. [Google Scholar] [CrossRef]
- Mohanty, B.; Panda, S.; Hota, P.K. Controller Parameters Tuning of Differential Evolution Algorithm and Its Application to Load Frequency Control of Multi-Source Power System. Int. J. Electr. Power Energy Syst. 2014, 54, 77–85. [Google Scholar] [CrossRef]
- Shiva, C.K.; Mukherjee, V. Design and Analysis of Multi-Source Multi-Area Deregulated Power System for Automatic Generation Control Using Quasi-Oppositional Harmony Search Algorithm. Int. J. Electr. Power Energy Syst. 2016, 80, 382–395. [Google Scholar] [CrossRef]
- Sharma, P.; Prakash, A.; Shankar, R.; Parida, S.K. A Novel Hybrid Salp Swarm Differential Evolution Algorithm Based 2DOF Tilted-Integral-Derivative Controller for Restructured AGC. Electr. Power Compon. Syst. 2019, 47, 1775–1790. [Google Scholar] [CrossRef]
- Ali, E.S.; Abd-Elazim, S.M. TCSC Damping Controller Design Based on Bacteria Foraging Optimization Algorithm for a Multimachine Power System. Int. J. Electr. Power Energy Syst. 2012, 37, 23–30. [Google Scholar] [CrossRef]
- Rajbongshi, R.; Saikia, L.C. Combined Control of Voltage and Frequency of Multi-Area Multisource System Incorporating Solar Thermal Power Plant Using LSA Optimised Classical Controllers. IET Gener. Transm. Distrib. 2017, 11, 2489–2498. [Google Scholar] [CrossRef]
- Rajbongshi, R.; Saikia, L.C. Performance of Coordinated FACTS and Energy Storage Devices in Combined Multiarea ALFC and AVR System. J. Renew. Sustain. Energy 2017, 9, 064101. [Google Scholar] [CrossRef]
- Rajbongshi, R.; Saikia, L.C. Coordinated Performance of Interline Power Flow Controller and Superconducting Magnetic Energy Storage in Combined ALFC and AVR System under Deregulated Environment. J. Renew. Sustain. Energy 2018, 10, 044102. [Google Scholar] [CrossRef]
- Rajbongshi, R.; Saikia, L.C. Performance of Coordinated Interline Power Flow Controller and Power System Stabilizer in Combined Multiarea Restructured ALFC and AVR System. Int. Trans. Electr. Energy Syst. 2019, 29, e2822. [Google Scholar] [CrossRef]
- Rajbongshi, R.; Saikia, L.C. Combined Voltage and Frequency Control of a Multi-Area Multisource System Incorporating Dish-Stirling Solar Thermal and HVDC Link. IET Renew. Power Gener. 2018, 12, 323–334. [Google Scholar] [CrossRef]
- Mohanty, B. TLBO Optimized Sliding Mode Controller for Multi-Area Multi-Source Nonlinear Interconnected AGC System. Int. J. Electr. Power Energy Syst. 2015, 73, 872–881. [Google Scholar] [CrossRef]
- Kumari, S.; Shankar, G. Maiden Application of Cascade Tilt-Integral–Tilt-Derivative Controller for Performance Analysis of Load Frequency Control of Interconnected Multi-Source Power System. IET Gener. Transm. Distrib. 2019, 13, 5326–5338. [Google Scholar] [CrossRef]
- Tasnin, W.; Saikia, L.C. Maiden Application of an Sine-Cosine Algorithm Optimised FO Cascade Controller in Automatic Generation Control of Multi-Area Thermal System Incorporating Dish-Stirling Solar and Geothermal Power Plants. IET Renew. Power Gener. 2018, 12, 585–597. [Google Scholar] [CrossRef]
- Tasnin, W.; Saikia, L.C. Performance Comparison of Several Energy Storage Devices in Deregulated AGC of a Multi-Area System Incorporating Geothermal Power Plant. IET Renew. Power Gener. 2018, 12, 761–772. [Google Scholar] [CrossRef]
- Barik, A.K.; Das, D.C. Expeditious Frequency Control of Solar Photovoltaic/Biogas/Biodiesel Generator Based Isolated Renewable Microgrid Using Grasshopper Optimisation Algorithm. IET Renew. Power Gener. 2018, 12, 1659–1667. [Google Scholar] [CrossRef]
- Latif, A.; Das, D.C.; Barik, A.K.; Ranjan, S. Maiden Coordinated Load Frequency Control Strategy for ST-AWEC-GEC-BDDG-Based Independent Three-Area Interconnected Microgrid System with the Combined Effect of Diverse Energy Storage and DC Link Using BOA-Optimised PFOID Controller. IET Renew. Power Gener. 2019, 13, 2634–2646. [Google Scholar] [CrossRef]
- Das, D.C.; Roy, A.K.; Sinha, N. GA Based Frequency Controller for Solar Thermal-Diesel-Wind Hybrid Energy Generation/Energy Storage System. Int. J. Electr. Power Energy Syst. 2012, 43, 262–279. [Google Scholar] [CrossRef]
- Ghasemi-Marzbali, A. Multi-Area Multi-Source Automatic Generation Control in Deregulated Power System. Energy 2020, 201, 117667. [Google Scholar] [CrossRef]
- Pham, T.N.; Trinh, H.; Oo, A.M.T. Distributed Control of HVDC Links for Primary Frequency Control of Time-Delay Power Systems. IEEE Trans. Power Syst. 2019, 34, 1301–1314. [Google Scholar] [CrossRef]
- Yang, J.; Dong, H.; Huang, Y.; Cai, L.; Gou, F.; He, Z. Coordinated Optimization of Vehicle-to-Grid Control and Load Frequency Control by Considering Statistical Properties of Active Power Imbalance. Int. Trans. Electr. Energy Syst. 2019, 29, e2750. [Google Scholar] [CrossRef]
- Glavitsch, H.; Stoffel, J. Automatic Generation Control. Int. J. Electr. Power Energy Syst. 1980, 2, 21–28. [Google Scholar] [CrossRef]
- Shi, Q.; Li, F.; Hu, Q.; Wang, Z. Dynamic Demand Control for System Frequency Regulation: Concept Review, Algorithm Comparison, and Future Vision. Electr. Power Syst. Res. 2018, 154, 75–87. [Google Scholar] [CrossRef]
- Haes Alhelou, H.; Hamedani-Golshan, M.E.; Zamani, R.; Heydarian-Forushani, E.; Siano, P. Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review. Energies 2018, 11, 2497. [Google Scholar] [CrossRef]
- Fernández-Guillamón, A.; Gómez-Lázaro, E.; Muljadi, E.; Molina-García, Á. Power Systems with High Renewable Energy Sources: A Review of Inertia and Frequency Control Strategies over Time. Renew. Sustain. Energy Rev. 2019, 115, 109369. [Google Scholar] [CrossRef]
- Obaid, Z.A.; Cipcigan, L.M.; Abrahim, L.; Muhssin, M.T. Frequency Control of Future Power Systems: Reviewing and Evaluating Challenges and New Control Methods. J. Mod. Power Syst. Clean Energy 2019, 7, 9–25. [Google Scholar] [CrossRef]
- Akram, U.; Nadarajah, M.; Shah, R.; Milano, F. A Review on Rapid Responsive Energy Storage Technologies for Frequency Regulation in Modern Power Systems. Renew. Sustain. Energy Rev. 2020, 120, 109626. [Google Scholar] [CrossRef]
- Ratnam, K.S.; Palanisamy, K.; Yang, G. Future Low-Inertia Power Systems: Requirements, Issues, and Solutions—A Review. Renew. Sustain. Energy Rev. 2020, 124, 109773. [Google Scholar] [CrossRef]
- Peddakapu, K.; Mohamed, M.R.; Sulaiman, M.H.; Srinivasarao, P.; Veerendra, A.S.; Leung, P.K. Performance Analysis of Distributed Power Flow Controller with Ultra-Capacitor for Regulating the Frequency Deviations in Restructured Power System. J. Energy Storage 2020, 31, 101676. [Google Scholar] [CrossRef]
- Ram Babu, N.; Bhagat, S.K.; Saikia, L.C.; Chiranjeevi, T.; Devarapalli, R.; García Márquez, F.P. A Comprehensive Review of Recent Strategies on Automatic Generation Control/Load Frequency Control in Power Systems. Arch. Comput. Methods Eng. 2023, 30, 543–572. [Google Scholar] [CrossRef]
- Khan, I.A.; Mokhlis, H.; Mansor, N.N.; Illias, H.A.; Jamilatul Awalin, L.; Wang, L. New Trends and Future Directions in Load Frequency Control and Flexible Power System: A Comprehensive Review. Alex. Eng. J. 2023, 71, 263–308. [Google Scholar] [CrossRef]
- Ibraheem; Kumar, P. AGC Strategies: A Comprehensive Review. Int. J. Power Energy Syst. 1996, 16, 371–376. [Google Scholar]
- Ibraheem, A.; Kumar, P.; Kothari, D.P. Recent Philosophies of Automatic Generation Control Strategies in Power Systems. IEEE Trans. Power Syst. 2005, 20, 346–357. [Google Scholar] [CrossRef]
- Shayeghi, H.; Shayanfar, H.A.; Jalili, A. Load Frequency Control Strategies: A State-of-the-Art Survey for the Researcher. Energy Convers. Manag. 2009, 50, 344–353. [Google Scholar] [CrossRef]
- Sun, Y.Z.; Zhang, Z.S.; Li, G.J.; Lin, J. Review on Frequency Control of Power Systems with Wind Power Penetration. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Yingcheng, X.; Nengling, T. Review of Contribution to Frequency Control through Variable Speed Wind Turbine. Renew. Energy 2011, 36, 1671–1677. [Google Scholar] [CrossRef]
- Jain, S.K.; Chakrabarti, S.; Singh, S.N. Review of Load Frequency Control Methods, Part-II: Post-Deregulation Scenario and Case Studies. In Proceedings of the 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE), Jabalpur, India, 16–18 December 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Pandey, S.K.; Mohanty, S.R.; Kishor, N. A Literature Survey on Load-Frequency Control for Conventional and Distribution Generation Power Systems. Renew. Sustain. Energy Rev. 2013, 25, 318–334. [Google Scholar] [CrossRef]
- Dreidy, M.; Mokhlis, H.; Mekhilef, S. Inertia Response and Frequency Control Techniques for Renewable Energy Sources: A Review. Renew. Sustain. Energy Rev. 2017, 69, 144–155. [Google Scholar] [CrossRef]
- Umrao, R.; Kumar, S.; Mohan, M.; Chaturvedi, D.K. Load Frequency Control Methodologies for Power System. In Proceedings of the 2012 2nd International Conference on Power, Control and Embedded Systems, Allahabad, India, 17–19 December 2012; pp. 1–10. [Google Scholar] [CrossRef]
- Shankar, R.; Pradhan, S.R.; Chatterjee, K.; Mandal, R. A Comprehensive State of the Art Literature Survey on LFC Mechanism for Power System. Renew. Sustain. Energy Rev. 2017, 76, 1185–1207. [Google Scholar] [CrossRef]
- Saikia, N.; Kumar Das, H.; Patowary, M.; Buragohain, M. A Survey on Recent Trends and Future Aspects of Load Frequency Control in Power System. In Proceedings of the Sustainable Energy and Technological Advancements, Shillong, India, 24–25 February 2023; pp. 371–384. [Google Scholar]
- Mishra, R.N.; Chaturvedi, D.K.; Kumar, P. Recent Philosophies of AGC Techniques in Deregulated Power Environment. J. Inst. Eng. Ser. B 2020, 101, 417–433. [Google Scholar] [CrossRef]
- Pappachen, A.; Peer Fathima, A. Critical Research Areas on Load Frequency Control Issues in a Deregulated Power System: A State-of-the-Art-of-Review. Renew. Sustain. Energy Rev. 2017, 72, 163–177. [Google Scholar] [CrossRef]
- Franklin, R.V.R.; Abdul Kareem, P.F. Frequency Regulation in Conventional, Deregulated and Microgrid Systems: A Review on Designs, Strategies, Techniques and Related Aspects. IETE J. Res. 2023, 69, 7476–7494. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, O. Recent Strategies for Automatic Generation Control of Power Systems with Diverse Energy Sources. Int. J. Syst. Dyn. Appl. 2021, 10, 1–26. [Google Scholar] [CrossRef]
- Tungadio, D.H.; Sun, Y. Load Frequency Controllers Considering Renewable Energy Integration in Power System. Energy Reports 2019, 5, 436–453. [Google Scholar] [CrossRef]
- Kuang, M.; Tian, Y.; Liu, Q.; Zhao, M.; Wu, X. A Review of Control Strategies for Automatic Generation Control in Power Systems with Renewable Energy. Prog. Energy 2024, 6, 022001. [Google Scholar] [CrossRef]
- Alam, M.S.; Chowdhury, T.A.; Dhar, A.; Al-Ismail, F.S.; Choudhury, M.S.H.; Shafiullah, M.; Hossain, M.I.; Hossain, M.A.; Ullah, A.; Rahman, S.M. Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments. Energies 2023, 16, 812. [Google Scholar] [CrossRef]
- Wadi, M.; Shobole, A.; Elmasry, W.; Kucuk, I. Load Frequency Control in Smart Grids: A Review of Recent Developments. Renew. Sustain. Energy Rev. 2024, 189, 114013. [Google Scholar] [CrossRef]
- Prajapati, Y.; Kamat, V.; Patel, J.; Kher, R. A Comprehensive Survey on Use of Soft Computing and Optimization Techniques for Load Frequency Control. J. Electr. Electron. Eng. 2020, 8, 64. [Google Scholar] [CrossRef]
- Latif, A.; Hussain, S.M.S.; Das, D.C.; Ustun, T.S. State-of-the-Art of Controllers and Soft Computing Techniques for Regulated Load Frequency Management of Single/Multi-Area Traditional and Renewable Energy Based Power Systems. Appl. Energy 2020, 266, 114858. [Google Scholar] [CrossRef]
- Jaleeli, N.; VanSlyck, L.S.; Ewart, D.N.; Fink, L.H.; Hoffmann, A.G. Understanding Automatic Generation Control. IEEE Trans. Power Syst. 1992, 7, 1106–1122. [Google Scholar] [CrossRef]
- Das, D.; Nanda, J.; Kothari, M.L.; Kothari, D.P. Automatic Generation Control of Hydrothermal System with New Area Control Error Considering Generation Rate Constraint. Electr. Mach. Power Syst. 1990, 18, 461–471. [Google Scholar] [CrossRef]
- Kiffmeier, U.; Unbehauen, H. Design of a H Optimal Servo Compensator for the Frequency and Voltage Control of Power Plants. In Proceedings of the 1994 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, USA, 14–16 December 1994. [Google Scholar]
- Van Ness, J.E. Root Loci of Load Frequency Control Systems. IEEE Trans. Power Appar. Syst. 1963, PAS-82, 712–726. [Google Scholar]
- Barcelo, W.R. Effect of Power Plant Response on Optimum Load Frequency Control System Design. IEEE Trans. Power Appar. Syst. 1973, PAS-92, 254–258. [Google Scholar] [CrossRef]
- Bechert, T.E.; Chen, N. Area Automatic Generation Control by Multi-Pass Dynamic Programming. IEEE Trans. Power Appar. Syst. 1977, PAS-96, 1460–1469. [Google Scholar] [CrossRef]
- Nanda, J. Automatic Generation Control of an Interconnected Power System. Proc. Inst. Electr. Eng. 1978, 125, 385–390. [Google Scholar] [CrossRef]
- Willems, J.L. Sensitivity Analysis of the Optimum Performance of Conventional Load Frequency Control. IEEE Trans. Power Appar. Syst. 1974, PAS-93, 1287–1291. [Google Scholar] [CrossRef]
- Kwatny, H.G.; Athay, T.M. Coordination of Economic Dispatch and Load Frequency Control in Electric Power Systems. In Proceedings of the 18th IEEE Conference on Decision and Control, Fort Lauderdale, FL, USA, 12–14 December 1979. [Google Scholar]
- Hiyama, T. Optimization of Discrete-Type Load-Frequency Regulators Considering Generation Rate Constraints. IEE Proc. C Gener. Transm. Distrib. 1982, 129, 285–289. [Google Scholar] [CrossRef]
- Nanda, J.; Kothari, M.L.; Satsangi, P.S. Automatic Generation Control of an Interconnected Hydrothermal System in Continuous and Discrete Modes Considering Generation Rate Constraints. IEE Proc. D Control Theory Appl. 1983, 130, 17–27. [Google Scholar] [CrossRef]
- Shayeghi, H.; Shayanfar, H.A. Application of ANN Technique Based on μ-Synthesis to Load Frequency Control of Interconnected Power System. Int. J. Electr. Power Energy Syst. 2006, 28, 503–511. [Google Scholar] [CrossRef]
- Ibraheem; Kumar, P. A Novel Approach to the Matrix Riccati Equation Solution: An Application to Optimal Control of Interconnected Power Systems. Electr. Power Compon. Syst. 2004, 32, 33–52. [Google Scholar] [CrossRef]
- Kumar, I.; Kumar, P. Dynamic Performance Enhancement of Hydropower Systems with Asynchronous Tie-Lines. Electr. Power Compon. Syst. 2003, 31, 605–626. [Google Scholar]
- Zeynelgil, H.L.; Demiroren, A.; Sengor, N.S. The Application of ANN Technique to Automatic Generation Control for Multi-Area Power System. Int. J. Electr. Power Energy Syst. 2002, 24, 345–354. [Google Scholar] [CrossRef]
- Cavin, R.K.; Budge, M.C.; Rasmussen, P. An Optimal Linear Systems Approach to Load-Frequency Control. IEEE Trans. Power Appar. Syst. 1971, PAS-90, 2472–2482. [Google Scholar] [CrossRef]
- Ćalović, M.S. Power System Load and Frequency Control Using an Optimum Linear Regulator with Integral Feedback. IFAC Proc. Vol. 1972, 5, 400–408. [Google Scholar] [CrossRef]
- Poon, S.C.A.; Evans, F.J.; Outhred, H.R.; Clements, D.J. Decentralised and Centralised Automatic Generation Control—A Multi-Variable Servomechanism Approach. IFAC Proc. Vol. 1980, 13, xxxiii–xlii. [Google Scholar] [CrossRef]
- Yamashita, K.; Taniguchi, T. Optimal Observer Design for Load-Frequency Control. Int. J. Electr. Power Energy Syst. 1986, 8, 93–100. [Google Scholar] [CrossRef]
- Feliachi, A. Optimal Decentralized Load Frequency Control. IEEE Trans. Power Syst. 1987, 2, 379–385. [Google Scholar] [CrossRef]
- Rubaai, A.; Udo, V. An Adaptive Control Scheme for Load-Frequency Control of Multiarea Power Systems Part I. Identification and Functional Design. Electr. Power Syst. Res. 1992, 24, 183–188. [Google Scholar] [CrossRef]
- Fosha, C.E.; Elgerd, O.I. The Megawatt-Frequency Control Problem: A New Approach via Optimal Control Theory. IEEE Trans. Power Appar. Syst. 1970, PAS-89, 563–577. [Google Scholar] [CrossRef]
- Liaw, C.M.; Chao, K.H. On the Design of an Optimal Automatic Generation Controller for Interconnected Power Systems. Int. J. Control 1993, 58, 113–127. [Google Scholar] [CrossRef]
- Aldeen, M.; Trinh, H. Load-Frequency Control of Interconnected Power Systems via Constrained Feedback Control Schemes. Comput. Electr. Eng. 1994, 20, 71–88. [Google Scholar] [CrossRef]
- Wood, A.J.; Wollenberg, B.F. Power Generation, Operation, and Control, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Ismail, A. Robust Load Frequency Control. In Proceedings of the [Proceedings 1992] the First IEEE Conference on Control Applications, Dayton, OH, USA, 13–16 September 1992. [Google Scholar]
- Yamashita, K.; Miyagi, H. Load Frequency Self-Tuning Regulator for Interconnected Power Systems with Unknown Deterministic Load Disturbances. Int. J. Control 1989, 49, 1555–1568. [Google Scholar] [CrossRef]
- Lee, K.A.; Yee, H.; Teo, C.Y. Self-Tuning Algorithm for Automatic Generation Control in an Interconnected Power System. Electr. Power Syst. Res. 1991, 20, 157–165. [Google Scholar] [CrossRef]
- Beaufays, F.; Abdel-Magid, Y.; Widrow, B. Application of Neural Networks to Load-Frequency Control in Power Systems. Neural Netw. 1994, 7, 183–194. [Google Scholar] [CrossRef]
- Douglas, L.; Green, T.A.; Kramer, R.A. New Approaches to the AGC Nonconforming Load Problem. In Proceedings of the Conference Proceedings Power Industry Computer Application Conference, Scottsdale, AZ, USA, 4–7 May 1993. [Google Scholar]
- Chaturvedi, D.K.; Satsangi, P.S.; Kalra, P.K. Load Frequency Control: A Generalized Neural Network Approach. Int. J. Electr. Power Energy Syst. 1999, 21, 405–415. [Google Scholar] [CrossRef]
- Demiroren, A.; Sengor, N.S.; Zeynelgil, H.L. Automatic Generation Control by Using ANN Technique. Electr. Power Compon. Syst. 2001, 29, 883–896. [Google Scholar] [CrossRef]
- Kwatny, H.G.; Kalnitsky, K.C.; Bhatt, A. An Optimal Tracking Approach to Load-Frequency Control. IEEE Trans. Power Appar. Syst. 1975, 94, 1635–1643. [Google Scholar] [CrossRef]
- Elgerd, O.I. Electric Energy System Theory: An Introduction; McGraw-Hill: New York, NY, USA, 1982. [Google Scholar]
- Zhu, Q.; Jiang, L.; Yao, W.; Zhang, C.K.; Luo, C. Robust Load Frequency Control with Dynamic Demand Response for Deregulated Power Systems Considering Communication Delays. Electr. Power Compon. Syst. 2017, 45, 75–87. [Google Scholar] [CrossRef]
- Sönmez, S.; Ayasun, S. Stability Region in the Parameter Space of PI Controller for a Single-Area Load Frequency Control System with Time Delay. IEEE Trans. Power Syst. 2016, 31, 829–830. [Google Scholar] [CrossRef]
- Prasad, S.; Purwar, S.; Kishor, N. Load Frequency Regulation Using Observer Based Non-Linear Sliding Mode Control. Int. J. Electr. Power Energy Syst. 2019, 104, 178–193. [Google Scholar] [CrossRef]
- Saha, A.; Saikia, L.C. Utilisation of Ultra-Capacitor in Load Frequency Control under Restructured STPP-Thermal Power Systems Using WOA Optimised PIDN-FOPD Controller. IET Gener. Transm. Distrib. 2017, 11, 3318–3331. [Google Scholar] [CrossRef]
- Saha, A.; Saikia, L.C. Combined Application of Redox Flow Battery and DC Link in Restructured AGC System in the Presence of WTS and DSTS in Distributed Generation Unit. IET Gener. Transm. Distrib. 2018, 12, 2072–2085. [Google Scholar] [CrossRef]
- Arya, Y.; Kumar, N. Optimal AGC with Redox Flow Batteries in Multi-Area Restructured Power Systems. Eng. Sci. Technol. Int. J. 2016, 19, 1145–1159. [Google Scholar] [CrossRef]
- Christie, R.D.; Bose, A. Load Frequency Control Issues in Power System Operations after Deregulation. IEEE Trans. Power Syst. 1996, 11, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Donde, V.; Pai, M.A.; Hiskens, I.A. Simulation and Optimization in an AGC System after Deregulation. IEEE Trans. Power Syst. 2001, 16, 481–489. [Google Scholar] [CrossRef]
- Shayeghi, H.; Shayanfar, H.A.; Malik, O.P. Robust Decentralized Neural Networks Based LFC in a Deregulated Power System. Electr. Power Syst. Res. 2007, 77, 241–251. [Google Scholar] [CrossRef]
- Wu, F.F.; Dea, V.S. Describing-Function Analysis of Automatic Generation Control System with Governor Deadband. Electr. Power Syst. Res. 1978, 1, 113–116. [Google Scholar] [CrossRef]
- Oni, B.; Graham, H.; Walker, L. Investigation of Nonlinear Tie-Line Bias Control of Interconnected Power Systems. IEEE Trans. Power Appar. Syst. 1981, 100, 2350–2356. [Google Scholar] [CrossRef]
- Tripathy, S.C.; Bhatti, T.S.; Jha, C.S.; Malik, O.P.; Hope, G.S. Sampled Data Automatic Generation Control Analysis with Reheat Steam Turbines and Governor Dead Band Effects. IEEE Trans. Power Appar. Syst. 1984, 103, 1045–1051. [Google Scholar] [CrossRef]
- Chandra Sekhar, G.T.; Sahu, R.K.; Baliarsingh, A.K.; Panda, S. Load Frequency Control of Power System under Deregulated Environment Using Optimal Firefly Algorithm. Int. J. Electr. Power Energy Syst. 2016, 74, 195–211. [Google Scholar] [CrossRef]
- Bevrani, H. Robust Power System Frequency Control; Springer: Berlin, Germany, 2009. [Google Scholar]
- Parmar, K.P.S.; Majhi, S.; Kothari, D.P. LFC of an Interconnected Power System with Multi-Source Power Generation in Deregulated Power Environment. Int. J. Electr. Power Energy Syst. 2014, 57, 277–286. [Google Scholar] [CrossRef]
- Pilo, F.; Pisano, G.; Soma, G.G. Digital Model of a Distribution Management System for the Optimal Operation of Active Distribution Systems. In Proceedings of the CIRED Seminar 2008, Frankfurt, Germany, 23–24 June 2008. [Google Scholar]
- Shayeghi, H.; Shayanfar, H.A. Design of Decentralized Robust LFC in a Competitive Electricity Environment. J. Electr. Eng. 2005, 56, 225–236. [Google Scholar]
- Shayeghi, H.; Shayanfar, H.A.; Jalili, A. Multi Stage Fuzzy PID Load Frequency Controller in a Restructured Power System. J. Electr. Eng. 2007, 58, 61–70. [Google Scholar]
- Debbarma, S.; Saikia, L.C.; Sinha, N. AGC of a Multi-Area Thermal System under Deregulated Environment Using a Non-Integer Controller. Electr. Power Syst. Res. 2013, 95, 175–183. [Google Scholar] [CrossRef]
- Bhatt, P.; Roy, R.; Ghoshal, S.P. Optimized Multi Area AGC Simulation in Restructured Power Systems. Int. J. Electr. Power Energy Syst. 2010, 32, 311–322. [Google Scholar] [CrossRef]
- Tan, W.; Zhang, H.; Yu, M. Decentralized Load Frequency Control in Deregulated Environments. Int. J. Electr. Power Energy Syst. 2012, 41, 16–26. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, C.; Liu, X.; Chen, H. Distributed Model Predictive Load Frequency Control of the Multi-Area Power System after Deregulation. IEEE Trans. Ind. Electron. 2017, 64, 5129–5139. [Google Scholar] [CrossRef]
- Alhelou, H.H.; Hamedani-Golshan, M.E.; Heydarian-Forushani, E.; Al-Sumaiti, A.S.; Siano, P. Decentralized Fractional Order Control Scheme for LFC of Deregulated Nonlinear Power Systems in Presence of EVs and RER. In Proceedings of the IEEE 2018 International Conference on Smart Energy Systems and Technologies (SEST), Seville, Spain, 10–12 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Rosaline, A.D.; Somarajan, U. Structured H-Infinity Controller for an Uncertain Deregulated Power System. IEEE Trans. Ind. Appl. 2019, 55, 892–906. [Google Scholar] [CrossRef]
- Sadeh, J.; Rakhshani, E. Multi-Area Load Frequency Control in a Deregulated Power System Using Optimal Output Feedback Method. In Proceedings of the 2008 5th International Conference on the European Electricity Market, Lisbon, Portugal, 28–30 May 2008. [Google Scholar]
- Elkawafi, S.; Khalil, A.; Elgaiyar, A.I.; Wang, J. Delay-Dependent Stability of LFC in Microgrid with Varying Time Delays. In Proceedings of the 2016 22nd International Conference on Automation and Computing (ICAC), Colchester, UK, 7–8 September 2016; pp. 354–359. [Google Scholar] [CrossRef]
- Abedinia, O.; Naderi, M.S.; Ghasemi, A. Robust LFC in Deregulated Environment: Fuzzy PID Using HBMO. In Proceedings of the 2011 10th International Conference on Environment and Electrical Engineering, New York, NY, USA, 8–11 May 2011; pp. 1–4. [Google Scholar] [CrossRef]
- He, Y.; Wu, M.; She, J.H. Delay-dependent stability criteria for linear systems with multiple time delays. Proc. Inst. Electr. Eng. Control Theory Appl. 2006, 153, 447–452. [Google Scholar] [CrossRef]
- Pan, C.T.; Liaw, C.M. An Adaptive Controller for Power System Load-Frequency Control. IEEE Trans. Power Syst. 1989, 4, 122–128. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, R.; Wen, C. Robust Load–Frequency Controller Design for Power Systems. IEE Proc. C Gener. Transm. Distrib. 1993, 140, 111–116. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, W.; Wu, Q.H.; Wen, J.Y.; Cheng, S.J. Delay-Dependent Stability for Load Frequency Control with Constant and Time-Varying Delays. IEEE Trans. Power Syst. 2012, 27, 932–941. [Google Scholar] [CrossRef]
- Parmar, K.P.S.; Majhi, S.; Kothari, D.P. Load Frequency Control of a Realistic Power System with Multi-Source Power Generation. Int. J. Electr. Power Energy Syst. 2012, 42, 426–433. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, R.; Wen, C. New Robust Adaptive Load-Frequency Control with System Parametric Uncertainties. IEE Proc. Gener. Transm. Distrib. 1994, 141, 184–190. [Google Scholar] [CrossRef]
- Saxena, S.; Hote, Y.V. Load Frequency Control in Power Systems via Internal Model Control Scheme and Model-Order Reduction. IEEE Trans. Power Syst. 2013, 28, 2749–2757. [Google Scholar] [CrossRef]
- Liu, T.; Gao, F. New Insight into Internal Model Control Filter Design for Load Disturbance Rejection. IET Control Theory Appl. 2010, 4, 448–460. [Google Scholar] [CrossRef]
- Mu, C.; Tang, Y.; He, H. Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy. IEEE Trans. Ind. Electron. 2017, 64, 6742–6751. [Google Scholar] [CrossRef]
- Pourmousavi, S.A.; Nehrir, M.H. Introducing Dynamic Demand Response in the LFC Model. IEEE Trans. Power Syst. 2014, 29, 1562–1572. [Google Scholar] [CrossRef]
- Ojaghi, P.; Rahmani, M. LMI-Based Robust Predictive Load Frequency Control for Power Systems with Communication Delays. IEEE Trans. Power Syst. 2017, 32, 4091–4100. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, Z.; Weng, J.; Li, X.; Deng, R.H. Resonance Attacks on Load Frequency Control of Smart Grids. IEEE Trans. Smart Grid 2018, 9, 4490–4502. [Google Scholar] [CrossRef]
- Doraiswami, R. A Nonlinear Load–Frequency Control Design. IEEE Trans. Power Appar. Syst. 1978, 97, 1278–1284. [Google Scholar] [CrossRef]
- Tripathy, S.; Hope, G.S.; Malik, O.P. Optimization of Load–Frequency Control Parameters for Power Systems with Reheat Steam Turbines and Governor Dead Band Non-Linearity. Proc. IEEE 1982, 129, 10–16. [Google Scholar]
- Hsu, Y.Y.; Chan, W.C. Optimal Variable Structure Controller for the Load-Frequency Control of Interconnected Hydrothermal Power Systems. Int. J. Electr. Power Energy Syst. 1984, 6, 221–229. [Google Scholar] [CrossRef]
- Kothari, M.L.; Nanda, J.; Kothari, D.P.; Das, D. Discrete-Mode Automatic Generation Control of a Two-Area Reheat Thermal System with New Area Control Error. IEEE Trans. Power Syst. 1984, 6, 221–229. [Google Scholar]
- Banerjee, S.; Chatterjee, J.K.; Tripathy, S.C. Application of Magnetic Energy Storage Unit as Load-Frequency Stabilizer. IEEE Trans. Energy Convers. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Tripathy, S.C.; Balasubramanian, R.; Chandramohanan Nair, P.S. Adaptive Automatic Generation Control with Superconducting Magnetic Energy Storage in Power Systems. IEEE Trans. Energy Convers. 1992, 7, 434–441. [Google Scholar] [CrossRef]
- Lu, C.F.; Liu, C.C.; Wu, C.J. Effect of Battery Energy Storage System on Load Frequency Control Considering Governor Deadband and Generation Rate Constraint. IEEE Trans. Energy Convers. 1995, 10, 555–561. [Google Scholar] [CrossRef]
- Ngamroo, I.; Mitani, Y.; Tsuji, K. Application of SMES Coordinated with Solid-State Phase Shifter to Load Frequency Control. IEEE Trans. Appl. Supercond. 1999, 9, 322–325. [Google Scholar] [CrossRef]
- Yeşil, E.; Güzelkaya, M.; Eksin, I. Self Tuning Fuzzy PID Type Load and Frequency Controller. Energy Convers. Manag. 2004, 45, 377–390. [Google Scholar] [CrossRef]
- Çam, E.; Kocaarslan, I. Load Frequency Control in Two Area Power Systems Using Fuzzy Logic Controller. Energy Convers. Manag. 2005, 46, 233–243. [Google Scholar] [CrossRef]
- Hemeida, A.M. A Fuzzy Logic Controlled Superconducting Magnetic Energy Storage, SMES Frequency Stabilizer. Electr. Power Syst. Res. 2010, 80, 651–656. [Google Scholar] [CrossRef]
- Sudha, K.R.; Vijaya Santhi, R. Load Frequency Control of an Interconnected Reheat Thermal System Using Type-2 Fuzzy System Including SMES Units. Int. J. Electr. Power Energy Syst. 2012, 43, 1383–1392. [Google Scholar] [CrossRef]
- Khodabakhshian, A.; Hooshmand, R. A New PID Controller Design for Automatic Generation Control of Hydro Power Systems. Int. J. Electr. Power Energy Syst. 2010, 32, 375–382. [Google Scholar] [CrossRef]
- Tsay, T.S. Load-Frequency Control of Interconnected Power System with Governor Backlash Nonlinearities. Int. J. Electr. Power Energy Syst. 2011, 33, 1542–1549. [Google Scholar] [CrossRef]
- Sudha, K.R.; Butchi Raju, Y.; Chandra Sekhar, A. Fuzzy C-Means Clustering for Robust Decentralized Load Frequency Control of Interconnected Power System with Generation Rate Constraint. Int. J. Electr. Power Energy Syst. 2012, 37, 58–66. [Google Scholar] [CrossRef]
- Dey, R.; Ghosh, S.; Ray, G.; Rakshit, A. H ∞ Load Frequency Control of Interconnected Power Systems with Communication Delays. Int. J. Electr. Power Energy Syst. 2012, 42, 672–684. [Google Scholar] [CrossRef]
- Ibraheem; Kumar, P.; Hasan, N.; Nizamuddin. Sub-Optimal Automatic Generation Control of Interconnected Power System Using Output Vector Feedback Control Strategy. Electr. Power Compon. Syst. 2012, 40, 977–994. [Google Scholar] [CrossRef]
- Ota, Y.; Taniguchi, H.; Nakajima, T.; Liyanage, K.M.; Baba, J.; Yokoyama, A. Autonomous Distributed V2G (Vehicle-to-Grid) Satisfying Scheduled Charging. IEEE Trans. Smart Grid 2012, 3, 559–564. [Google Scholar] [CrossRef]
- Rakhshani, E.; Rodriguez, P. Inertia Emulation in AC/DC Interconnected Power Systems Using Derivative Technique Considering Frequency Measurement Effects. IEEE Trans. Power Syst. 2017, 32, 3338–3351. [Google Scholar] [CrossRef]
- Sonmez, S.; Ayasun, S.; Nwankpa, C.O. An Exact Method for Computing Delay Margin for Stability of Load Frequency Control Systems with Constant Communication Delays. IEEE Trans. Power Syst. 2016, 31, 370–377. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.P.; El Saddik, A. Denial-of-Service (Dos) Attacks on Load Frequency Control in Smart Grids. In Proceedings of the 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 24–27 February 2013; pp. 1–6. [Google Scholar]
- Gholamrezaie, V.; Dozein, M.G.; Monsef, H.; Wu, B. An Optimal Frequency Control Method through a Dynamic Load Frequency Control (LFC) Model Incorporating Wind Farm. IEEE Syst. J. 2018, 12, 392–401. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, C.K.; He, Y.; Jiang, L.; Wu, M. Delay-Dependent Stability Analysis of Multi-Area Load Frequency Control with Enhanced Accuracy and Computation Efficiency. IEEE Trans. Power Syst. 2019, 34, 3687–3696. [Google Scholar] [CrossRef]
- Veerasamy, V.; Wahab, N.I.A.; Ramachandran, R.; Othman, M.L.; Hizam, H.; Irudayaraj, A.X.R.; Guerrero, J.M.; Kumar, J.S. A Hankel Matrix Based Reduced Order Model for Stability Analysis of Hybrid Power System Using PSO-GSA Optimized Cascade PI-PD Controller for Automatic Load Frequency Control. IEEE Access 2020, 8, 71422–71446. [Google Scholar] [CrossRef]
- Chen, G.; Li, Z.; Zhang, Z.; Li, S. An Improved ACO Algorithm Optimized Fuzzy PID Controller for Load Frequency Control in Multi Area Interconnected Power Systems. IEEE Access 2020, 8, 6429–6447. [Google Scholar] [CrossRef]
- Yu, T.; Wang, H.Z.; Zhou, B.; Chan, K.W.; Tang, J. Multi-Agent Correlated Equilibrium Q(λ) Learning for Coordinated Smart Generation Control of Interconnected Power Grids. IEEE Trans. Power Syst. 2015, 30, 1669–1679. [Google Scholar] [CrossRef]
- Chen, H.; Ye, R.; Wang, X.; Lu, R. Cooperative Control of Power System Load and Frequency by Using Differential Games. IEEE Trans. Control Syst. Technol. 2015, 23, 882–897. [Google Scholar] [CrossRef]
- Yang, F.; He, J.; Pan, Q. Further Improvement on Delay-Dependent Load Frequency Control of Power Systems via Truncated B-L Inequality. IEEE Trans. Power Syst. 2018, 33, 5062–5071. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Wei, Z.; Sun, G.; Wu, X. Robust H U+221E Load Frequency Control of Multi-Area Power System with Time Delay: A Sliding Mode Control Approach. IEEE/CAA J. Autom. Sin. 2018, 5, 610–617. [Google Scholar] [CrossRef]
- Luo, H.; Hiskens, I.A.; Hu, Z. Stability Analysis of Load Frequency Control Systems with Sampling and Transmission Delay. IEEE Trans. Power Syst. 2020, 35, 3603–3615. [Google Scholar] [CrossRef]
- Lu, K.D.; Zeng, G.Q.; Luo, X.; Weng, J.; Zhang, Y.; Li, M. An Adaptive Resilient Load Frequency Controller for Smart Grids with DoS Attacks. IEEE Trans. Veh. Technol. 2020, 69, 4689–4699. [Google Scholar] [CrossRef]
- Lim, K.Y.; Wang, Y.; Guo, G.; Zhou, R. A New Decentralized Robust Controller Design for Multi-Area Load-Frequency Control via in Complete State Feedback. Optim. Control Appl. Methods 1998, 19, 345–361. [Google Scholar] [CrossRef]
- Kazemi, M.H.; Karrari, M.; Menhaj, M.B. Decentralized Robust Adaptive-Output Feedback Controller for Power System Load Frequency Control. Electr. Eng. 2002, 84, 75–83. [Google Scholar] [CrossRef]
- Molina-García, A.; Bouffard, F.; Kirschen, D.S. Decentralized Demand-Side Contribution to Primary Frequency Control. IEEE Trans. Power Syst. 2011, 26, 411–419. [Google Scholar] [CrossRef]
- Tan, W. Unified Tuning of PID Load Frequency Controller for Power Systems via IMC. IEEE Trans. Power Syst. 2010, 25, 341–350. [Google Scholar] [CrossRef]
- Galus, M.D.; Koch, S.; Andersson, G. Provision of Load Frequency Control by PHEVs, Controllable Loads, and a Cogeneration Unit. IEEE Trans. Ind. Electron. 2011, 58, 4568–4582. [Google Scholar] [CrossRef]
- Mi, Y.; Fu, Y.; Wang, C.; Wang, P. Decentralized Sliding Mode Load Frequency Control for Multi-Area Power Systems. IEEE Trans. Power Syst. 2013, 28, 4301–4309. [Google Scholar] [CrossRef]
- Pillai, J.R.; Bak-Jensen, B. Integration of Vehicle-to-Grid in the Western Danish Power System. IEEE Trans. Sustain. Energy 2011, 2, 12–19. [Google Scholar] [CrossRef]
- Yan, Z.; Xu, Y. A Multi-Agent Deep Reinforcement Learning Method for Cooperative Load Frequency Control of a Multi-Area Power System. IEEE Trans. Power Syst. 2020, 35, 4599–4608. [Google Scholar] [CrossRef]
- Bevrani, H.; Hiyama, T. On Load-Frequency Regulation with Time Delays: Design and Real-Time Implementation. IEEE Trans. Energy Convers. 2009, 24, 292–300. [Google Scholar] [CrossRef]
- Kumar, A.; Malik, O.P.; Hope, G.S. Variable-Structure-System Control Applied To Agc of an Interconnected Power System. IEE Proc. C Gener. Transm. Distrib. 1985, 132, 23–29. [Google Scholar] [CrossRef]
- Yang, T.C.; Ding, Z.T.; Yu, H. Decentralised Power System Load Frequency Control beyond the Limit of Diagonal Dominance. Int. J. Electr. Power Energy Syst. 2002, 24, 173–184. [Google Scholar] [CrossRef]
- Yang, T.C.; Cimen, H.; Zhu, Q.M. Decentralised Load-Frequency Controller Design Based on Structured Singular Values. IEE Proc. C Gener. Transm. Distrib. 1998, 145, 7–14. [Google Scholar] [CrossRef]
- Aldeen, M. Interaction Modelling Approach to Distributed Control with Application to Power Systems. Int. J. Control 1991, 53, 1035–1054. [Google Scholar] [CrossRef]
- Aldeen, M.; Marsh, J.F. Decentralized Proportional-plus-Integral Control Design Method for Interconnected Power Systems. IEE Proc. C Gener. Transm. Distrib. 1991, 138, 263–274. [Google Scholar] [CrossRef]
- Aldeen, M.; Marsh, J.F. Observability, Controllability and Decentralized Control of Interconnected Power Systems. Comput. Electr. Eng. 1990, 16, 207–220. [Google Scholar] [CrossRef]
- Park, Y.M.; Lee, K.Y. Optimal Decentralized Load Frequency Control. Electr. Power Syst. Res. 1984, 7, 279–288. [Google Scholar] [CrossRef]
- Shayeghi, H.; Shayanfar, H.A. Robust Decentralized LFC Design in a Restructured Power System. Int. J. Emerg. Electr. Power Syst. 2006, 6, 4. [Google Scholar] [CrossRef]
- Glover, J.D.; Schweppe, F.C. Advanced Load Frequency Control. IEEE Trans. Power Appar. Syst. 1972, 91, 2095–2103. [Google Scholar] [CrossRef]
- Moorthi, V.R.; Aggarwal, R.P. Suboptimal and Near-Optimal Control of a Load-Frequency-Control System. Proc. Inst. Electr. Eng. 1972, 120, 1653–1660. [Google Scholar] [CrossRef]
- Stankovic, A.M.; Tadmor, G.; Sakharuk, T.A. On Robust Control Analysis and Design for Load Frequency Regulation. IEEE Power Eng. Rev. 1997, 17, 35. [Google Scholar] [CrossRef]
- Ray, G.; Prasad, A.N.; Prasad, G.D. New Approach to the Design of Robust Load-Frequency Controller for Large Scale Power Systems. Electr. Power Syst. Res. 1999, 51, 13–22. [Google Scholar] [CrossRef]
- Lim, K.Y.; Wang, Y.; Zhou, R. Robust Decentralized Load Frequency Control of Multi-Area Power Systems. IEE Proc. C Gener. Transm. Distrib. 1996, 143, 377–386. [Google Scholar] [CrossRef]
- Chaudhuri, B.; Pal, B.; Zolotas, A.; Jaimoukha, I.; Green, T.C. Mixed-Sensitivity Approach to H∞ Control of Power System Oscillations Employing Multiple FACTS Devices. IEEE Trans. Power Syst. 2003, 18, 1149–1156. [Google Scholar] [CrossRef]
- Rerkpreedapong, D.; Hasanović, A.; Feliachi, A. Robust Load Frequency Control Using Genetic Algorithms and Linear Matrix Inequalities. IEEE Trans. Power Syst. 2003, 18, 855–861. [Google Scholar] [CrossRef]
- Juang, C.F.; Lu, C.F. Load–Frequency Control by Hybrid Evolutionary Fuzzy PI Controller. IEE Proc. C Gener. Transm. Distrib. 2006, 153, 196–204. [Google Scholar] [CrossRef]
- Daneshfar, F.; Bevrani, H. Load-Frequency Control: A GA-Based Multi-Agent Reinforcement Learning. IET Gener. Transm. Distrib. 2010, 4, 13–26. [Google Scholar] [CrossRef]
- Yu, X.; Tomsovic, K. Application of Linear Matrix Inequalities for Load Frequency Control with Communication Delays. IEEE Trans. Power Syst. 2004, 19, 1508–1515. [Google Scholar] [CrossRef]
- Aldeen, M.; Sharma, R. Robust Detection of Faults in Frequency Control Loops. IEEE Trans. Power Syst. 2007, 22, 413–422. [Google Scholar] [CrossRef]
- Zhang, C.K.; Jiang, L.; Wu, Q.H.; He, Y.; Wu, M. Delay-Dependent Robust Load Frequency Control for Time Delay Power Systems. IEEE Trans. Power Syst. 2013, 28, 2192–2201. [Google Scholar] [CrossRef]
- Vachirasricirikul, S.; Ngamroo, I. Robust LFC in a Smart Grid with Wind Power Penetration by Coordinated V2G Control and Frequency Controller. IEEE Trans. Smart Grid 2014, 5, 371–380. [Google Scholar] [CrossRef]
- Shangguan, X.C.; Zhang, C.K.; He, Y.; Jin, L.; Jiang, L.; Spencer, J.W.; Wu, M. Robust Load Frequency Control for Power System Considering Transmission Delay and Sampling Period. IEEE Trans. Ind. Inform. 2021, 17, 5292–5303. [Google Scholar] [CrossRef]
- Oshnoei, A.; Kheradmandi, M.; Muyeen, S.M. Robust Control Scheme for Distributed Battery Energy Storage Systems in Load Frequency Control. IEEE Trans. Power Syst. 2020, 35, 4781–4791. [Google Scholar] [CrossRef]
- Pham, T.N.; Nahavandi, S.; Van Hien, L.; Trinh, H.; Wong, K.P. Static Output Feedback Frequency Stabilization of Time-Delay Power Systems with Coordinated Electric Vehicles State of Charge Control. IEEE Trans. Power Syst. 2017, 32, 3862–3874. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Toulabi, M.; Dobakhshari, A.S.; Ashouri-Zadeh, A.; Ranjbar, A.M. Delay Compensation of Demand Response and Adaptive Disturbance Rejection Applied to Power System Frequency Control. IEEE Trans. Power Syst. 2020, 35, 2037–2046. [Google Scholar] [CrossRef]
- Oshnoei, A.; Kheradmandi, M.; Khezri, R.; Mahmoudi, A. Robust Model Predictive Control of Gate-Controlled Series Capacitor for LFC of Power Systems. IEEE Trans. Ind. Inform. 2021, 17, 4766–4776. [Google Scholar] [CrossRef]
- Kumar, M.; Hote, Y.V. Robust PIDD2 Controller Design for Perturbed Load Frequency Control of an Interconnected Time-Delayed Power Systems. IEEE Trans. Control Syst. Technol. 2021, 29, 2662–2669. [Google Scholar] [CrossRef]
- Aluko, A.O.; Carpanen, R.P.; Dorrell, D.G.; Ojo, E.E. Robust State Estimation Method for Adaptive Load Frequency Control of Interconnected Power System in a Restructured Environment. IEEE Syst. J. 2021, 15, 5046–5056. [Google Scholar] [CrossRef]
- Tacker, E.C.; Lee, C.C.; Reddoch, T.W.; Tan, T.O.; Julich, P.M. Optimal Control of Interconnected Electric Energy Systems—A New Formulation. Proc. IEEE 1972, 60, 1239–1241. [Google Scholar] [CrossRef]
- Aoki, M. Control of Large Scale Dynamic Systems by Aggregation. IEEE Trans. Automat. Contr. 1968, AC-13, 246–253. [Google Scholar]
- Shirai, G. Load Frequency Control Using Lyapunov’s Second Method: Bang-Bang Control of Speed Changer Position. Proc. IEEE 1979, 67, 1458–1459. [Google Scholar] [CrossRef]
- Hain, Y.; Kulessky, R.; Nudelman, G. Identification-Based Power Unit Model for Load-Frequency Control Purposes. Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf. 2000, 1, 408. [Google Scholar] [CrossRef]
- Bohn, E.V.; Miniesy, S.M. Optimum Load-Frequency Sampled-Data Control with Randomly Varying System Disturbances. IEEE Trans. Power Appar. Syst. 1972, PAS-91, 1916–1923. [Google Scholar] [CrossRef]
- Ćalović, M.S. Linear Regulator Design for a Load and Frequency Control. IEEE Trans. Power Appar. Syst. 1972, PAS-91, 2271–2285. [Google Scholar]
- Choi, S.; Sim, H.; Tan, K. Load Frequency Control via Constant Limited-State Feedback. Electr. Power Syst. Res. 1981, 4, 265–269. [Google Scholar] [CrossRef]
- Hasan, N.; Ibraheem; Kumar, P. Nizamuddin Sub-Optimal Automatic Generation Control of Interconnected Power System Using Constrained Feedback Control Strategy. Int. J. Electr. Power Energy Syst. 2012, 43, 295–303. [Google Scholar] [CrossRef]
- Yan, S.; Gu, Z.; Park, J.H.; Xie, X. Sampled Memory-Event-Triggered Fuzzy Load Frequency Control for Wind Power Systems Subject to Outliers and Transmission Delays. IEEE Trans. Cybern. 2023, 53, 4043–4053. [Google Scholar] [CrossRef] [PubMed]
- Khooban, M.H.; Dragicevic, T.; Blaabjerg, F.; Delimar, M. Shipboard Microgrids: A Novel Approach to Load Frequency Control. IEEE Trans. Sustain. Energy 2018, 9, 843–852. [Google Scholar] [CrossRef]
- Yan, Z.; Xu, Y. Data-Driven Load Frequency Control for Stochastic Power Systems: A Deep Reinforcement Learning Method with Continuous Action Search. IEEE Trans. Power Syst. 2019, 34, 1653–1656. [Google Scholar] [CrossRef]
- Wang, C.; Mi, Y.; Fu, Y.; Wang, P. Frequency Control of an Isolated Micro-Grid Using Double Sliding Mode Controllers and Disturbance Observer. IEEE Trans. Smart Grid 2018, 9, 923–930. [Google Scholar] [CrossRef]
- Xu, Y.; Li, C.; Wang, Z.; Zhang, N.; Peng, B. Load Frequency Control of a Novel Renewable Energy Integrated Micro-Grid Containing Pumped Hydropower Energy Storage. IEEE Access 2018, 6, 29067–29077. [Google Scholar] [CrossRef]
- Haes Alhelou, H.; Hamedani Golshan, M.E.; Hatziargyriou, N.D. Deterministic Dynamic State Estimation-Based Optimal LFC for Interconnected Power Systems Using Unknown Input Observer. IEEE Trans. Smart Grid 2020, 11, 1582–1592. [Google Scholar] [CrossRef]
- Haes Alhelou, H.; Golshan, M.E.H.; Hatziargyriou, N.D. A Decentralized Functional Observer Based Optimal LFC Considering Unknown Inputs, Uncertainties, and Cyber-Attacks. IEEE Trans. Power Syst. 2019, 34, 4408–4417. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Xiao, J. Adaptive Event-Triggered Load Frequency Control for Interconnected Microgrids by Observer-Based Sliding Mode Control. IEEE Access 2019, 7, 68271–68280. [Google Scholar] [CrossRef]
- Khooban, M.H.; Gheisarnejad, M.; Vafamand, N.; Jafari, M.; Mobayen, S.; Dragicevic, T.; Boudjadar, J. Robust Frequency Regulation in Mobile Microgrids: HIL Implementation. IEEE Syst. J. 2019, 13, 4281–4291. [Google Scholar] [CrossRef]
- Su, X.; Liu, X.; Song, Y.D. Fault-Tolerant Control of Multiarea Power Systems via a Sliding-Mode Observer Technique. IEEE/ASME Trans. Mechatron. 2018, 23, 38–47. [Google Scholar] [CrossRef]
- Khalghani, M.R.; Solanki, J.; Solanki, S.K.; Khooban, M.H.; Sargolzaei, A. Resilient Frequency Control Design for Microgrids under False Data Injection. IEEE Trans. Ind. Electron. 2021, 68, 2151–2162. [Google Scholar] [CrossRef]
- Indulkar, C.S.; Baldev, R. Application of Fuzzy Controller to Automatic Generation Control. Electr. Mach. Power Syst. 1995, 23, 209–220. [Google Scholar] [CrossRef]
- Chang, C.S.; Fu, W. Area Load Frequency Control Using Fuzzy Gain Scheduling of PI Controllers. Electr. Power Syst. Res. 1997, 42, 145–152. [Google Scholar] [CrossRef]
- Chown, G.A.; Hartman, R.C. Design and Experience with a Fuzzy Logic Controller for Automatic Generation Control (Agc). IEEE Power Eng. Rev. 1997, 17, 62. [Google Scholar] [CrossRef]
- Talaq, J.; Al-Basri, F. Adaptive Fuzzy Gain Scheduling for Load Frequency Control. IEEE Trans. Power Syst. 1999, 14, 145–150. [Google Scholar] [CrossRef]
- Gegov, A.E.; Frank, P.M. Decomposition of Multivariable Systems for Distributed Fuzzy Control. Fuzzy Sets Syst. 1995, 73, 329–340. [Google Scholar] [CrossRef]
- Karnavas, Y.L.; Papadopoulos, D.P. AGC for Autonomous Power System Using Combined Intelligent Techniques. Electr. Power Syst. Res. 2002, 62, 225–239. [Google Scholar] [CrossRef]
- El-Sherbiny, M.K.; El-Saady, G.; Yousef, A.M. Efficient Fuzzy Logic Load-Frequency Controller. Energy Convers. Manag. 2002, 43, 1853–1863. [Google Scholar] [CrossRef]
- Nanda, J.; Mangla, A. Automatic Generation Control of an Interconnected Hydro-Thermal System Using Conventional Integral and Fuzzy Logic Controller. In Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, Hong Kong, China, 5–8 April 2004; 2004; Volume 1, pp. 372–377. [Google Scholar] [CrossRef]
- Yousef, H.A.; Al-Kharusi, K.; Albadi, M.H.; Hosseinzadeh, N. Load Frequency Control of a Multi-Area Power System: An Adaptive Fuzzy Logic Approach. IEEE Trans. Power Syst. 2014, 29, 1822–1830. [Google Scholar] [CrossRef]
- Bevrani, H.; Daneshmand, P.R. Fuzzy Logic-Based Load-Frequency Control Concerning High Penetration of Wind Turbines. IEEE Syst. J. 2012, 6, 173–180. [Google Scholar] [CrossRef]
- Khooban, M.H.; Gheisarnejad, M. A Novel Deep Reinforcement Learning Controller Based Type-II Fuzzy System: Frequency Regulation in Microgrids. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 5, 689–699. [Google Scholar] [CrossRef]
- Bevrani, H.; Daneshmand, P.R.; Babahajyani, P.; Mitani, Y.; Hiyama, T. Intelligent LFC Concerning High Penetration of Wind Power: Synthesis and Real-Time Application. IEEE Trans. Sustain. Energy 2014, 5, 655–662. [Google Scholar] [CrossRef]
- Khooban, M.H.; Niknam, T.; Shasadeghi, M.; Dragicevic, T.; Blaabjerg, F. Load Frequency Control in Microgrids Based on a Stochastic Noninteger Controller. IEEE Trans. Sustain. Energy 2018, 9, 853–861. [Google Scholar] [CrossRef]
- Kayalvizhi, S.; Vinod Kumar, D.M. Load Frequency Control of an Isolated Micro Grid Using Fuzzy Adaptive Model Predictive Control. IEEE Access 2017, 5, 16241–16251. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, S.; Luo, W.; Wu, L. Resilient Distributed Fuzzy Load Frequency Regulation for Power Systems Under Cross-Layer Random Denial-of-Service Attacks. IEEE Trans. Cybern. 2022, 52, 2396–2406. [Google Scholar] [CrossRef]
- Qian, D.; Fan, G. Neural-Network-Based Terminal Sliding Mode Control for Frequency Stabilization of Renewable Power Systems. IEEE/CAA J. Autom. Sin. 2018, 5, 706–717. [Google Scholar] [CrossRef]
- Sundaram, V.S.; Jayabarathi, T. Load Frequency Control Using PID Tuned ANN Controller in Power System. In Proceedings of the 2011 1st International Conference on Electrical Energy Systems, Newport Beach, CA, USA, 3–5 January 2011; pp. 269–274. [Google Scholar] [CrossRef]
- Mathur, H.D.; Ghosh, S. A Comprehensive Analysis of Intelligent Controllers for Load Frequency Control. In Proceedings of the 2006 IEEE Power India Conference, New Delhi, India, 10–12 April 2006. [Google Scholar]
- Abbaspour, A.; Sargolzaei, A.; Yen, K. Detection of False Data Injection Attack on Load Frequency Control in Distributed Power Systems. In Proceedings of the 2017 North American Power Symposium, NAPS 2017, Morgantown, WV, USA, 17–19 September 2017. [Google Scholar]
- Kumar, N.; Malik, H.; Singh, A.; Alotaibi, M.A.; Nassar, M.E. Novel Neural Network-Based Load Frequency Control Scheme: A Case Study of Restructured Power System. IEEE Access 2021, 9, 162231–162242. [Google Scholar] [CrossRef]
- Xu, D.; Liu, J.; Yan, X.G.; Yan, W. A Novel Adaptive Neural Network Constrained Control for a Multi-Area Interconnected Power System with Hybrid Energy Storage. IEEE Trans. Ind. Electron. 2018, 65, 6625–6634. [Google Scholar] [CrossRef]
- Gautam, S.K.; Goyal, N. Improved Particle Swarm Optimization Based Load Frequency Control in a Single Area Power System. In Proceedings of the 2010 Annual IEEE India Conference (INDICON), Kolkata, India, 17–19 December 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Bhatt, P.; Ghoshal, S.P.; Roy, R.; Ghosal, S. Load Frequency Control of Interconnected Restructured Power System along with DFIG and Coordinated Operation of TCPS-SMES. In Proceedings of the 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India, New Delhi, India, 20–23 December 2010. [Google Scholar] [CrossRef]
- Kumari, N.; Jha, A.N. Frequency Control of Multi-Area Power System Network Using PSO Based LQR. In Proceedings of the 6th IEEE Power India International Conference (PIICON), Delhi, India, 5–7 December 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Shayeghi, H.; Shayanfar, H.A.; Jalili, A. LFC Design of a Deregulated Power System with TCPS Using PSO. Int. J. Electr. Comput. Eng. 2009, 3, 632–640. [Google Scholar]
- Singh, V.P.; Kishor, N.; Samuel, P. Distributed Multi-Agent System-Based Load Frequency Control for Multi-Area Power System in Smart Grid. IEEE Trans. Ind. Electron. 2017, 64, 5151–5160. [Google Scholar] [CrossRef]
- Daraz, A.; Malik, S.A.; Mokhlis, H.; Haq, I.U.; Laghari, G.F.; Mansor, N.N. Fitness Dependent Optimizer-Based Automatic Generation Control of Multi-Source Interconnected Power System with Non-Linearities. IEEE Access 2020, 8, 100989–101003. [Google Scholar] [CrossRef]
- Elmelegi, A.; Mohamed, E.A.; Aly, M.; Ahmed, E.M.; Mohamed, A.A.A.; Elbaksawi, O. Optimized Tilt Fractional Order Cooperative Controllers for Preserving Frequency Stability in Renewable Energy-Based Power Systems. IEEE Access 2021, 9, 8261–8277. [Google Scholar] [CrossRef]
- Abdel-Magid, Y.L.; Dawoud, M. Genetic Algorithms Applications in Load Frequency Control. In Proceedings of the First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, Sheffield, UK, 12–14 September 1995. [Google Scholar]
- Abdel-Magid, Y.L.; Dawoud, M. Tuning of AGC of Interconnected Reheat Thermal Systems with Genetic Algorithms. In Proceedings of the 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, Vancouver, BC, Canada, 22–25 October 1995. [Google Scholar]
- Dangprasert, P.; Avatchanakorn, V. Genetic Algorithms Based on an Intelligent Controller. Expert Syst. Appl. 1996, 10, 465–470. [Google Scholar] [CrossRef]
- Abdel-Magid, Y.L.; Dawoud, M.M. Optimal AGC Tuning with Genetic Algorithms. Electr. Power Syst. Res. 1996, 38, 231–238. [Google Scholar] [CrossRef]
- Chang, C.S.; Fu, W.; Wen, F. Load Frequency Control Using Genetic-Algorithm Based Fuzzy Gain Scheduling of PI Controllers. Electr. Mach. Power Syst. 1998, 26, 39–52. [Google Scholar] [CrossRef]
- Al-Hamouz, Z.M.; Al-Duwaish, H.N. A New Load Frequency Variable Structure Controller Using Genetic Algorithms. Electr. Power Syst. Res. 2000, 55, 1–6. [Google Scholar] [CrossRef]
- Juang, C.F.; Lu, C.F. Power System Load Frequency Control with Fuzzy Gain Scheduling Designed by New Genetic Algorithms. In Proceedings of the 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE’02, Honolulu, HI, USA, 12–17 May 2002. [Google Scholar]
- Pingkang, L.; Hengjun, Z.; Yuyun, L. Genetic Algorithm Optimization for AGC of Multi-Area Power Systems. In Proceeding of the IEEE TENCON’02, Beijing, China, 28–31 October 2002; pp. 1812–1821. [Google Scholar]
- Aditya, S.K.; Das, D. Design of Load Frequency Controllers Using Genetic Algorithm for Two Area Interconnected Hydro Power System. Electr. Power Compon. Syst. 2003, 31, 81–94. [Google Scholar] [CrossRef]
- Ghoshal, S.P. Application of GA/GA-SA Based Fuzzy Automatic Generation Control of a Multi-Area Thermal Generating System. Electr. Power Syst. Res. 2004, 70, 115–127. [Google Scholar] [CrossRef]
- Ghoshal, S.P. Optimizations of PID Gains by Particle Swarm Optimizations in Fuzzy Based Automatic Generation Control. Electr. Power Syst. Res. 2004, 72, 203–212. [Google Scholar] [CrossRef]
- Ngamroo, I.; Tippayachai, J.; Dechanupaprittha, S. Robust Decentralised Frequency Stabilisers Design of Static Synchronous Series Compensators by Taking System Uncertainties into Consideration. Int. J. Electr. Power Energy Syst. 2006, 28, 513–524. [Google Scholar] [CrossRef]
- Daneshfar, F.; Bevrani, H. Multiobjective Design of Load Frequency Control Using Genetic Algorithms. Int. J. Electr. Power Energy Syst. 2012, 42, 257–263. [Google Scholar] [CrossRef]
- Shankar, R.; Chatterjee, K.; Chatterjee, T.K. Genetic Algorithm Based Controller for Load-Frequency Control of Interconnected Systems. In Proceedings of the 2012 1st International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 15–17 March 2012. [Google Scholar]
- Vrdoljak, K.; Perić, N.; Petrović, I. Sliding Mode Based Load-Frequency Control in Power Systems. Electr. Power Syst. Res. 2010, 80, 514–527. [Google Scholar] [CrossRef]
- Du, X.; Li, P. Fuzzy Logic Control Optimal Realization Using GA for Multi-Area AGC Systems. J. Inf. Technol. 2006, 12, 63–72. [Google Scholar]
- Abdennour, A. Adaptive Optimal Gain Scheduling for the Load Frequency Control Problem. Electr. Power Compon. Syst. 2002, 30, 45–56. [Google Scholar] [CrossRef]
- Mufti, M.D.; Iqbal, S.J.; Lone, S.A.; Ain, Q.U. Supervisory Adaptive Predictive Control Scheme for Supercapacitor Energy Storage System. IEEE Syst. J. 2015, 9, 1020–1030. [Google Scholar] [CrossRef]
- Nayak, P.C.; Bisoi, S.; Prusty, R.C.; Panda, S. Performance Analysis of PDF+(1 + PI) Controller for Load Frequency Control of the Multi Microgrid System Using Genetic Algorithm. In Proceedings of the 2019 International Conference on Information Technology (ICIT), Bhubaneswar, India, 19–21 December 2019; pp. 448–453. [Google Scholar] [CrossRef]
- Ali, H.H.; Kassem, A.M.; Al-Dhaifallah, M.; Fathy, A. Multi-Verse Optimizer for Model Predictive Load Frequency Control of Hybrid Multi-Interconnected Plants Comprising Renewable Energy. IEEE Access 2020, 8, 114623–114642. [Google Scholar] [CrossRef]
- Singh, K.; Amir, M.; Ahmad, F.; Khan, M.A. An Integral Tilt Derivative Control Strategy for Frequency Control in Multimicrogrid System. IEEE Syst. J. 2021, 15, 1477–1488. [Google Scholar] [CrossRef]
- Ali, M.; Kotb, H.; Aboras, K.M.; Abbasy, N.H. Design of Cascaded Pi-Fractional Order PID Controller for Improving the Frequency Response of Hybrid Microgrid System Using Gorilla Troops Optimizer. IEEE Access 2021, 9, 150715–150732. [Google Scholar] [CrossRef]
- Rasolomampionona, D.; Kłos, M.; Cirit, C.; Montegiglio, P.; De Tuglie, E.E. A New Method for Optimization of Load Frequency Control Parameters in Multi-Area Power Systems Using Genetic Algorithms. In Proceedings of the 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Prague, Czech Republic, 28 June–1 July 2022. [Google Scholar] [CrossRef]
- Rout, U.K.; Sahu, R.K.; Panda, S. Design and Analysis of Differential Evolution Algorithm Based Automatic Generation Control for Interconnected Power System. Ain Shams Eng. J. 2013, 4, 409–421. [Google Scholar] [CrossRef]
- Shabani, H.; Vahidi, B.; Ebrahimpour, M. A Robust PID Controller Based on Imperialist Competitive Algorithm for Load-Frequency Control of Power Systems. ISA Trans. 2013, 52, 88–95. [Google Scholar] [CrossRef]
- Sahu, B.K.; Pati, S.; Panda, S. Hybrid Differential Evolution Particle Swarm Optimisation Optimised Fuzzy Proportional-Integral Derivative Controller for Automatic Generation Control of Interconnected Power System. IET Gener. Transm. Distrib. 2014, 8, 1789–1800. [Google Scholar] [CrossRef]
- Sahu, R.K.; Chandra Sekhar, G.T.; Panda, S. DE Optimized Fuzzy PID Controller with Derivative Filter for LFC of Multi Source Power System in Deregulated Environme Nt. Ain Shams Eng. J. 2015, 6, 511–530. [Google Scholar] [CrossRef]
- Chaturvedi, D.K.; Umrao, R.; Malik, O.P. Adaptive Polar Fuzzy Logic Based Load Frequency Controller. Int. J. Electr. Power Energy Syst. 2015, 66, 154–159. [Google Scholar] [CrossRef]
- Saikia, L.C.; Chowdhury, A.; Shakya, N.; Shukla, S.; Soni, P.K. AGC of a Multi Area Gas-Thermal System Using Firefly Optimized IDF Controller. In Proceedings of the 2013 Annual IEEE India Conference (INDICON), Mumbai, India, 13–15 December 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Naidu, K.; Mokhlis, H.; Bakar, A.H.A.; Terzija, V.; Illias, H.A. Application of Firefly Algorithm with Online Wavelet Filter in Automatic Generation Control of an Interconnected Reheat Thermal Power System. Int. J. Electr. Power Energy Syst. 2014, 63, 401–413. [Google Scholar] [CrossRef]
- Ali, E.S.; Abd-Elazim, S.M. BFOA Based Design of PID Controller for Two Area Load Frequency Control with Nonlinearities. Int. J. Electr. Power Energy Syst. 2013, 51, 224–231. [Google Scholar] [CrossRef]
- Balasundaram, P.; Akilandam, C.I. ABC Algorithm Based Load-Frequency Controller for an Interconnected Power System Considering Nonlinearities and Coordinated with UPFC and RFB. Int. J. Eng. Innov. Technol. (IJEIT) 2012, 1, 1–11. [Google Scholar]
- Shiva, C.K.; Mukherjee, V. Automatic Generation Control of Interconnected Power System for Robust Decentralized Random Load Disturbances Using a Novel Quasi-Oppositional Harmony Search Algorithm. Int. J. Electr. Power Energy Syst. 2015, 73, 991–1001. [Google Scholar] [CrossRef]
- Mohanty, B.; Hota, P.K. Comparative Performance Analysis of Fruit Fly Optimisation Algorithm for Multi-Area Multi-Source Automatic Generation Control under Deregulated Environment. IET Gener. Transm. Distrib. 2015, 9, 1845–1855. [Google Scholar] [CrossRef]
- Dash, P.; Saikia, L.C.; Sinha, N. Comparison of Performances of Several FACTS Devices Using Cuckoo Search Algorithm Optimized 2DOF Controllers in Multi-Area AGC. Int. J. Electr. Power Energy Syst. 2015, 65, 316–324. [Google Scholar] [CrossRef]
- Dash, P.; Saikia, L.C.; Sinha, N. Comparison of Performances of Several Cuckoo Search Algorithm Based 2DOF Controllers in AGC of Multi-Area Thermal System. Int. J. Electr. Power Energy Syst. 2014, 55, 429–436. [Google Scholar] [CrossRef]
- Saha, A.; Saikia, L.C. Load Frequency Control of a Wind-Thermal-Split Shaft Gas Turbine-Based Restructured Power System Integrating FACTS and Energy Storage Devices. Int. Trans. Electr. Energy Syst. 2019, 29, e2756. [Google Scholar] [CrossRef]
- Yousef, H. Adaptive Fuzzy Logic Load Frequency Control of Multi-Area Power System. Int. J. Electr. Power Energy Syst. 2015, 68, 384–395. [Google Scholar] [CrossRef]
- Abdelaziz, A.Y.; Ali, E.S. Cuckoo Search Algorithm Based Load Frequency Controller Design for Nonlinear Interconnected Power System. Int. J. Electr. Power Energy Syst. 2015, 73, 632–643. [Google Scholar] [CrossRef]
- Sharma, Y.; Saikia, L.C. Automatic Generation Control of a Multi-Area ST-Thermal Power System Using Grey Wolf Optimizer Algorithm Based Classical Controllers. Int. J. Electr. Power Energy Syst. 2015, 73, 853–862. [Google Scholar] [CrossRef]
- Khezri, R.; Golshannavaz, S.; Shokoohi, S.; Bevrani, H. Fuzzy Logic Based Fine-Tuning Approach for Robust Load Frequency Control in a Multi-Area Power System. Electr. Power Compon. Syst. 2016, 44, 2073–2083. [Google Scholar] [CrossRef]
- Ma, M.; Liu, X.; Zhang, C. LFC for Multi-Area Interconnected Power System Concerning Wind Turbines Based on DMPC. IET Gener. Transm. Distrib. 2017, 11, 2689–2696. [Google Scholar] [CrossRef]
- Ersdal, A.M.; Imsland, L.; Uhlen, K. Model Predictive Load-Frequency Control. IEEE Trans. Power Syst. 2016, 31, 777–785. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Lee, K.Y. Coordinated Distributed MPC for Load Frequency Control of Power System with Wind Farms. IEEE Trans. Ind. Electron. 2017, 64, 5140–5150. [Google Scholar] [CrossRef]
- Haes Alhelou, H.; Hamedani Golshan, M.E.; Hajiakbari Fini, M. Wind Driven Optimization Algorithm Application to Load Frequency Control in Interconnected Power Systems Considering GRC and GDB Nonlinearities. Electr. Power Compon. Syst. 2018, 46, 1223–1238. [Google Scholar] [CrossRef]
- Raju, M.; Saikia, L.C.; Sinha, N. Automatic Generation Control of a Multi-Area System Using Ant Lion Optimizer Algorithm Based PID plus Second Order Derivative Controller. Int. J. Electr. Power Energy Syst. 2016, 80, 52–63. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, J.; Xu, Y.; Zhang, Y.; Qian, Z. A Distributed Model Predictive Control Based Load Frequency Control Scheme for Multi-Area Interconnected Power System Using Discrete-Time Laguerre Functions. ISA Trans. 2017, 68, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Azizipanah-Abarghooee, R.; Azizi, S.; Ding, L.; Terzija, V. Smart Frequency Control in Low Inertia Energy Systems Based on Frequency Response Techniques: A Review. Appl. Energy 2020, 279, 115798. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, Y.; Gao, Z. A Robust Decentralized Load Frequency Controller for Interconnected Power Systems. ISA Trans. 2012, 51, 410–419. [Google Scholar] [CrossRef]
- Jood, P.; Aggarwal, S.K.; Chopra, V. Performance Assessment of a Neuro-Fuzzy Load Frequency Controller in the Presence of System Non-Linearities and Renewable Penetration. Comput. Electr. Eng. 2019, 74, 362–378. [Google Scholar] [CrossRef]
- Elsisi, M.; Aboelela, M.; Soliman, M.; Mansour, W. Design of Optimal Model Predictive Controller for LFC of Nonlinear Multi-Area Power System with Energy Storage Devices. Electr. Power Compon. Syst. 2018, 46, 1300–1311. [Google Scholar] [CrossRef]
- Guo, J. Application of Full Order Sliding Mode Control Based on Different Areas Power System with Load Frequency Control. ISA Trans. 2019, 92, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Guha, D.; Roy, P.K.; Banerjee, S. Observer-Aided Resilient Hybrid Fractional-Order Controller for Frequency Regulation of Hybrid Power System. Int. Trans. Electr. Energy Syst. 2021, 31, e13014. [Google Scholar] [CrossRef]
- Guha, D.; Roy, P.K.; Banerjee, S. Load Frequency Control of Interconnected Power System Using Grey Wolf Optimization. Swarm Evol. Comput. 2016, 27, 97–115. [Google Scholar] [CrossRef]
- Guha, D.; Roy, P.K.; Banerjee, S. Study of Differential Search Algorithm Based Automatic Generation Control of an Interconnected Thermal-Thermal System with Governor Dead-Band. Appl. Soft Comput. J. 2017, 52, 160–175. [Google Scholar] [CrossRef]
- Sahu, R.K.; Panda, S.; Rout, U.K. DE Optimized Parallel 2-DOF PID Controller for Load Frequency Control of Power System with Governor Dead-Band Nonlinearity. Int. J. Electr. Power Energy Syst. 2013, 49, 19–33. [Google Scholar] [CrossRef]
- Zamani, A.; Barakati, S.M.; Yousofi-Darmian, S. Design of a Fractional Order PID Controller Using GBMO Algorithm for Load–Frequency Control with Governor Saturation Consideration. ISA Trans. 2016, 64, 56–66. [Google Scholar] [CrossRef]
- Shankar, R.; Chatterjee, K.; Bhushan, R. Impact of Energy Storage System on Load Frequency Control for Diverse Sources of Interconnected Power System in Deregulated Power Environment. Int. J. Electr. Power Energy Syst. 2016, 79, 11–26. [Google Scholar] [CrossRef]
- Chidambaram, I.A.; Paramasivam, B. Optimized Load-Frequency Simulation in Restructured Power System with Redox Flow Batteries and Interline Power Flow Controller. Int. J. Electr. Power Energy Syst. 2013, 50, 9–24. [Google Scholar] [CrossRef]
- Arya, Y.; Kumar, N. Design and Analysis of BFOA-Optimized Fuzzy PI/PID Controller for AGC of Multi-Area Traditional/Restructured Electrical Power Systems. Soft Comput. 2017, 21, 6435–6452. [Google Scholar] [CrossRef]
- Arya, Y. AGC of Two-Area Electric Power Systems Using Optimized Fuzzy PID with Filter plus Double Integral Controller. J. Frankl. Inst. 2018, 355, 4583–4617. [Google Scholar] [CrossRef]
- Arya, Y. A Novel CFFOPI-FOPID Controller for AGC Performance Enhancement of Single and Multi-Area Electric Power Systems. ISA Trans. 2020, 100, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Sahu, B.K.; Pati, T.K.; Nayak, J.R.; Panda, S.; Kar, S.K. A Novel Hybrid LUS-TLBO Optimized Fuzzy-PID Controller for Load Frequency Control of Multi-Source Power System. Int. J. Electr. Power Energy Syst. 2016, 74, 58–69. [Google Scholar] [CrossRef]
- Abd-Elazim, S.M.; Ali, E.S. Load Frequency Controller Design via BAT Algorithm for Nonlinear Interconnected Power System. Int. J. Electr. Power Energy Syst. 2016, 77, 166–177. [Google Scholar] [CrossRef]
- Behera, A.; Panigrahi, T.K.; Ray, P.K.; Sahoo, A.K. A Novel Cascaded PID Controller for Automatic Generation Control Analysis with Renewable Sources. IEEE/CAA J. Autom. Sin. 2019, 6, 1438–1451. [Google Scholar] [CrossRef]
- Zwayyer, F.J.; Abood, A.A.; Hussein, J.F. Improved Grey Wolf Optimizer Algorithm for PIDF Controller for AGC of Multi-Area Multi-Source Interconnected Power System. In Proceedings of the 2021 IEEE International Conference on Automatic Control & Intelligent Systems (I2CACIS), Shah Alam, Malaysia, 26 June 2021; pp. 386–391. [Google Scholar] [CrossRef]
- Pathak, N.; Hu, Z. Hybrid-Peak-Area-Based Performance Index Criteria for AGC of Multi-Area Power Systems. IEEE Trans. Ind. Inform. 2019, 15, 5792–5802. [Google Scholar] [CrossRef]
- Khadanga, R.K.; Kumar, A. Hybrid Adaptive ’Gbest’-Guided Gravitational Search and Pattern Search Algorithm for Automatic Generation Control of Multi-Area Power System. IET Gener. Transm. Distrib. 2017, 11, 3257–3267. [Google Scholar] [CrossRef]
- Tabak, A.; Duman, S. Maiden Application of TIDμ1NDμ2 Controller for Effective Load Frequency Control of Non-Linear Two-Area Power System. IET Renew. Power Gener. 2024, 18, 1269–1291. [Google Scholar] [CrossRef]
- Tabak, A.; Duman, S. Levy Flight and Fitness Distance Balance-Based Coyote Optimization Algorithm for Effective Automatic Generation Control of PV-Based Multi-Area Power Systems. Arab. J. Sci. Eng. 2022, 47, 14757–14788. [Google Scholar] [CrossRef]
- Tabak, A.; İlhan, İ. An Effective Method Based on Simulated Annealing for Automatic Generation Control of Power Systems. Appl. Soft Comput. 2022, 126, 109277. [Google Scholar] [CrossRef]
- Tabak, A. Fractional Order Frequency Proportional-Integral-Derivative Control of Microgrid Consisting of Renewable Energy Sources Based on Multi-Objective Grasshopper Optimization Algorithm. Trans. Inst. Meas. Control 2022, 44, 378–392. [Google Scholar] [CrossRef]
- El-Emary, A.; El-Shibina, M. Application of Static VAR Compensation for Load Frequency Control. Electr. Mach. Power Syst. 1997, 25, 1009–1022. [Google Scholar] [CrossRef]
- Chidambaram, I.A.; Paramasivam, B. Genetic Algorithm Based Decentralized Controller for Load–Frequency Control of Interconnected Power Systems with RFB Considering TCPS in the Tie-Line. Int. J. Electron. Eng. Res. 2009, 1, 299–312. [Google Scholar]
- Asano, H.; Yajima, K.; Kaya, Y. Influence of Photovoltaic Power Generation on Required Capacity for Load Frequency Control. IEEE Trans. Energy Convers. 1996, 11, 188–193. [Google Scholar] [CrossRef]
- Rasolomampionona, D.D. AGC and FACTS Stabilization Device Coordination in Interconnected Power System Control. In Proceedings of the 2003 IEEE Bologna Power Tech Conference Proceedings, Bologna, Italy, 23-26 June 2003; Volume 3, pp. 524–529. [Google Scholar] [CrossRef]
- Rasolomampionona, D.D. A Modified Power System Model for AGC Analysis. In Proceedings of the 2009 IEEE Bucharest PowerTech; Bucharest, Romania, 28 June–2 July 2009. [Google Scholar]
- Bhatt, P.; Ghoshal, S.P.; Roy, R. Load Frequency Stabilization by Coordinated Control of Thyristor Controlled Phase Shifters and Superconducting Magnetic Energy Storage for Three Types of Interconnected Two-Area Power Systems. Int. J. Electr. Power Energy Syst. 2010, 32, 1111–1124. [Google Scholar] [CrossRef]
- Kunisch, H.; Kramer, K.; Dominik, H. Battery Energy Storage, Another Option for Load-Frequency Control and Instantaneous Reserve. IEEE Trans. Energy Convers. 1986, EC-1, 41–46. [Google Scholar]
- Aditya, S.K.; Das, D. Battery Energy Storage for Load Frequency Control of an Interconnected Power System. Electr. Power Syst. Res. 2001, 58, 179–185. [Google Scholar] [CrossRef]
- Sasaki, T.; Kadoya, T.; Enomoto, K. Study on Load Frequency Control Using Redox Flow Batteries. IEEE Trans. Power Syst. 2004, 19, 660–667. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, Y. Coordinated Control Strategy of a Battery Energy Storage System to Support a Wind Power Plant Providing Multi-Timescale Frequency Ancillary Services. IEEE Trans. Sustain. Energy 2017, 8, 1140–1153. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, T.; Gooi, H.B.; Masiello, R.D.; Katzenstein, W. Penetration Rate and Effectiveness Studies of Aggregated BESS for Frequency Regulation. IEEE Trans. Smart Grid 2016, 7, 167–177. [Google Scholar] [CrossRef]
- Cheng, Y.; Tabrizi, M.; Sahni, M.; Povedano, A.; Nichols, D. Dynamic Available AGC Based Approach for Enhancing Utility Scale Energy Storage Performance. IEEE Trans. Smart Grid 2014, 5, 1070–1078. [Google Scholar] [CrossRef]
- Xie, X.; Guo, Y.; Wang, B.; Dong, Y.; Mou, L.; Xue, F. Improving AGC Performance of Coal-Fueled Thermal Generators Using Multi-MW Scale BESS: A Practical Application. IEEE Trans. Smart Grid 2018, 9, 1769–1777. [Google Scholar] [CrossRef]
- Chakraborty, T.; Watson, D.; Rodgers, M. Automatic Generation Control Using an Energy Storage System in a Wind Park. IEEE Trans. Power Syst. 2018, 33, 198–205. [Google Scholar] [CrossRef]
- Doenges, K.; Egido, I.; Sigrist, L.; Lobato Miguelez, E.; Rouco, L. Improving AGC Performance in Power Systems with Regulation Response Accuracy Margins Using Battery Energy Storage System (BESS). IEEE Trans. Power Syst. 2020, 35, 2816–2825. [Google Scholar] [CrossRef]
- Yakout, A.H.; Kotb, H.; Hasanien, H.M.; Aboras, K.M. Optimal Fuzzy PIDF Load Frequency Controller for Hybrid Microgrid System Using Marine Predator Algorithm. IEEE Access 2021, 9, 54220–54232. [Google Scholar] [CrossRef]
- Shim, J.W.; Verbic, G.; Kim, H.; Hur, K. On Droop Control of Energy-Constrained Battery Energy Storage Systems for Grid Frequency Regulation. IEEE Access 2019, 7, 166353–166364. [Google Scholar] [CrossRef]
- Hasan, M.M.; Chowdhury, A.H. An Improved Adaptive Hybrid Controller for Battery Energy Storage System to Enhance Frequency Stability of a Low Inertia Grid. J. Energy Storage 2023, 58, 106327. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, P.; Buja, G. Design and Analysis on Different Functions of Battery Energy Storage System for Thermal Power Units Frequency Regulation. Energy Rep. 2022, 8, 11981–11991. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Toulabi, M.; Ashouri-Zadeh, A.; Ranjbar, A.M. Battery Energy Storage Systems and Demand Response Applied to Power System Frequency Control. Int. J. Electr. Power Energy Syst. 2022, 136, 107680. [Google Scholar] [CrossRef]
- Sheikh, M.R.I.; Muyeen, S.M.; Takahashi, R.; Murata, T.; Tamura, J. Improvement of Load Frequency Control with Fuzzy Gain Scheduled Superconducting Magnetic Energy Storage Unit. In Proceedings of the 2008 18th International Conference on Electrical Machines, Vilamoura, Portugal, 6–9 September 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Tang, Y.; Liao, K.; Syed, M.H.; Guillo-Sansano, E.; Burt, G.M. Aggregated Energy Storage for Power System Frequency Control: A Finite-Time Consensus Approach. IEEE Trans. Smart Grid 2019, 10, 3675–3686. [Google Scholar] [CrossRef]
- Magdy, G.; Mohamed, E.A.; Shabib, G.; Elbaset, A.A.; Mitani, Y. SMES Based a New PID Controller for Frequency Stability of a Real Hybrid Power System Considering High Wind Power Penetration. IET Renew. Power Gener. 2018, 12, 1304–1313. [Google Scholar] [CrossRef]
- Ma, J.; Lu, C.; Wang, C.; Xia, Y.; Feng, Q.; Peng, Y. Automatic Generation Control of Virtual Power Plant for High-Proportion Heterogeneous Distributed Photovoltaics. In Proceedings of the 2023 2nd International Conference on Smart Grids and Energy Systems (SGES), Guangzhou, China, 25–27 August 2023; pp. 245–250. [Google Scholar] [CrossRef]
- Curtice, D.H.; Reddoch, T.W. An Assessment of Load Frequency Control Impacts Caused by Small Wind Turbines. IEEE Trans. Power Appar. Syst. 1983, PAS-102, 162–170. [Google Scholar] [CrossRef]
- Tripathy, S.C.; Balasubramanian, R.; Nair, P.S.C. Effect of Superconducting Magnetic Energy Storage on Automatic Generation Control Considering Governor Deadband and Boiler Dynamics. IEEE Trans. Power Syst. 1992, 7, 1266–1273. [Google Scholar] [CrossRef]
- Tripathy, S.C.; Juengst, K.P. Sampled Data Automatic Generation Control with Superconducting Magnetic Energy Storage in Power Systems. IEEE Trans. Energy Convers. 1997, 12, 187–192. [Google Scholar] [CrossRef]
- Demiroren, A.; Zeynelgil, H.L.; Sengor, N.S. Automatic Generation Control Using ANN Technique for Multi-Area Power System with SMES Units. Electr. Power Compon. Syst. 2004, 32, 193–213. [Google Scholar] [CrossRef]
- Demiroren, A.; Yesil, E. Automatic Generation Control with Fuzzy Logic Controllers in the Power System Including SMES Units. Int. J. Electr. Power Energy Syst. 2004, 26, 291–305. [Google Scholar] [CrossRef]
- Abraham, R.J.; Das, D.; Patra, A. Automatic Generation Control of an Interconnected Hydrothermal Power System Considering Superconducting Magnetic Energy Storage. Int. J. Electr. Power Energy Syst. 2007, 29, 571–579. [Google Scholar] [CrossRef]
- Ngamroo, I.; Mitani, Y.; Tsuji, K. Application of Solid-State Phase Shifter to Stabilization of System Frequency in an Interconnected Power System. Electr. Eng. Jpn. 2000, 132, 19–29. [Google Scholar] [CrossRef]
- Tripathy, S.C. Improved Load-Frequency Control with Capacitive Energy Storage. Energy Convers. Manag. 1997, 38, 551–562. [Google Scholar] [CrossRef]
- Rasolomampionona, D.; Anwar, S. Interaction between Phase Shifting Transformers Installed in the Tie-Lines of Interconnected Power Systems and Automatic Frequency Controllers. Int. J. Electr. Power Energy Syst. 2011, 33, 1351–1360. [Google Scholar] [CrossRef]
- Kumar Sahu, R.; Panda, S.; Biswal, A.; Chandra Sekhar, G.T. Design and Analysis of Tilt Integral Derivative Controller with Filter for Load Frequency Control of Multi-Area Interconnected Power Systems. ISA Trans. 2016, 61, 251–264. [Google Scholar] [CrossRef]
- Abraham, R.J.; Das, D.; Patra, A. AGC Study of a Hydrothermal System with SMES and TCPS. Eur. Trans. Electr. Power 2009, 19, 487–498. [Google Scholar] [CrossRef]
- Morsali, J.; Zare, K.; Tarafdar Hagh, M. A Novel Dynamic Model and Control Approach for SSSC to Contribute Effectively in AGC of a Deregulated Power System. Int. J. Electr. Power Energy Syst. 2018, 95, 239–253. [Google Scholar] [CrossRef]
- Pandey, K.; Sinha, S.K.; Shrivastava, A. Impact of FACTS Devices in Automatic Generation Control of a Deregulated Power System. In Proceedings of the 2016 7th India International Conference on Power Electronics (IICPE), Patiala, India, 17–19 November 2016. [Google Scholar] [CrossRef]
- Nayak, P.C.; Prusty, R.C.; Panda, S. Grasshopper Optimization Algorithm Optimized Multistage Controller for Automatic Generation Control of a Power System with FACTS Devices. Prot. Control Mod. Power Syst. 2021, 6, 1–15. [Google Scholar] [CrossRef]
- Nayak, P.C.; Rath, S.; Prusty, R.C. Performance Analysis of Different FACTS Devices Using Grey Wolf Optimization Algorithm PDF plus (1 + PI) Controller Based Multi-Area AGC System. In Proceedings of the 2020 International Conference on Renewable Energy Integration into Smart Grids: A Multidisciplinary Approach to Technology Modelling and Simulation (ICREISG), Piscataway, NJ, USA, 14–15 February 2020; pp. 143–148. [Google Scholar] [CrossRef]
- Kalyan, C.N.S.; Srikanth Goud, B.; Kiran Kumar, M.; Nagi Reddy, B.; Sambasiva Rao, G.; Bajaj, M. Performance Comparison of SSSC and TCSC Devices on Load Frequency Control of Interconnected Power System with Geothermal Power Plant Integration. In Proceedings of the 2022 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), Jakarta, Indonesia, 18–20 October 2022; pp. 31–36. [Google Scholar] [CrossRef]
- Pattnaik, G.P.; Sahu, P.C.; Prusty, R.C.; Panda, S. Optimal Design of Fuzzy Control Based IPFC and SMES in AGC of Multi Source Power System. In Proceedings of the 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC), Gunupur, Odisha, India, 15–17 December 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Widodo, D.L.; Setiadi, H. Enabling PID and SSSC for Load Frequency Control Using Particle Swarm Optimization. In Proceedings of the 2017 3rd International Conference on Science in Information Technology (ICSITech), Bandung, Indonesia, 25–26 October 2017; pp. 182–187. [Google Scholar] [CrossRef]
- Yu, S.; Chau, T.K.; Fernando, T.; Savkin, A.V.; Iu, H.H.C. Novel Quasi-Decentralized SMC-Based Frequency and Voltage Stability Enhancement Strategies Using Valve Position Control and FACTS Device. IEEE Access 2017, 5, 946–955. [Google Scholar] [CrossRef]
- Dash, P.; Saikia, L.C.; Sinha, N. AGC of a Multi-Area Interconnected System with FACTS and Firefly Optimized 2DOF PID Controller. In Proceedings of the 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC), Calcutta, India, 31 January–2 February 2014; pp. 397–401. [Google Scholar] [CrossRef]
- Riverso, S.; Sarzo, F.; Ferrari-Trecate, G. Plug-and-Play Decentralized Frequency Regulation for Power Networks with FACTS Devices. In Proceedings of the 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), Venice, Italy, 3–6 November 2014; pp. 79–84. [Google Scholar] [CrossRef]
- Bhagat, S.K.; Chandra Saikia, L.; Babu, N.R.; Dekaraja, B.; Ramoji, S.K.; Kumar Behera, M.; Das, S. Effect of Various FACTS Devices and HVDC Link on Multi-Area Power System Utilizing 2DOF-TIDN Controller. In Proceedings of the 2022 4th International Conference on Energy, Power and Environment (ICEPE), Shillong, India, 29 April–1 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Patel, A.; Bhongade, S. Designing of Load Frequency Controller for Two-Area Interconnected Power System Using Grey Wolf Optimization. In Proceedings of the 2019 International Conference on Computing, Power and Communication Technologies (GUCON), New Delhi, India, 27–28 September 2019; pp. 318–325. [Google Scholar]
- Khan, K.L.; Yousuf, V.; Bhat, A.H. Alleviation of Frequency Oscillations in UPFC Based Multi-Area Power System Using Fuzzy Logic Controller. In Proceedings of the 2022 4th International Conference on Energy, Power and Environment (ICEPE), Shillong, India, 29 April–1 May; pp. 1–6. [CrossRef]
- Kumar, A.; Shankar, R. A Cascade Fractional and Fuzzy Controller for Hybrid Power System with FACTS Device. In Proceedings of the 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 24–25 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, P.; Qin, B. Automatic Generation Control Design of Doubly-Fed Induction Generator Integrated Power System Based on Distributed Model Predictive Control. In Proceedings of the 2023 5th International Conference on Power and Energy Technology (ICPET), Tianjin, China, 27–30 July 2023; pp. 736–741. [Google Scholar] [CrossRef]
- Liu, D.; Wu, Y.; Kang, Y.; Li, C.; Ji, X.; Zhang, X. Graph Convolution Network for Real-Time AGC Dispatch with High-Penetration Renewable Energy. CSEE J. Power Energy Syst. 2022. [Google Scholar] [CrossRef]
- Gulzar, M.M. Designing of Robust Frequency Stabilization Using Optimized MPC-(1 + PIDN) Controller for High Order Interconnected Renewable Energy Based Power Systems. Prot. Control Mod. Power Syst. 2023, 8, 1–14. [Google Scholar] [CrossRef]
- Saxena, A.; Al Zaabi, O.; Sankar, R.; Al Jaafari, K.; Al Hosani, K.; Muduli, U.R. Improving AGC Performance with Hybrid Energy Storage Systems for Enhanced Utilization of Renewable Energy. In Proceedings of the 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 29 October–2 November 2023; pp. 545–550. [Google Scholar] [CrossRef]
- Lei, C.; Zhao, L.; Fei, X. Capacity Optimization of Joint Thermal-Storage System for Frequency Regulation Considering Battery Life. In Proceedings of the 2023 5th International Conference on Power and Energy Technology (ICPET), Tianjin, China, 27–30 July 2023; pp. 341–348. [Google Scholar] [CrossRef]
- Ganger, D.; Zhang, J.; Vittal, V. Forecast-Based Anticipatory Frequency Control in Power Systems. IEEE Trans. Power Syst. 2018, 33, 1004–1012. [Google Scholar] [CrossRef]
- Daraz, A.; Malik, S.A.; Azar, A.T.; Aslam, S.; Alkhalifah, T.; Alturise, F. Optimized Fractional Order Integral-Tilt Derivative Controller for Frequency Regulation of Interconnected Diverse Renewable Energy Resources. IEEE Access 2022, 10, 43514–43527. [Google Scholar] [CrossRef]
- Datta, A.; Bhattacharjee, K.; Debbarma, S.; Kar, B. Load Frequency Control of a Renewable Energy Sources Based Hybrid System. In Proceedings of the 2015 IEEE Conference on Systems, Process and Control (ICSPC); Bandar Sunway, Malaysia, 18–20 December 2015; pp. 34–38. [Google Scholar]
- Behera, S.; Biswal, A.; Swain, B.; Samantray, S. Hybrid Power Systems Frequency Regulation Using TID Based Robust Controller Design and Differential Evolution (DE) Algorithm. In Proceedings of the 2018 Technologies for Smart-City Energy Security and Power (ICSESP); Bhubaneswar, India, 28–30 March 2018. [Google Scholar]
- Nour, M.; Magdy, G.; Chaves-Avila, J.P.; Sanchez-Miralles, A.; Petlenkov, E. Automatic Generation Control of a Future Multisource Power System Considering High Renewables Penetration and Electric Vehicles: Egyptian Power System in 2035. IEEE Access 2022, 10, 51662–51681. [Google Scholar] [CrossRef]
- Sobhy, M.A.; Abdelaziz, A.Y.; Hasanien, H.M.; Ezzat, M. Marine Predators Algorithm for Load Frequency Control of Modern Interconnected Power Systems Including Renewable Energy Sources and Energy Storage Units. Ain Shams Eng. J. 2021, 12, 3843–3857. [Google Scholar] [CrossRef]
- Irudayaraj, A.X.R.; Wahab, N.I.A.; Premkumar, M.; Radzi, M.A.M.; Sulaiman, N.B.; Veerasamy, V.; Farade, R.A.; Islam, M.Z. Renewable Sources-Based Automatic Load Frequency Control of Interconnected Systems Using Chaotic Atom Search Optimization [Formula Presented]. Appl. Soft Comput. 2022, 119, 108574. [Google Scholar] [CrossRef]
- Fan, L.; Miao, Z.; Osborn, D. Wind Farms with HVDC Delivery in Load Frequency Control. IEEE Trans. Power Syst. 2009, 24, 1894–1895. [Google Scholar] [CrossRef]
- Yousri, D.; Babu, T.S.; Fathy, A. Recent Methodology Based Harris Hawks Optimizer for Designing Load Frequency Control Incorporated in Multi-Interconnected Renewable Energy Plants. Sustain. Energy Grids Netw. 2020, 22, 100352. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, V.; Naresh, R. Leader Harris Hawks Algorithm Based Optimal Controller for Automatic Generation Control in PV-Hydro-Wind Integrated Power Network. Electr. Power Syst. Res. 2023, 214, 108924. [Google Scholar] [CrossRef]
- Schlueter, R.A.; Park, G.L.; Lotfalian, M.; Shayanfar, H.; Dorsey, J. Modification of Power System Operation for Significant Wind Generation Penetration. IEEE Trans. Power Appar. Syst. 1983, PAS-102, 153–161. [Google Scholar] [CrossRef]
- Kayikçi, M.; Milanović, J.V. Dynamic Contribution of DFIG-Based Wind Plants to System Frequency Disturbances. IEEE Trans. Power Syst. 2009, 24, 859–867. [Google Scholar] [CrossRef]
- de Almeida, R.G.; Peças Lopes, J.A. Participation of Doubly Fed Induction Wind Generators in System Frequency Regulation. IEEE Trans. Power Syst. 2007, 22, 944–950. [Google Scholar] [CrossRef]
- Hughes, F.M.; Anaya-Lara, O.; Jenkins, N.; Strbac, G. Control of DFIG-Based Wind Generation for Power Network Support. IEEE Trans. Power Syst. 2005, 20, 1958–1966. [Google Scholar] [CrossRef]
- Senjyu, T.; Nakaji, T.; Uezato, K.; Funabashi, T. A Hybrid Power System Using Alternative Energy Facilities in Isolated Island. IEEE Trans. Energy Convers. 2005, 20, 406–414. [Google Scholar] [CrossRef]
- Doherty, R.; Mullane, A.; Nolan, G.; Burke, D.J.; Bryson, A.; O’Malley, M. An Assessment of the Impact of Wind Generation on System Frequency Control. IEEE Trans. Power Syst. 2010, 25, 452–460. [Google Scholar] [CrossRef]
- Nayeripour, M.; Hoseintabar, M.; Niknam, T. Frequency Deviation Control by Coordination Control of FC and Double-Layer Capacitor in an Autonomous Hybrid Renewable Energy Power Generation System. Renew. Energy 2011, 36, 1741–1746. [Google Scholar] [CrossRef]
- Khalid, M.; Savkin, A.V. An Optimal Operation of Wind Energy Storage System for Frequency Control Based on Model Predictive Control. Renew. Energy 2012, 48, 127–132. [Google Scholar] [CrossRef]
- Kaneko, T.; Uehara, A.; Senjyu, T.; Yona, A.; Urasaki, N. An Integrated Control Method for a Wind Farm to Reduce Frequency Deviations in a Small Power System. Appl. Energy 2011, 88, 1049–1058. [Google Scholar] [CrossRef]
- Mohamed, T.H.; Morel, J.; Bevrani, H.; Hiyama, T. Model Predictive Based Load Frequency Control-Design Concerning Wind Turbines. Int. J. Electr. Power Energy Syst. 2012, 43, 859–867. [Google Scholar] [CrossRef]
- Bhatt, P.; Ghoshal, S.P.; Roy, R. Coordinated Control of TCPS and SMES for Frequency Regulation of Interconnected Restructured Power Systems with Dynamic Participation from DFIG Based Wind Farm. Renew. Energy 2012, 40, 40–50. [Google Scholar] [CrossRef]
- Verma, Y.P.; Kumar, A. Participation of Doubly Fed Induction Generator Based Wind Turbine in Frequency Regulation with Frequency-Linked Pricing. Electr. Power Compon. Syst. 2012, 40, 1586–1604. [Google Scholar] [CrossRef]
- Masuta, T.; Yokoyama, A. Supplementary Load Frequency Control by Use of a Number of Both Electric Vehicles and Heat Pump Water Heaters. IEEE Trans. Smart Grid 2012, 3, 1253–1262. [Google Scholar] [CrossRef]
- Moutis, P.; Papathanassiou, S.A.; Hatziargyriou, N.D. Improved Load-Frequency Control Contribution of Variable Speed Variable Pitch Wind Generators. Renew. Energy 2012, 48, 514–523. [Google Scholar] [CrossRef]
- Anaya-Lara, O.; Hughes, F.M.; Jenkins, N.; Strbac, G. Contribution of DFIG-Based Wind Farms to Power System Short-Term Frequency Regulation. IEE Proc. C Gener. Transm. Distrib. 2006, 153, 164–170. [Google Scholar] [CrossRef]
- Kazemi, M.V.; Gholamian, S.A.; Sadati, J. Adaptive Frequency Control with Variable Speed Wind Turbines Using Data Driven Method. J. Renew. Sustain. Energy 2019, 11, 043305. [Google Scholar] [CrossRef]
- Abazari, A.; Monsef, H.; Wu, B. Coordination Strategies of Distributed Energy Resources Including FESS, DEG, FC and WTG in Load Frequency Control (LFC) Scheme of Hybrid Isolated Micro-Grid. Int. J. Electr. Power Energy Syst. 2019, 109, 535–547. [Google Scholar] [CrossRef]
- Babu, N.R.; Saikia, L.C. Automatic Generation Control of a Solar Thermal and Dish-Stirling Solar Thermal System Integrated Multi-Area System Incorporating Accurate HVDC Link Model Using Crow Search Algorithm Optimised FOPI Minus FODF Controller. IET Renew. Power Gener. 2019, 13, 2221–2231. [Google Scholar] [CrossRef]
- Babu, N.R.; Saikia, L.C. Load Frequency Control of a Multi-Area System Incorporating Realistic High-Voltage Direct Current and Dish-Stirling Solar Thermal System Models under Deregulated Scenario. IET Renew. Power Gener. 2021, 15, 1116–1132. [Google Scholar] [CrossRef]
- Ram Babu, N.; Saikia, L.C. AGC of a Multiarea System Incorporating Accurate HVDC and Precise Wind Turbine Systems. Int. Trans. Electr. Energy Syst. 2020, 30, e12277. [Google Scholar] [CrossRef]
- Panwar, A.; Sharma, G.; Nasiruddin, I.; Bansal, R.C. Frequency Stabilization of Hydro–Hydro Power System Using Hybrid Bacteria Foraging PSO with UPFC and HAE. Electr. Power Syst. Res. 2018, 161, 74–85. [Google Scholar] [CrossRef]
- Biswas, S.; Roy, P.K.; Chatterjee, K. FACTS-Based 3DOF-PID Controller for LFC of Renewable Power System Under Deregulation Using GOA. IETE J. Res. 2023, 69, 1486–1499. [Google Scholar] [CrossRef]
- Machida, T.; Yoshida, Y.; Nakamura, H. A Method of Automatic Frequency Ratio Control by a DC System. IEEE Trans. Power Appar. Syst. 1967, PAS-86, 263–267. [Google Scholar]
- Yoshida, Y.; Machida, T. Study of the Effect of the DC Link on Frequency. IEEE Trans. Power Appar. Syst. 1969, PAS-88, 1036–1042. [Google Scholar]
- Bengiamin, N.N.; Chan, W.C. 3-Level Load-Frequency Control of Power Systems Interconnected by Asynchronous Tie Lines. Proc. IEE 1979, 126, 1198–1200. [Google Scholar] [CrossRef]
- Rostamkolai, N.; Wegner, C.A.; Piwko, R.J.; Elahi, H.; Eitzmann, M.A.; Garzi, G.; Tietz, P. Control Design of Santo Tome Back-to-Back HVDC Link. IEEE Trans. Power Syst. 1993, 8, 1250–1256. [Google Scholar] [CrossRef]
- Ibraheem; Kumar, P.; Ahmad, S. Dynamic Performance Enhancement of Hydro-Power Systems with Asynchronous Tie-Lines. J. Inst. Eng. Electr. Eng. Div. 2004, 85, 23–24. [Google Scholar]
- Ibraheem; Kumar, P. Study of Dynamic Performance of Power Systems with Asynchronous Tie-Lines Considering Parameter Uncertainties. J. Inst. Eng. Electr. Eng. Div. 2004, 85, 35–42. [Google Scholar]
- Pham, T.N.; Trinh, H.; Van Hien, L. Load Frequency Control of Power Systems with Electric Vehicles and Diverse Transmission Links Using Distributed Functional Observers. IEEE Trans. Smart Grid 2016, 7, 238–252. [Google Scholar] [CrossRef]
- Ibraheem; Nizamuddin; Bhatti, T.S. AGC of Two Area Power System Interconnected by AC/DC Links with Diverse Sources in Each Area. Int. J. Electr. Power Energy Syst. 2014, 55, 297–304. [Google Scholar] [CrossRef]
- Junyent-Ferré, A.; Pipelzadeh, Y.; Green, T.C. Blending HVDC-Link Energy Storage and Offshore Wind Turbine Inertia for Fast Frequency Response. IEEE Trans. Sustain. Energy 2015, 6, 1059–1066. [Google Scholar] [CrossRef]
- Rakhshani, E.; Remon, D.; Cantarellas, A.M.; Garcia, J.M.; Rodriguez, P. Virtual Synchronous Power Strategy for Multiple HVDC Interconnections of Multi-Area AGC Power Systems. IEEE Trans. Power Syst. 2017, 32, 1665–1677. [Google Scholar] [CrossRef]
- Pathak, N.; Verma, A.; Bhatti, T.S.; Nasiruddin, I. Modeling of HVDC Tie Links and Their Utilization in AGC/LFC Operations of Multiarea Power Systems. IEEE Trans. Ind. Electron. 2019, 66, 2185–2197. [Google Scholar] [CrossRef]
- McNamara, P.; Milano, F. Model Predictive Control-Based AGC for Multi-Terminal HVDC-Connected AC Grids. IEEE Trans. Power Syst. 2017, 33, 1036–1048. [Google Scholar] [CrossRef]
- Suh, J.; Yoon, D.H.; Cho, Y.S.; Jang, G. Flexible Frequency Operation Strategy of Power System with High Renewable Penetration. IEEE Trans. Sustain. Energy 2017, 8, 192–199. [Google Scholar] [CrossRef]
- Sahin, E. Design of an Optimized Fractional High Order Differential Feedback Controller for Load Frequency Control of a Multi-Area Multi-Source Power System with Nonlinearity. IEEE Access 2020, 8, 12327–12342. [Google Scholar] [CrossRef]
- Guan, M.; Cheng, J.; Wang, C.; Hao, Q.; Pan, W.; Zhang, J.; Zheng, X. The Frequency Regulation Scheme of Interconnected Grids with VSC-HVDC Links. IEEE Trans. Power Syst. 2017, 32, 864–872. [Google Scholar] [CrossRef]
- Zhu, J.; Booth, C.D.; Adam, G.P.; Roscoe, A.J.; Bright, C.G. Inertia Emulation Control Strategy for VSC-HVDC Transmission Systems. IEEE Trans. Power Syst. 2013, 28, 1277–1287. [Google Scholar] [CrossRef]
- Lim, K.Y.; Wang, Y.; Zhou, R. Decentralised Robust Load-Frequency Control in Coordination with Frequency-Controllable HVDC Links. Int. J. Electr. Power Energy Syst. 1997, 19, 423–431. [Google Scholar] [CrossRef]
- Rakhshani, E.; Remon, D.; Rodriguez, P. Effects of PLL and Frequency Measurements on LFC Problem in Multi-Area HVDC Interconnected Systems. Int. J. Electr. Power Energy Syst. 2016, 81, 140–152. [Google Scholar] [CrossRef]
- Sridhar, S.; Govindarasu, M. Model-Based Attack Detection and Mitigation for Automatic Generation Control. IEEE Trans. Smart Grid 2014, 5, 580–591. [Google Scholar] [CrossRef]
- Sargolzaei, A.; Yen, K.; Abdelghani, M.N. Delayed Inputs Attack on Load Frequency Control in Smart Grid. In Proceedings of the ISGT 2014, Washington, DC, USA, 19–22 February 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Rahimi, K.; Parchure, A.; Centeno, V.; Broadwater, R. Effect of Communication Time-Delay Attacks on the Performance of Automatic Generation Control. In Proceedings of the North American Power Symposium (NAPS), Charlotte, NC, USA, 4–6 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Law, Y.W.; Alpcan, T.; Palaniswami, M. Security Games for Risk Minimization in Automatic Generation Control. IEEE Trans. Power Syst. 2015, 30, 223–232. [Google Scholar] [CrossRef]
- Hassan, M.; Roy, N.K.; Sahabuddin, M. Mitigation of Frequency Disturbance in Power Systems during Cyber-Attack. In Proceedings of the 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), Rajshahi, Bangladesh, 8–10 December 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Biswas, S.; Sarwat, A. Vulnerabilities in Two-Area Automatic Generation Control Systems under Cyberattack. In Proceedings of the 2016 Resilience Week (RWS), Chicago, IL, USA, 16–18 August 2016; pp. 40–45. [Google Scholar] [CrossRef]
- Khalaf, M.; Youssef, A.; El-Saadany, E. Detection of False Data Injection in Automatic Generation Control Systems Using Kalman Filter. In Proceedings of the 2017 IEEE Electrical Power and Energy Conference (EPEC), Saskatoon, SK, Canada, 22–25 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Tan, R.; Nguyen, H.H.; Foo, E.Y.S.; Dong, X.; Yau, D.K.Y.; Kalbarczyk, Z.; Iyer, R.K.; Gooi, H.B. Optimal False Data Injection Attack against Automatic Generation Control in Power Grids. In Proceedings of the 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), Vienna, Austria, 11–14 April 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Tan, R.; Nguyen, H.H.; Foo, E.Y.S.; Yau, D.K.Y.; Kalbarczyk, Z.; Iyer, R.K.; Gooi, H.B. Modeling and Mitigating Impact of False Data Injection Attacks on Automatic Generation Control. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1609–1624. [Google Scholar] [CrossRef]
- Peng, C.; Li, J.; Fei, M. Resilient Event-Triggering H∞ Load Frequency Control for Multi-Area Power Systems with Energy-Limited DoS Attacks. IEEE Trans. Power Syst. 2017, 32, 4110–4118. [Google Scholar] [CrossRef]
- Huang, T.; Satchidanandan, B.; Kumar, P.R.; Xie, L. An Online Detection Framework for Cyber Attacks on Automatic Generation Control. IEEE Trans. Power Syst. 2018, 33, 6816–6827. [Google Scholar] [CrossRef]
- Ameli, A.; Hooshyar, A.; El-Saadany, E.F.; Youssef, A.M. Attack Detection and Identification for Automatic Generation Control Systems. IEEE Trans. Power Syst. 2018, 33, 4760–4774. [Google Scholar] [CrossRef]
- Ameli, A.; Hooshyar, A.; Yazdavar, A.H.; El-Saadany, E.F.; Youssef, A. Attack Detection for Load Frequency Control Systems Using Stochastic Unknown Input Estimators. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2575–2590. [Google Scholar] [CrossRef]
- Khalaf, M.; Youssef, A.; El-Saadany, E. A Particle Filter-Based Approach for the Detection of False Data Injection Attacks on Automatic Generation Control Systems. In Proceedings of the 2018 IEEE Electrical Power and Energy Conference (EPEC), Toronto, ON, Canada, 10–11 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Su, X. Sliding Mode Observer-Based Load Frequency Control of Multi-Area Power Systems under Delayed Inputs Attack. In Proceedings of the 2018 Chinese Control and Decision Conference (CCDC); Shenyang, China, 9–11 June 2018. [Google Scholar]
- Chen, C.; Cui, M.; Wang, X.; Zhang, K.; Yin, S. An Investigation of Coordinated Attack on Load Frequency Control. IEEE Access 2018, 6, 30414–30423. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, K.; Yuan, K.; Zhu, L.; Qian, M. Novel Detection Scheme Design Considering Cyber Attacks on Load Frequency Control. IEEE Trans. Ind. Inform. 2018, 14, 1932–1941. [Google Scholar] [CrossRef]
- Alhalali, S.; Nielsen, C.; El-Shatshat, R. Mitigation of Cyber-Physical Attacks in Multi-Area Automatic Generation Control. Int. J. Electr. Power Energy Syst. 2019, 112, 362–369. [Google Scholar] [CrossRef]
- Khalaf, M.; Youssef, A.; El-Saadany, E. Joint Detection and Mitigation of False Data Injection Attacks in AGC Systems. IEEE Trans. Smart Grid 2019, 10, 4985–4995. [Google Scholar] [CrossRef]
- Roy, S.D.; Debbarma, S. Detection and Mitigation of Cyber-Attacks on AGC Systems of Low Inertia Power Grid. IEEE Syst. J. 2020, 14, 2023–2031. [Google Scholar] [CrossRef]
- Chen, C.; Cui, M.; Fang, X.; Ren, B.; Chen, Y. Load Altering Attack-Tolerant Defense Strategy for Load Frequency Control System. Appl. Energy 2020, 280, 116015. [Google Scholar] [CrossRef]
- Tian, E.; Peng, C. Memory-Based Event-Triggering H∞ Load Frequency Control for Power Systems under Deception Attacks. IEEE Trans. Cybern. 2020, 50, 4610–4618. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, A.; Sargolzaei, A.; Forouzannezhad, P.; Yen, K.K.; Sarwat, A.I. Resilient Control Design for Load Frequency Control System under False Data Injection Attacks. IEEE Trans. Ind. Electron. 2020, 67, 7951–7962. [Google Scholar] [CrossRef]
- Li, Y.; Huang, R.; Ma, L. False Data Injection Attack and Defense Method on Load Frequency Control. IEEE Internet Things J. 2021, 8, 2910–2919. [Google Scholar] [CrossRef]
- Tummala, A.S.L.V.; Inapakurthi, R.K. A Two-Stage Kalman Filter for Cyber-Attack Detection in Automatic Generation Control System. J. Mod. Power Syst. Clean Energy 2022, 10, 50–59. [Google Scholar] [CrossRef]
- Jafari, M.; Rahman, M.A.; Paudyal, S. Optimal False Data Injection Attack Against Load-Frequency Control in Power Systems. IEEE Trans. Inf. Forensics Secur. 2023, 18, 5200–5212. [Google Scholar] [CrossRef]
- Cai, M.; Wang, W.; Fang, X.; Florita, A.R.; Ingram, M.; Christensen, D. Demonstrating the Transient System Impact of Cyber-Physical Events through Scalable Transmission and Distribution (T & D) Co-Simulation. CSEE J. Power Energy Syst. 2023, 1–10. [Google Scholar] [CrossRef]
- Behdadnia, T.; Thoelen, K.; Zobiri, F.; Deconinck, G. Leveraging Deep Learning to Increase the Success Rate of DoS Attacks in PMU-Based Automatic Generation Control Systems. IEEE Trans. Ind. Inform. 2023, 20, 1–14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasolomampionona, D.D.; Połecki, M.; Zagrajek, K.; Wróblewski, W.; Januszewski, M. A Comprehensive Review of Load Frequency Control Technologies. Energies 2024, 17, 2915. https://doi.org/10.3390/en17122915
Rasolomampionona DD, Połecki M, Zagrajek K, Wróblewski W, Januszewski M. A Comprehensive Review of Load Frequency Control Technologies. Energies. 2024; 17(12):2915. https://doi.org/10.3390/en17122915
Chicago/Turabian StyleRasolomampionona, Désiré D., Michał Połecki, Krzysztof Zagrajek, Wiktor Wróblewski, and Marcin Januszewski. 2024. "A Comprehensive Review of Load Frequency Control Technologies" Energies 17, no. 12: 2915. https://doi.org/10.3390/en17122915
APA StyleRasolomampionona, D. D., Połecki, M., Zagrajek, K., Wróblewski, W., & Januszewski, M. (2024). A Comprehensive Review of Load Frequency Control Technologies. Energies, 17(12), 2915. https://doi.org/10.3390/en17122915