Fast Pyrolysis of Municipal Green Waste in an Auger Reactor: Effects of Residence Time and Particle Size on the Yield and Characteristics of Produced Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock and Sample Preparation
2.2. Experimental Setup
2.3. Experimental Procedure
2.4. Characterization of MGW and Produced Bio-Oil
3. Results and Discussion
3.1. Characterization of MGW
3.2. Yield of Pyrolysis Products
3.2.1. Effect of Residence Time
3.2.2. Effect of Particle Size
3.3. Characterization of Bio-Oil
3.3.1. FTIR Analysis
3.3.2. GC–MS Analysis
3.3.3. Physicochemical Properties Analysis
Properties | Residence Times | Particle Sizes | ASTM Grade G [81] | ASTM Grade D [82] | Heavy Fuel Oil [83] | Light Fuel Oil [75] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 min | 2 min | 3 min | 4 min | 1 mm | 2 mm | 6 mm | 10 mm | |||||
Kinematic viscosity @40 °C (cSt) | 13.21 | 12.78 | 12.17 | 12.51 | 12.68 | 12.17 | 12.99 | 13.54 | Maximum 125 | Maximum 125 | 180–420 | 2–4.5 |
Density @30 °C (g/cc) | 1.17 | 1.14 | 1.13 | 1.14 | 1.17 | 1.13 | 1.19 | 1.21 | 1.1–1.3 | 1.1–1.3 | 0.99–0.995 | Maximum 0.845 |
pH | 3.7 | 3.5 | 3.6 | 3.7 | 3.5 | 3.6 | 3.6 | 3.7 | – | – | – | – |
Cetane number | 38 | 38 | 40 | 39 | 39 | 40 | 38 | 39 | – | – | 35–55 | 38–40 |
Water content (wt%) | 26.43 | 27.87 | 28.72 | 29.51 | 28.97 | 28.72 | 26.34 | 25.93 | Maximum 30 | Maximum 30 | ~0 | ~0 |
Flash point (°C) | 86 | 87 | 90 | 91 | 91 | 90 | 85 | 83 | – | – | 90–180 | 52–82 |
Calorific value (MJ/kg) | 25.81 | 25.45 | 25.13 | 24.99 | 24.51 | 25.13 | 25.71 | 25.89 | Minimum 15 | Minimum 15 | 40.6 | 42.6 |
4. Conclusions
- MGW contained high carbon (47.32%) and lignin (24.92%) content, highlighting its suitability for pyrolysis.
- A maximum bio-oil yield of 39.86% was achieved with a residence time of 3 min and a particle size of 2 mm, optimizing the pyrolysis reaction and heat transfer.
- Phenolic compounds increased with longer residence times and larger particle sizes, while acidic compounds decreased.
- The presence of hydrocarbons like benzene (5.67% peak area) and toluene (2.45% peak area) indicates potential for fuel production.
- High acetic acid content (15.44% peak area) suggests challenges related to acidity that must be addressed for fuel applications.
- Bio-oils exhibited high viscosity and water content, necessitating upgrading for engine use but suitable for heating applications in boilers and furnaces.
- Upgrading methods, such as hydrodeoxygenation, catalytic cracking, distillation, esterification, and emulsification, are suggested to enhance bio-oil quality for broader applications.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velghe, I.; Carleer, R.; Yperman, J.; Schreurs, S. Study of the pyrolysis of municipal solid waste for the production of valuable products. J. Anal. Appl. Pyrolysis 2011, 92, 366–375. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Brown, R.J.; Senadeera, W.; Ashwath, N.; Rasul, M.G.; Rahman, M.M.; Hossain, F.M.; Moghaddam, L.; Islam, M.A.; O’Hara, I.M. Physio-chemical assessment of beauty leaf (Calophyllum inophyllum) as second-generation biodiesel feedstock. Energy Rep. 2015, 1, 204–215. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels Production through Biomass Pyrolysis—A Technological Review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Cepic, Z.; Nakomcic-Smaragdakis, B.; Miljkovic, B.; Radovanovic, L.; Djuric, S. Combustion characteristics of wheat straw in a fixed bed. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 1007–1013. [Google Scholar] [CrossRef]
- Tanoh, T.S.; Ait Oumeziane, A.; Lemonon, J.; Escudero Sanz, F.J.; Salvador, S. Green Waste/Wood Pellet Pyrolysis in a Pilot-Scale Rotary Kiln: Effect of Temperature on Product Distribution and Characteristics. Energy Fuels 2020, 34, 3336–3345. [Google Scholar] [CrossRef]
- Aysu, T.; Durak, H. Catalytic pyrolysis of liquorice (Glycyrrhiza glabra L.) in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and character. J. Anal. Appl. Pyrolysis 2015, 111, 156–172. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Jahirul, M.I. Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments. Renew. Sustain. Energy Rev. 2021, 145, 111073. [Google Scholar] [CrossRef]
- Khan, S.; Kay, L.A.N.; Qureshi, K.M.; Abnisa, F.; Wan Daud, W.M.A.; Patah, M.F.A. A review on deoxygenation of triglycerides for jet fuel range hydrocarbons. J. Anal. Appl. Pyrolysis 2019, 140, 1–24. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Raghavan, V. Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosyst. Eng. 2017, 161, 80–92. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Hasan, M.D.M.; Wang, X.S.; Mourant, D.; Gunawan, R.; Yu, C.; Hu, X.; Kadarwati, S.; Gholizadeh, M.; Wu, H.; Li, B.; et al. Grinding pyrolysis of Mallee wood: Effects of pyrolysis conditions on the yields of bio-oil and biochar. Fuel Process. Technol. 2017, 167, 215–220. [Google Scholar] [CrossRef]
- Sohaib, Q.; Habib, M.; Fawad Ali Shah, S.; Habib, U.; Ullah, S. Fast pyrolysis of locally available green waste at different residence time and temperatures. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 1639–1646. [Google Scholar] [CrossRef]
- Solar, J.; de Marco, I.; Caballero, B.M.; Lopez-Urionabarrenechea, A.; Rodriguez, N.; Agirre, I.; Adrados, A. Influence of temperature and residence time in the pyrolysis of woody biomass waste in a continuous screw reactor. Biomass Bioenergy 2016, 95, 416–423. [Google Scholar] [CrossRef]
- Cuypers, F.; Helsen, L. Pyrolysis of chromated copper arsenate (CCA) treated wood waste at elevated pressure: Influence of particle size, heating rate, residence time, temperature and pressure. J. Anal. Appl. Pyrolysis 2011, 92, 111–122. [Google Scholar] [CrossRef]
- Newalkar, G.; Iisa, K.; D’Amico, A.D.; Sievers, C.; Agrawal, P. Effect of Temperature, Pressure, and Residence Time on Pyrolysis of Pine in an Entrained Flow Reactor. Energy Fuels 2014, 28, 5144–5157. [Google Scholar] [CrossRef]
- Luo, S.; Xiao, B.; Hu, Z.; Liu, S. Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. Int. J. Hydrogen Energy 2010, 35, 93–97. [Google Scholar] [CrossRef]
- Yorgun, S.; Yıldız, D. Slow pyrolysis of paulownia wood: Effects of pyrolysis parameters on product yields and bio-oil characterization. J. Anal. Appl. Pyrolysis 2015, 114, 68–78. [Google Scholar] [CrossRef]
- Varma, A.K.; Thakur, L.S.; Shankar, R.; Mondal, P. Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products. Waste Manag. 2019, 89, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Bennadji, H.; Smith, K.; Serapiglia, M.J.; Fisher, E.M. Effect of Particle Size on Low-Temperature Pyrolysis of Woody Biomass. Energy Fuels 2014, 28, 7527–7537. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Li, K.; Zhu, X. Two-step pyrolysis of corncob for value-added chemicals and high quality bio-oil: Effects of pyrolysis temperature and residence time. Energy Convers. Manag. 2018, 166, 260–267. [Google Scholar] [CrossRef]
- Singh, A.; Nanda, S.; Guayaquil-Sosa, J.F.; Berruti, F. Pyrolysis of Miscanthus and characterization of value-added bio-oil and biochar products. Can. J. Chem. Eng. 2021, 99 (Suppl. S1), S55–S68. [Google Scholar] [CrossRef]
- Xiong, Z.; Fang, Z.; Jiang, L.; Han, H.; He, L.; Xu, K.; Xu, J.; Su, S.; Hu, S.; Wang, Y.; et al. Comparative study of catalytic and non-catalytic steam reforming of bio-oil: Importance of pyrolysis temperature and its parent biomass particle size during bio-oil production process. Fuel 2022, 314, 122746. [Google Scholar] [CrossRef]
- Charis, G.; Danha, G.; Muzenda, E. Optimizing Yield and Quality of Bio-Oil: A Comparative Study of Acacia tortilis and Pine Dust. Processes 2020, 8, 551. [Google Scholar] [CrossRef]
- ASTM E871-82; Standard Test Method for Moisture Analysis of Particulate Wood Fuels. ASTM International: West Conshohocken, PA, USA, 2019.
- Abitbol, T.; Marway, H.; Cranston, E.D. Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide. Nord. Pulp Pap. Res. J. 2014, 29, 46–57. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rasul, M.G.; Ashwath, N.; Khan, M.M.K.; Jahirul, M.I. Fast pyrolysis of Beauty Leaf Fruit Husk (BLFH) in an auger reactor: Effect of temperature on the yield and physicochemical properties of BLFH oil. Renew. Energy 2022, 194, 1098–1109. [Google Scholar] [CrossRef]
- Kumar Mishra, R.; Mohanty, K. Kinetic analysis and pyrolysis behavior of low-value waste lignocellulosic biomass for its bioenergy potential using thermogravimetric analyzer. Mater. Sci. Energy Technol. 2021, 4, 136–147. [Google Scholar] [CrossRef]
- Singh, R.K.; Pandey, D.; Patil, T.; Sawarkar, A.N. Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresour. Technol. 2020, 310, 123464. [Google Scholar] [CrossRef] [PubMed]
- Mumbach, G.D.; Alves, J.L.F.; da Silva, J.C.G.; Domenico, M.D.; Arias, S.; Pacheco, J.G.A.; Marangoni, C.; Machado, R.A.F.; Bolzan, A. Prospecting pecan nutshell pyrolysis as a source of bioenergy and bio-based chemicals using multicomponent kinetic modeling, thermodynamic parameters estimation, and Py-GC/MS analysis. Renew. Sustain. Energy Rev. 2022, 153, 111753. [Google Scholar] [CrossRef]
- Abu Bakar, M.S.; Ahmed, A.; Jeffery, D.M.; Hidayat, S.; Sukri, R.S.; Mahlia, T.M.I.; Jamil, F.; Khurrum, M.S.; Inayat, A.; Moogi, S.; et al. Pyrolysis of solid waste residues from Lemon Myrtle essential oils extraction for bio-oil production. Bioresour. Technol. 2020, 318, 123913. [Google Scholar] [CrossRef]
- Hla, S.S.; Roberts, D. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia. Waste Manag. 2015, 41, 12–19. [Google Scholar] [CrossRef]
- Taib, R.M.; Abdullah, N.; Aziz, N.S.M. Bio-oil derived from banana pseudo-stem via fast pyrolysis process. Biomass Bioenergy 2021, 148, 106034. [Google Scholar] [CrossRef]
- Shahbaz, M.; AlNouss, A.; Parthasarathy, P.; Abdelaal, A.H.; Mackey, H.; McKay, G.; Al-Ansari, T. Investigation of biomass components on the slow pyrolysis products yield using Aspen Plus for techno-economic analysis. Biomass Convers. Biorefinery 2022, 12, 669–681. [Google Scholar] [CrossRef]
- Smith, A.M.; Singh, S.; Ross, A.B. Fate of inorganic material during hydrothermal carbonisation of biomass: Influence of feedstock on combustion behaviour of hydrochar. Fuel 2016, 169, 135–145. [Google Scholar] [CrossRef]
- Mettler, M.S.; Vlachos, D.G.; Dauenhauer, P.J. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ. Sci. 2012, 5, 7797–7809. [Google Scholar] [CrossRef]
- Mabrouki, J.; Abbassi, M.A.; Guedri, K.; Omri, A.; Jeguirim, M. Simulation of biofuel production via fast pyrolysis of palm oil residues. Fuel 2015, 159, 819–827. [Google Scholar] [CrossRef]
- Tsai, W.T.; Lee, M.K.; Chang, Y.M. Fast pyrolysis of rice husk: Product yields and compositions. Bioresour. Technol. 2007, 98, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Perkins, G.; Bhaskar, T.; Konarova, M. Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renew. Sustain. Energy Rev. 2018, 90, 292–315. [Google Scholar] [CrossRef]
- Ogunsina, B.; Ojolo, S.; Ohunakin, O.; Oyedeji, O.; Matanmi, K.; Bamgboye, I. Potentials for generating alternative fuels from empty palm fruit bunches by pyrolysis. Proc. ICCEM 2012, 159, 185–190. [Google Scholar]
- Chen, Y.; Liang, S.; Xiao, K.; Hu, J.; Hou, H.; Liu, B.; Deng, H.; Yang, J. A cost-effective strategy for metal recovery from waste printed circuit boards via crushing pretreatment combined with pyrolysis: Effects of particle size and pyrolysis temperature. J. Clean. Prod. 2021, 280, 124505. [Google Scholar] [CrossRef]
- Martínez-Narro, G.; Hassan, S.; Phan, A.N. Chemical recycling of plastic waste for sustainable polymer manufacturing–A critical review. J. Environ. Chem. Eng. 2024, 12, 112323. [Google Scholar] [CrossRef]
- Mani, T.; Murugan, P.; Abedi, J.; Mahinpey, N. Pyrolysis of wheat straw in a thermogravimetric analyzer: Effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chem. Eng. Res. Des. 2010, 88, 952–958. [Google Scholar] [CrossRef]
- Shen, J.; Wang, X.-S.; Garcia-Perez, M.; Mourant, D.; Rhodes, M.J.; Li, C.-Z. Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 2009, 88, 1810–1817. [Google Scholar] [CrossRef]
- Yu, J.; Sun, L.; Berrueco, C.; Fidalgo, B.; Paterson, N.; Millan, M. Influence of temperature and particle size on structural characteristics of chars from Beechwood pyrolysis. J. Anal. Appl. Pyrolysis 2018, 130, 127–134. [Google Scholar] [CrossRef]
- Arnold, S.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Slow pyrolysis of bio-oil and studies on chemical and physical properties of the resulting new bio-carbon. J. Clean. Prod. 2018, 172, 2748–2758. [Google Scholar] [CrossRef]
- Mandal, S.; Bhattacharya, T.K.; Verma, A.K.; Haydary, J. Optimization of process parameters for bio-oil synthesis from pine needles (Pinus roxburghii) using response surface methodology. Chem. Pap. 2018, 72, 603–616. [Google Scholar] [CrossRef]
- Gupta, G.K.; Mondal, M.K. Bio-energy generation from sagwan sawdust via pyrolysis: Product distributions, characterizations and optimization using response surface methodology. Energy 2019, 170, 423–437. [Google Scholar] [CrossRef]
- Wądrzyk, M.; Janus, R.; Vos, M.P.; Brilman, D.W.F. Effect of process conditions on bio-oil obtained through continuous hydrothermal liquefaction of Scenedesmus sp. microalgae. J. Anal. Appl. Pyrolysis 2018, 134, 415–426. [Google Scholar] [CrossRef]
- Singh, S.; Chakraborty, J.P.; Mondal, M.K. Pyrolysis of torrefied biomass: Optimization of process parameters using response surface methodology, characterization, and comparison of properties of pyrolysis oil from raw biomass. J. Clean. Prod. 2020, 272, 122517. [Google Scholar] [CrossRef]
- Daimary, N.; Boruah, P.; Eldiehy, K.S.H.; Pegu, T.; Bardhan, P.; Bora, U.; Mandal, M.; Deka, D. Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production. Renew. Energy 2022, 187, 450–462. [Google Scholar] [CrossRef]
- Daimary, N.; Eldiehy, K.S.H.; Boruah, P.; Deka, D.; Bora, U.; Kakati, B.K. Potato peels as a sustainable source for biochar, bio-oil and a green heterogeneous catalyst for biodiesel production. J. Environ. Chem. Eng. 2022, 10, 107108. [Google Scholar] [CrossRef]
- Sowmya Dhanalakshmi, C.; Madhu, P. Utilization possibilities of Albizia amara as a source of biomass energy for bio-oil in pyrolysis process. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1908–1919. [Google Scholar] [CrossRef]
- Ren, S.; Ye, X.P. Stability of crude bio-oil and its water-extracted fractions. J. Anal. Appl. Pyrolysis 2018, 132, 151–162. [Google Scholar] [CrossRef]
- Kumar, R.; Strezov, V.; Lovell, E.; Kan, T.; Weldekidan, H.; He, J.; Dastjerdi, B.; Scott, J. Bio-oil upgrading with catalytic pyrolysis of biomass using Copper/zeolite-Nickel/zeolite and Copper-Nickel/zeolite catalysts. Bioresour. Technol. 2019, 279, 404–409. [Google Scholar] [CrossRef]
- Isa, K.M.; Daud, S.; Hamidin, N.; Ismail, K.; Saad, S.A.; Kasim, F.H. Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM). Ind. Crops Prod. 2011, 33, 481–487. [Google Scholar] [CrossRef]
- Hilten, R.N.; Speir, R.A.; Kastner, J.R.; Mani, S.; Das, K.C. Effect of Torrefaction on Bio-oil Upgrading over HZSM-5. Part 1: Product Yield, Product Quality, and Catalyst Effectiveness for Benzene, Toluene, Ethylbenzene, and Xylene Production. Energy Fuels 2013, 27, 830–843. [Google Scholar] [CrossRef]
- Machado, H.; Cristino, A.F.; Orišková, S.; Galhano dos Santos, R. Bio-Oil: The Next-Generation Source of Chemicals. Reactions 2022, 3, 118–137. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Chauhan, D.S.; Ansari, F.A. Development of environmentally benign corrosion inhibitors for organic acid environments for oil-gas industry. J. Mol. Liq. 2021, 329, 115514. [Google Scholar] [CrossRef]
- Kabbour, M.; Luque, R. Chapter 10—Furfural as a Platform Chemical: From Production to Applications. In Biomass, Biofuels, Biochemicals; Saravanamurugan, S., Pandey, A., Li, H., Riisager, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 283–297. [Google Scholar]
- Yang, H.; de Wild, P.; Lahive, C.W.; Wang, Z.; Deuss, P.J.; Heeres, H.J. Experimental studies on a combined pyrolysis/staged condensation/hydrotreatment approach to obtain biofuels and biobased chemicals. Fuel Process. Technol. 2022, 228, 107160. [Google Scholar] [CrossRef]
- Ahmad, R.; Hamidin, N.; Ali, U.; Abidin, C. Characterization of bio-oil from palm kernel shell pyrolysis. J. Mech. Eng. Sci. 2014, 7, 1134–1140. [Google Scholar] [CrossRef]
- Williams, P.T.; Horne, P.A. Analysis of aromatic hydrocarbons in pyrolytic oil derived from biomass. J. Anal. Appl. Pyrolysis 1995, 31, 15–37. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, J.; Wang, T.; Xu, Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers. Manag. 2007, 48, 87–92. [Google Scholar] [CrossRef]
- Thring, R.W.; Katikaneni, S.P.R.; Bakhshi, N.N. The production of gasoline range hydrocarbons from Alcell® lignin using HZSM-5 catalyst. Fuel Process. Technol. 2000, 62, 17–30. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, S.; Uzoejinwa, B.B.; Zheng, A.; Wang, Q.; Huang, J.; Abomohra, A.E.-F. A state-of-the-art review on dual purpose seaweeds utilization for wastewater treatment and crude bio-oil production. Energy Convers. Manag. 2020, 222, 113253. [Google Scholar] [CrossRef]
- Salehi, E.; Abedi, J.; Harding, T. Bio-oil from Sawdust: Effect of Operating Parameters on the Yield and Quality of Pyrolysis Products. Energy Fuels 2011, 25, 4145–4154. [Google Scholar] [CrossRef]
- Wang, C.; Luo, Z.; Li, S.; Zhu, X. Coupling effect of condensing temperature and residence time on bio-oil component enrichment during the condensation of biomass pyrolysis vapors. Fuel 2020, 274, 117861. [Google Scholar] [CrossRef]
- Liu, s.; Zhao, H.; Fan, T.; Zhou, J.; Liu, X.; Li, Y.; Zhao, G.; Wang, Y.; Zeng, M. Investigation on chemical structure and hydrocarbon generation potential of lignite in the different pretreatment process. Fuel 2021, 291, 120205. [Google Scholar] [CrossRef]
- Qureshi, K.M.; Kay Lup, A.N.; Khan, S.; Abnisa, F.; Wan Daud, W.M.A. Optimization of palm shell pyrolysis parameters in helical screw fluidized bed reactor: Effect of particle size, pyrolysis time and vapor residence time. Clean. Eng. Technol. 2021, 4, 100174. [Google Scholar] [CrossRef]
- Zhou, X.; Moghaddam, T.B.; Chen, M.; Wu, S.; Zhang, Y.; Zhang, X.; Adhikari, S.; Zhang, X. Effects of pyrolysis parameters on physicochemical properties of biochar and bio-oil and application in asphalt. Sci. Total Environ. 2021, 780, 146448. [Google Scholar] [CrossRef]
- DeSisto, W.J.; Hill, N.; Beis, S.H.; Mukkamala, S.; Joseph, J.; Baker, C.; Ong, T.-H.; Stemmler, E.A.; Wheeler, M.C.; Frederick, B.G.; et al. Fast Pyrolysis of Pine Sawdust in a Fluidized-Bed Reactor. Energy Fuels 2010, 24, 2642–2651. [Google Scholar] [CrossRef]
- Abdullahi, N.; Sulaiman, F.; Safana, A.A. Bio-oil and biochar derived from the pyrolysis of palm kernel shell for briquette. Sains Malays. 2017, 46, 2441–2445. [Google Scholar] [CrossRef]
- Iáñez-Rodríguez, I.; Martín-Lara, M.A.; Blázquez, G.; Calero, M. Effect of different pre-treatments and addition of plastic on the properties of bio-oil obtained by pyrolysis of greenhouse crop residue. J. Anal. Appl. Pyrolysis 2021, 153, 104977. [Google Scholar] [CrossRef]
- Kumar, R.; Strezov, V.; Weldekidan, H.; He, J.; Singh, S.; Kan, T.; Dastjerdi, B. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renew. Sustain. Energy Rev. 2020, 123, 109763. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Onay, O. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process. Technol. 2007, 88, 523–531. [Google Scholar] [CrossRef]
- Ahmed, A.; Abu Bakar, M.S.; Sukri, R.S.; Hussain, M.; Farooq, A.; Moogi, S.; Park, Y.-K. Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production. Energy Convers. Manag. 2020, 226, 113502. [Google Scholar] [CrossRef]
- Ahmed, A.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Phusunti, N. Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production. Energy Convers. Manag. 2018, 176, 393–408. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, J.-K.; Oh, C.-H.; Park, J.-W.; Kwon, E.E. Production of bio-oil from fast pyrolysis of biomass using a pilot-scale circulating fluidized bed reactor and its characterization. J. Environ. Manag. 2019, 234, 138–144. [Google Scholar] [CrossRef]
- Budarin, V.L.; Clark, J.H.; Lanigan, B.A.; Shuttleworth, P.; Breeden, S.W.; Wilson, A.J.; Macquarrie, D.J.; Milkowski, K.; Jones, J.; Bridgeman, T.; et al. The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw. Bioresour. Technol. 2009, 100, 6064–6068. [Google Scholar] [CrossRef]
- Cai, W.; Liu, R.; He, Y.; Chai, M.; Cai, J. Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor. Fuel Process. Technol. 2018, 171, 308–317. [Google Scholar] [CrossRef]
- Neumann, J.; Binder, S.; Apfelbacher, A.; Gasson, J.R.; Ramírez García, P.; Hornung, A. Production and characterization of a new quality pyrolysis oil, char and syngas from digestate—Introducing the thermo-catalytic reforming process. J. Anal. Appl. Pyrolysis 2015, 113, 137–142. [Google Scholar] [CrossRef]
- Kontoulis, P.; Kazangas, D.; Doss, T.P.; Kaiktsis, L. Development and CFD Validation of an Integrated Model for Marine Heavy Fuel Oil Thermophysical Properties. J. Energy Eng. 2018, 144, 04018059. [Google Scholar] [CrossRef]
- Shafaghat, H.; Kim, J.M.; Lee, I.-G.; Jae, J.; Jung, S.-C.; Park, Y.-K. Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts. Renew. Energy 2019, 144, 159–166. [Google Scholar] [CrossRef]
- Ibarra, Á.; Hita, I.; Arandes, J.M.; Bilbao, J. Influence of the Composition of Raw Bio-Oils on Their Valorization in Fluid Catalytic Cracking Conditions. Energy Fuels 2019, 33, 7458–7465. [Google Scholar] [CrossRef]
- de Castro, D.A.R.; da Silva Ribeiro, H.J.; Ferreira, C.C.; de Andrade Cordeiro, M.; Guerreiro, L.H.H.; Pereira, A.M.; dos Santos, W.; Santos, M.C.; de Carvalho, F.B.; Jose, O.C.S., Jr. Fractional Distillation of Bio-Oil Produced by Pyrolysis of Açaí (Euterpe oleracea) Seeds. In Fractionation; InTechOpen: London, UK, 2019; p. 61. [Google Scholar]
- Sondakh, R.C.; Hambali, E.; Indrasti, N.S. Improving characteristic of bio-oil by esterification method. IOP Conf. Ser. Earth Environ. Sci. 2019, 230, 012071. [Google Scholar] [CrossRef]
- Jiang, X.; Ellis, N. Upgrading Bio-oil through Emulsification with Biodiesel: Mixture Production. Energy Fuels 2010, 24, 1358–1364. [Google Scholar] [CrossRef]
Analysis/Properties | ASTM Standards | Equipment |
---|---|---|
MGW | ||
Proximate analysis | D3172-07a | Thermogravimetric analyzer (Mettler Toledo TGA/SDTA 851) |
Ultimate analysis | D5373 | Vario Micro Cube CHNS analyzer |
Higher heating value | D4809 | Oxygen-bomb calorimeter |
Bio-oil | ||
FTIR analysis | – | Perkin Elmer System One FTIR/ATR spectrum analyzer |
GC-MS analysis | – | Varian CP3800 mass spectroscopy detector |
Kinematic viscosity | D7042 | Stabinger Viscometer SVM 3000 |
Density | D4052 | Density meter DM40 Mettler Toledo |
pH | E70 | Omega DP24-pH meter |
Cetane number | D613 | Ignition quality tester |
Water content | D2709 | Centrifuge sigma |
Flash point | D93B | Pensky Martins closed cup apparatus |
Calorific value | D4809 | Oxygen-bomb calorimeter |
Analysis | Property | MGW | Royal Poinciana Seed [27] | Banana Leaves [28] | Pecan Nutshell [29] |
---|---|---|---|---|---|
Proximate (wt%) | Moisture | 9.72 | 6.21 | 8.4 | 3.32 |
Volatile matter | 69.57 | 73.15 | 73.05 | 67.93 | |
Fixed carbon a | 19.78 | 17.7 | 7.26 | 29.69 | |
Ash | 0.93 | 3.02 | 11.29 | 2.47 | |
Ultimate (wt%) | Carbon | 47.32 | 52.12 | 43.28 | 49.22 |
Hydrogen | 5.14 | 5.86 | 6.83 | 5.59 | |
Nitrogen | 0.42 | 5.1 | 1.28 | 0.65 | |
Oxygen a | 47.06 | 36.42 | 48.31 | 41.92 | |
Sulphur | 0.06 | 0.5 | 0.3 | 0.14 | |
Biochemical (wt%) | Cellulose | 37.53 | 27 | 43.34 | 14.99 |
Hemicellulose a | 22.34 | 44.21 | 34.34 | 27.59 | |
Lignin | 24.92 | 12 | 15 | 48.37 | |
Extractives | 15.21 | 16.32 | 7.32 | 9.05 | |
HHV (MJ/kg) | 18.24 | 20.52 | 17.8 | 19.39 |
Chemical Compound | Molecular Formula | Retention Time (min) | Peak Area (%)—Residence Times | Peak Area (%)—Particle Sizes | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 min | 2 min | 3 min | 4 min | 1 mm | 2 mm | 6 mm | 10 mm | |||
Alcohols | ||||||||||
propan-1-ol | C3H8O | 7.15 | 0.91 | 0.93 | 0.99 | 0.89 | 0.97 | 0.99 | 1.01 | 1.05 |
1-tetradecanol | C14H30O | 34.29 | 1.07 | 1.05 | 1.23 | 1.11 | 1.29 | 1.23 | 1.19 | 1.21 |
1-heptadecanol | C17H36O | 40.99 | 1.63 | 1.75 | 1.61 | 1.69 | 1.54 | 1.61 | 1.71 | 1.84 |
Aldehydes | ||||||||||
3-hydroxypropanal | C3H6O2 | 14.75 | 0.59 | 0.61 | 0.63 | 0.59 | 0.64 | 0.63 | 0.61 | 0.59 |
succinaldehyde | C4H6O2 | 18.13 | 0.74 | 0.72 | 0.71 | 0.81 | 0.69 | 0.71 | 0.7 | 0.69 |
Alkanes | ||||||||||
cyclopropane | C3H6 | 5.44 | 0.54 | 0.56 | 0.51 | 0.57 | 0.49 | 0.51 | 0.49 | 0.56 |
undecane | C11H24 | 16.61 | 0.74 | 0.69 | 0.75 | 0.67 | 0.71 | 0.75 | 0.77 | 0.87 |
dodecane | C12H26 | 23.92 | 0.81 | 0.84 | 0.79 | 0.91 | 0.77 | 0.79 | 0.83 | 0.82 |
tetradecane | C14H30 | 29.03 | 0.59 | 0.57 | 0.67 | 0.54 | 0.61 | 0.67 | 0.52 | 0.54 |
pentadecane | C15H32 | 34.59 | 0.39 | 0.36 | 0.42 | 0.31 | 0.47 | 0.42 | 0.37 | 0.41 |
hexadecane | C16H34 | 39.65 | 0.21 | 0.11 | 0.31 | 0.23 | 0.29 | 0.31 | 0.29 | 0.27 |
Aromatics | ||||||||||
benzene | C6H6 | 6.57 | 1.75 | 1.77 | 1.89 | 1.76 | 1.71 | 1.89 | 1.77 | 1.78 |
pyridine | C5H5N | 9.12 | 0.73 | 0.69 | 0.76 | 0.67 | 0.72 | 0.76 | 0.73 | 0.69 |
pyrrole | C4H5N | 11.35 | 0.43 | 0.51 | 0.39 | 0.51 | 0.33 | 0.39 | 0.37 | 0.41 |
toluene | C7H8 | 14.21 | 1.07 | 1.01 | 1.11 | 0.99 | 1.01 | 1.11 | 1.15 | 0.91 |
ethylbenzene | C8H10 | 18.34 | 0.32 | 0.33 | 0.41 | 0.24 | 0.42 | 0.41 | 0.39 | 0.32 |
benzofuran | C8H6O | 23.41 | 0.21 | 0.19 | 0.23 | 0.11 | 0.11 | 0.23 | 0.29 | 0.24 |
Carboxylic Acids | ||||||||||
1-allyl cyclopropane carboxylic acid | C7H10O2 | 18.72 | 0.51 | 0.52 | 0.49 | 0.53 | 0.51 | 0.49 | 0.52 | 0.5 |
14-pentadecynoic acid, methyl ester | C17H34O2 | 42.67 | 0.84 | 0.81 | 0.77 | 0.79 | 0.78 | 0.77 | 0.81 | 0.84 |
hexadecenoic acid, methyl ester | C17H34O2 | 44.98 | 0.54 | 0.51 | 0.53 | 0.52 | 0.61 | 0.53 | 0.56 | 0.49 |
octadecanoic acid, methyl ester | C19H38O2 | 48.41 | 0.45 | 0.47 | 0.41 | 0.46 | 0.42 | 0.41 | 0.37 | 0.53 |
Esters | ||||||||||
ethyl acetate | C4H8O2 | 9.49 | 0.54 | 0.51 | 0.59 | 0.55 | 0.47 | 0.59 | 0.57 | 0.61 |
2-oxopropyl acetate | C5H8O3 | 16.77 | 0.59 | 0.49 | 0.61 | 0.58 | 0.57 | 0.61 | 0.53 | 0.49 |
Ketones | ||||||||||
3-Hexanone | C6H12O | 8.43 | 0.65 | 0.63 | 0.66 | 0.61 | 0.61 | 0.66 | 0.65 | 0.67 |
ethanone,1-(2-furanyl) | C6H6O2 | 8.81 | 1.01 | 1.12 | 1.23 | 1.14 | 1.19 | 1.23 | 1.21 | 1.17 |
cyclopentanone,2-methyl | C6H10O | 11.53 | 1.27 | 1.29 | 1.3 | 1.25 | 1.23 | 1.3 | 1.29 | 1.27 |
2-cyclopenten-1-one,3-methyl | C6H8O | 12.99 | 0.99 | 1.01 | 1.11 | 1.05 | 1.01 | 1.11 | 1.09 | 1.12 |
2-cyclopenten-1-one,2-methyl | C6H8O | 14.19 | 0.74 | 0.77 | 0.79 | 0.67 | 0.71 | 0.79 | 0.78 | 0.76 |
Phenols | ||||||||||
phenol | C6H6O | 17.12 | 1.45 | 1.41 | 1.47 | 1.39 | 1.42 | 1.47 | 1.39 | 1.47 |
phenol, 2-methyl | C7H8O | 20.77 | 1.2 | 1.23 | 1.21 | 1.27 | 1.17 | 1.21 | 1.14 | 1.19 |
phenol, 2,3-dimethyl | C8H10O | 22.79 | 1.67 | 1.69 | 1.76 | 1.75 | 1.56 | 1.76 | 1.78 | 1.79 |
2-methoxy-5-methyl phenol | C8H10O2 | 23.56 | 1.73 | 1.74 | 1.71 | 1.72 | 1.65 | 1.71 | 1.45 | 1.67 |
phenol, 4-ethyl-2-methoxy | C9H12O2 | 28.91 | 0.97 | 0.94 | 0.99 | 1.01 | 1.01 | 0.99 | 0.89 | 0.92 |
phenol,2-methoxy-4-propyl | C10H14O2 | 36.45 | 1.35 | 1.29 | 1.32 | 1.29 | 1.11 | 1.32 | 1.43 | 1.31 |
3-phenyl-5-t-butylpyridazine | C14H16N2 | 38.69 | 1.35 | 1.37 | 1.42 | 1.32 | 1.34 | 1.42 | 1.41 | 1.39 |
Polycyclic Aromatic Hydrocarbons (PAH) | ||||||||||
naphthalene | C10H8 | 27.13 | 0.97 | 0.99 | 1.05 | 0.91 | 1.01 | 1.05 | 1.02 | 0.99 |
2-methylnaphthalene | C11H10 | 29.42 | 0.69 | 0.67 | 0.71 | 0.84 | 0.69 | 0.71 | 0.77 | 0.73 |
biphenyl | C12H10 | 31.63 | 0.45 | 0.49 | 0.47 | 0.48 | 0.49 | 0.47 | 0.51 | 0.45 |
1-methylnaphthalene | C11H10 | 33.51 | 0.48 | 0.53 | 0.45 | 0.51 | 0.51 | 0.45 | 0.43 | 0.56 |
acenaphthene | C12H10 | 37.81 | 0.42 | 0.41 | 0.51 | 0.49 | 0.49 | 0.51 | 0.49 | 0.51 |
fluorene | C13H10 | 39.97 | 0.97 | 1.02 | 0.97 | 0.93 | 0.99 | 0.97 | 0.91 | 0.87 |
anthracene | C14H10 | 41.67 | 0.84 | 0.81 | 0.79 | 0.81 | 0.84 | 0.79 | 0.81 | 0.79 |
pyrene | C16H10 | 43.78 | 0.35 | 0.41 | 0.43 | 0.39 | 0.31 | 0.43 | 0.33 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.M.; Rasul, M.G.; Jahirul, M.I.; Khan, M.M.K. Fast Pyrolysis of Municipal Green Waste in an Auger Reactor: Effects of Residence Time and Particle Size on the Yield and Characteristics of Produced Oil. Energies 2024, 17, 2914. https://doi.org/10.3390/en17122914
Hasan MM, Rasul MG, Jahirul MI, Khan MMK. Fast Pyrolysis of Municipal Green Waste in an Auger Reactor: Effects of Residence Time and Particle Size on the Yield and Characteristics of Produced Oil. Energies. 2024; 17(12):2914. https://doi.org/10.3390/en17122914
Chicago/Turabian StyleHasan, M. M., M. G. Rasul, M. I. Jahirul, and M. M. K. Khan. 2024. "Fast Pyrolysis of Municipal Green Waste in an Auger Reactor: Effects of Residence Time and Particle Size on the Yield and Characteristics of Produced Oil" Energies 17, no. 12: 2914. https://doi.org/10.3390/en17122914
APA StyleHasan, M. M., Rasul, M. G., Jahirul, M. I., & Khan, M. M. K. (2024). Fast Pyrolysis of Municipal Green Waste in an Auger Reactor: Effects of Residence Time and Particle Size on the Yield and Characteristics of Produced Oil. Energies, 17(12), 2914. https://doi.org/10.3390/en17122914