Use of Biostimulants in Energy Crops as a New Approach for the Improvement of Performance Sequestration CO2
Abstract
:1. Energy Crops and Their Use in Biomass Energy
2. The Potential for Carbon Dioxide (CO2) Sequestration and the Utilization of Energy Crops
2.1. Current CO2 Sequestration Strategies
- Biological sequestration occurs through capture in plants that use CO2 in photosynthesis.
- Marine sequestration by injecting CO2 in gaseous form into the oceans.
- Mineral sequestration by binding CO2 in natural mineral resources.
- Geological sequestration, by capturing CO2 that is a by-product of industrial production and storing it in underground geological formations.
- Direct sequestration is the process of capturing CO2 before it is released into the atmosphere, followed by its storage.
- Indirect sequestration is the process of removing CO2 by using plants to convert it to oxygen through photosynthesis.
- Advanced methods include mineral sequestration [34].
- Absorption—absorption of CO2 using chemical compounds such as amines, ammonia, ionic liquids, or physical absorption using gas removal processes such as Selexol, Rectisol, Purisoll.
- Adsorption—absorption of CO2 using adsorbent beds such as carbon, silica, zeolites, organometallic structures, polymers, or regenerative cycles, such as PSA, TSA, steam, moisture.
- Membrane—involving the use of permeable membranes to separate CO2 from gas mixtures such as flue gas from power plants or industrial processes.
- Cryogenic—where CO2 is frozen and stored as a liquid product.
- Microalgae—involving the use of certain types of algae that naturally contribute to carbon sequestration through photosynthesis.
- Chemical loops—involving the burning of fossil fuels in a process known as chemical loop combustion (CLC), so that the only products of the process are water vapor and CO2, which can be stored or disposed of after drying.
2.2. Utilization of Energy Crops in Sequestration Processes
3. The Various Methods Used to Increase the Productivity of Established Energy Crops
3.1. The Interrelationship between Genetic Engineering and Photosynthesis Efficiency
3.2. Gene Technology to Increase Tolerance to Biotic and Abiotic Stresses in Energy Plants
3.3. Other Methods to Enhance Tolerance to Abiotic and Biotic Stresses of Established Energy Crops
4. New Strategies for Enhancing the Utilization of Biostimulants in Energy Crops
4.1. Foliar Protein Biostimulants
4.2. Biostimulants Obtained Exclusively via Biotechnological Means
4.3. Biostimulators in the Form of Granules
5. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fit for 55 Package under the European Green Deal. Available online: https://www.europarl.europa.eu/legislative-train/package-fit-for-55 (accessed on 13 May 2024).
- Biomass. Green Energy for Europe. European Commission Directorate-General for Research Sustainable Energy Systems. Brussels. 2005, p. 15. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2005:0628:FIN:EN:PDF (accessed on 13 May 2024).
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/eli/dir/2018/2001/oj (accessed on 13 May 2024).
- Karekezi, S.; Kusum, L.; Suani Teixeira, C. Traditional biomass energy: Improving its use and moving to modern energy use. In Renewable Energy; Routledge: London, UK, 2012; pp. 258–289. [Google Scholar]
- Heaton, E.A.; Flavell, R.B.; Mascia, P.N.; Thomas, S.R.; Dohleman, F.G.; Long, S.P. Herbaceous energy crop development: Recent progress and future prospects. Curr. Opin. Biotechnol. 2008, 19, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hou, S.; Su, M.; Yang, M.; Shen, S.; Jiang, G.; Qi, D.; Chen, S.; She, L.G. Major Energy Plants and Their Potential for Bioenergy Development in China. Environ. Manag. 2010, 46, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, I.; Scurlock, J.M.; Lindvall, E.; Christou, M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 2003, 25, 335–361. [Google Scholar] [CrossRef]
- Sims, R.E.; Hastings, A.; Schlamadinger, B.; Taylor, G.; Smith, P. Energy crops: Current status and future prospects. Glob. Chang. Biol. 2006, 12, 2054–2076. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Matyka, M.; Staniak, M. Comparison of the Effect of Perennial Energy Crops and Agricultural Crops on Weed Flora Diversity. Agronomy 2019, 9, 695. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.C.; Scurlock, J.M.O.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Mola-Yudego, B.; Díaz-Yáñez, O.; Dimitriou, I. How Much Yield Should We Expect from Fast-Growing Plantations for Energy? Divergences Between Experiments and Commercial Willow Plantations. Bioenergy Res. 2015, 8, 1769–1777. [Google Scholar] [CrossRef]
- Atkinson, C.J. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass Bioenergy 2009, 33, 752–759. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Elbersen, H.W.; Cosentino, S.L.; Zatta, A.; Alexopoulou, E.; Monti, A. Agronomic aspects of future energy crops in Europe. Biofuels Bioprod. Biorefining 2010, 4, 674–691. [Google Scholar] [CrossRef]
- Biomass Action Plan, Commission of the European Communities COM. 2005. Available online: https://www.eea.europa.eu/policy-documents/com-2005-628-final.-biomass (accessed on 13 May 2024).
- Nuamah, A.; Malmgren, A.; Riley, G.; Lester, E. Biomass co-firing. Compr. Renew. Energy 2012, 5, 55–73. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.K.; Chakraborty, S.; Meikap, B.C. Chemical demineralization of high ash Indian coal by using alkali and acid solutions. Fuel 2017, 196, 102–109. [Google Scholar] [CrossRef]
- Muigai, H.H.; Bordoloi, U.; Hussain, R.; Ravi, K.; Moholkar, V.S.; Kalita, P. A comparative study on synthesis and characterization of biochars derived from lignocellulosic biomass for their candidacy in agronomy and energy applications. Int. J. Energy Res. 2021, 45, 4765–4781. [Google Scholar] [CrossRef]
- Zachar, M.; Lieskovský, M.; Majlingová, A.; Mitterová, I. Comparison of thermal properties of the fast-growing tree species and energy crop species to be used as a renewable and energy-efficient resource. J. Therm. Anal. Calorim. 2018, 134, 543–548. [Google Scholar] [CrossRef]
- Butler, E.; Devlin, G.; Meier, D.; McDonnell, K. Characterisation of spruce, salix, miscanthus and wheat straw for pyrolysis applications. Bioresour. Technol. 2013, 131, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Lygin, A.V.; Upton, J.; Dohleman, F.G.; Juvik, J.; Zabotina, O.A.; Widholm, J.M.; Lozovaya, V.V. Composition of cell wall phenolics and polysaccharides of the potential bioenergy crop–Miscanthus. GCB Bioenergy 2011, 3, 333–345. [Google Scholar] [CrossRef]
- Miguez, F.E.; Villamil, M.B.; Long, S.P.; Bollero, G.A. Meta-analysis of the effects of management factors on Miscanthus× giganteus growth and biomass production. Agric. For. Meteorol. 2008, 148, 1280–1292. [Google Scholar] [CrossRef]
- Fortier, J.; Gagnon, D.; Truax, B.; Lambert, F. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips. Biomass Bioenergy 2010, 34, 1028–1040. [Google Scholar] [CrossRef]
- Balkan Grenen Use. Energy Willow Salix viminalis—Biomass Where You Want It. 2016. Available online: https://balkangreenenergynews.com/ (accessed on 13 May 2024).
- Soriano, J.A.; García-Contreras, R.; Carpio de Los Pinos, A.J. Study of the Thermochemical Properties of Lignocellulosic Biomass from Energy Crops. Energies 2021, 14, 3780. [Google Scholar] [CrossRef]
- Cantamessa, S.; Rosso, L.; Giorcelli, A.; Chiarabaglio, P.M. The Environmental Impact of Poplar Stand Management: A Life Cycle Assessment Study of Different Scenarios. Forests 2022, 13, 464. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Warmiński, K. Life cycle assessment of giant miscanthus: Production on marginal soil with various fertilisation treatments. Energies 2020, 13, 1931. [Google Scholar] [CrossRef]
- Davis, S.C.; Boddey, R.M.; Alves, B.J.; Cowie, A.L.; George, B.H.; Ogle, S.M.; Smith, P.; van Noordwijk, M.; van Wijk, M.T. Management swing potential for bioenergy crops. GCB Bioenergy 2013, 5, 623–638. [Google Scholar] [CrossRef]
- Selvasembian, R.; Rani, R.; Sinha, R.; Agrahari, R.; Joshua, I.; Santhiagu, A.; Pradhan, N.; Mal, J. Recent progress in microbial fuel cells for industrial effluent treatment and energy generation: Fundamentals to scale-up application and challenges. Bioresoure Technol. 2021, 346, 126462. [Google Scholar] [CrossRef] [PubMed]
- Bhola, V.; Swalaha, F.; Kumar, R.R.; Singh, M.; Bux, F. Overview of the potential of microalgae for CO2 sequestration. Int. J. Environ. Sci. Technol. 2014, 11, 2103–2118. [Google Scholar] [CrossRef]
- USingh, U.B.; Ahluwalia, A.S. Change Microalgae: A promising tool for carbon sequestration. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 73–95. [Google Scholar] [CrossRef]
- Mason, A.R.G.; Salomon, M.J.; Lowe, A.J.; Cavagnaro, T.R. Microbial solutions to soil carbon sequestration. J. Clean. Prod. 2023, 417, 137993. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, J.; Feng, W.; Jia, R.; Liu, C.; Fu, T.; Xue, S.; Yi, Z.; Guillaume, T.; Yang, Y.; et al. Marginal land conversion to perennial energy crops with biomass removal enhances soil carbon sequestration. GCB Bioenergy 2022, 14, 1117–1127. [Google Scholar] [CrossRef]
- Lubańska, Z.; Grudniewski, T.; Chodyka, M.; Nitychoruk, J. Rodzaje metod sekwestracji CO2. JCEEA 2016, 63, 239–246. [Google Scholar] [CrossRef]
- Khan, U.; Ogbaga, C.C.; Abiodun, O.-A.O.; Adeleke, A.A.; Ikubanni, P.P.; Okoye, P.U.; Okolie, J.A. Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview. Carbon Capture Sci. Technol. 2023, 8, 100125. [Google Scholar] [CrossRef]
- Jansson, C.; Wullschleger, S.D.; Kalluri, U.C.; Tuskan, G.A. Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 2010, 60, 685–696. [Google Scholar] [CrossRef]
- Gautam, S.; Baral, N.R.; Mishra, U.; Scown, C.D. Impact of bioenergy feedstock carbon farming on sustainable aviation fuel viability in the United States. Proc. Natl. Acad. Sci. USA 2023, 120, e2312667120. [Google Scholar] [CrossRef] [PubMed]
- Bazrgar, A.B.; Ng, A.; Coleman, B.; Ashiq, M.W.; Gordon, A.; Thevathasan, N. Long-term monitoring of soil carbon sequestration in woody and herbaceous bioenergy crop production systems on marginal lands in southern Ontario, Canada. Sustainability 2020, 12, 3901. [Google Scholar] [CrossRef]
- Arora, N.K. Bioremediation: A green approach for restoration of polluted ecosystems. Environ. Sustain. 2018, 1, 305–307. [Google Scholar] [CrossRef]
- Lemus, R.; Lal, R. Bioenergy crops and carbon sequestration. Crit. Rev. Plant Sci. 2005, 24, 1–21. [Google Scholar] [CrossRef]
- Keith, P.; Eric, L.; Jeffrey, K.; Ernie, M.; Amy, S. Soil C Sequestration as a Biological Negative Emission Strategy. Front. Clim. 2019, 1, 482133. [Google Scholar] [CrossRef]
- Agostini, F.; Gregory, A.S.; Richter, G.M. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out? BioEnergy Res. 2015, 8, 1057–1080. [Google Scholar] [CrossRef]
- McCalmont, J.P.; McNamara, N.P.; Donnison, I.S.; Farrar, K.; Clifton-Brown, J.C. An interyear comparison of CO2 flux and carbon budget at a commercial-scale land-use transition from semi-improved grassland to Miscanthus × giganteus. GCB Bioenergy 2017, 9, 229–245. [Google Scholar] [CrossRef]
- Nakajima, T.; Yamada, T.; Anzoua, K.G.; Kokubo, R.; Noborio, K. Carbon sequestration and yield performances of Miscanthus × giganteus and Miscanthus sinensis. Carbon Manag. 2018, 9, 415–423. [Google Scholar] [CrossRef]
- Dixit, P.N.; Richter, G.M.; Coleman, K.; Collins, A.L. Bioenergy crop production and carbon sequestration potential under changing climate and land use: A case study in the upper River Taw catchment in southwest England. Sci. Total Environ. 2023, 900, 166390. [Google Scholar] [CrossRef]
- Qin, Z.; Huang, Y.; Zhuang, Q. Soil organic carbon sequestration potential of cropland in China. Glob. Biogeochem. Cycles 2013, 27, 711–722. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Masters, M.D.; Black, C.K.; Zeri, M.; Hussain, M.Z.; Bernacchi, C.J.; DeLucia, E.H. Altered Belowground Carbon Cycling Following Land-Use Change to Perennial Bioenergy Crops. Ecosystems 2013, 16, 508–520. [Google Scholar] [CrossRef]
- Chavan, S.B.; Dhillon, R.S.; Ajit; Rizvi, R.H.; Sirohi, C.; Handa, A.K.; Bharadwaj, K.K.; Johar, V.; Kumar, T.; Singh, P.; et al. Estimating biomass production and carbon sequestration of poplar-based agroforestry systems in India. Environ. Dev. Sustain. 2022, 24, 13493–13521. [Google Scholar] [CrossRef]
- Chavan, S.B.; Dhillon, R.S.; Sirohi, C.; Uthappa, A.R.; Jinger, D.; Jatav, H.S.; Chichaghare, A.R.; Kakade, V.; Paramesh, V.; Kumari, S.; et al. Carbon Sequestration Potential of Commercial Agroforestry Systems in Indo-Gangetic Plains of India: Poplar and Eucalyptus-Based Agroforestry Systems. Forests 2023, 14, 559. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, K.; Li, J.; Shangguan, Z.; Deng, L. Mixed plantations have more soil carbon sequestration benefits than pure plantations in China. For. Ecol. Manag. 2023, 529, 120654. [Google Scholar] [CrossRef]
- Kulyk, M.; Kalynychenko, O.; Pryshliak, N.; Pryshliak, V. Efficiency of Using Biomass from Energy Crops for Sustainable Bioenergy Development. J. Environ. Manag. Tour. 2020, 11, 1040–1053. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Sameti, M.; Fuzhan, N. Biomass-fuelled combined heat and power: Integration in district heating and thermal-energy storage. Clean Energy 2021, 5, 44–56. [Google Scholar] [CrossRef]
- Patel, N.L.; Padalia, H.; Davadas, R.; Huete, A.; Kumar, S.; Yelisetty, K.M.V.N. Estimating net primary productivity of croplands in Indo-Gangetic Plains using GOME-2 sun-induced fluorescence and MODIS NDVI. Curr. Sci. 2018, 114, 1333. [Google Scholar] [CrossRef]
- Romaneckas, K.; Švereikaitė, A.; Kimbirauskienė, R.; Sinkevičienė, A.; Balandaitė, J. The Energy and Environmental Evaluation of Maize, Hemp and Faba Bean Multi-Crops. Agronomy 2023, 13, 2316. [Google Scholar] [CrossRef]
- Dubis, B.; Jankowski, K.J.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass production and energy balance of Miscanthus over a period of 11 years: A case study in a large-scale farm in Poland. Bioenergy 2019, 11, 1187–1201. [Google Scholar] [CrossRef]
- Králík, T.; Knápek, J.; Vávrová, K.; Outrata, D.; Romportl, D.; Horák, M.; Jandera, J. Ecosystem services and economic competitiveness of perennial energy crops in the modelling of biomass potential—A case study of the Czech Republic. Renew. Sustain. Energy Rev. 2023, 173, 113120. [Google Scholar] [CrossRef]
- Stolarski, J.M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S.; Niksa, D. Analysis of the energy efficiency of short rotation woody crops biomass as affected by different methods of soil enrichment. Energy 2016, 113, 748–761. [Google Scholar] [CrossRef]
- Tzelepi, V.; Zeneli, M.; Kourkoumpas, D.M.; Karampinis, E.; Gypakis, N.; Nikolopoulos, N.; Grammelis, P. Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review. Energies 2020, 13, 3390. [Google Scholar] [CrossRef]
- Madley, S.J.; Daioglou, V.; Junginer, H.M.; Van Vuuren, D.P.; Wicke, B. EU bioenergy development to 2050. Renew. Sustain. Energy Rev. 2020, 127, 109858. [Google Scholar] [CrossRef]
- Bilandžija, D.; Bilandžija, N.; Zgorelec, Ž. Sequestration potential of energy crop Miscanthus × giganteus cultivated in continental part of Croatia. J. Cent. Eur. Agric. 2021, 22, 188–200. [Google Scholar] [CrossRef]
- Sales, C.R.G.; Wang, Y.; Evers, B.J.; Kromdijk, J. Improving C4 photosynthesis to increase productivity under optimal and suboptimal conditions. J. Exp. Bot. 2021, 72, 5942–5960. [Google Scholar] [CrossRef] [PubMed]
- Buckley, F.; Lopez-Villalobos, N.; Heins, B.J. Crossbreeding: Implications for dairy cow fertility and survival. Animal 2014, 8, 122–133. [Google Scholar] [CrossRef]
- Waliszewska-Cerazy, J.; Jeżowski, S.; Łysakowski, P.; Białas, W.; Pniewski, T. Potential of bioethanol production from biomass of various Miscanthus genotypes cultivated in three-year plantations in west-central Poland. Ind. Crop. Prod. 2019, 141, 111790. [Google Scholar] [CrossRef]
- Zub, H.W.; Brancourt-Hulmel, M. Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron. Sustain. Dev. 2010, 30, 201–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Zahid, I.; Danial, A.; Minaret, J.; Cao, Y.; Dutta, A. Hydrothermal carbonization of Miscanthus: Processing, properties, and synergistic Co-combustion with lignite. Energy 2021, 225, 120200. [Google Scholar] [CrossRef]
- Lewandowski, A.; Lewandowska, W.; Sielski, J.; Dziku’c, M.; Wróbel, M.; Jewiarz, M.; Knapczyk, A. Sustainable Drying and Torrefaction Processes of Miscanthus for Use as a Pelletized Solid Biofuel and Biocarbon-Carrier for Fertilizers. Molecules 2021, 26, 1014. [Google Scholar] [CrossRef]
- Scafaro, A.P.; Galle, A.; Van Rie, J.; Carmo-Silva, E.; Salvucci, M.E.; Atwell, B.J. Heat tolerance in a wild Oryza species is attributed to maintenance of Rubisco activation by a thermally stable Rubisco activase ortholog. New Phytol. 2016, 211, 889–911. [Google Scholar] [CrossRef] [PubMed]
- Benomar, L.; Moutaoufik, M.T.; Elferjani, R.; Isabel, N.; DesRochers, A.; El Guellab, A.; Khlifa, R.; Hassania, L.A.L. Thermal acclimation of photosynthetic activity and RuBisCO content in two hybrid poplar clones. PLoS ONE 2019, 14, e0206021. [Google Scholar] [CrossRef] [PubMed]
- Moll, L.; Wever, C.; Völkering, G. Pude Increase of Miscanthus Cultivation with New Roles in Materials Production—A Review. Agronomy 2020, 10, 308. [Google Scholar] [CrossRef]
- Andralojc, P.J.; Bencze, S.; Madgwick, P.J.; Philippe, H.; Powers, S.J.; Shield, J.; Karp, A.; Parry, M.A.J. Photosynthesis and growth in diverse willow genotypes. Food Energy Secur. 2014, 3, 69–85. [Google Scholar] [CrossRef]
- Guo, N.; Fan, L.; Cao, Y.; Ling, H.; Xu, G.; Zhou, J.; Chen, Q.; Tao, J. Comparison of two willow genotypes reveals potential roles of iron-regulated transporter 9 and heavy-metal ATPase 1 in cadmium accumulation and resistance in Salix suchowensis. Ecotoxicol. Environ. Saf. 2022, 244, 114065. [Google Scholar] [CrossRef] [PubMed]
- Chupakhin, E.; Babich, O.; Sukhikh, S.; Ivanova, S.; Budenkova, E.; Kalashnikova, O.; Kriger, O. Methods of Increasing Miscanthus Biomass Yield for Biofuel Production. Energies 2021, 14, 8368. [Google Scholar] [CrossRef]
- Nongpiur, R.C.; Singla-Pareek, S.L.; Pareek, A. Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants. Curr. Genom. 2016, 17, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Raman, R. The impact of Genetically Modified (GM) crops in modern agriculture: A review. GM Crop. Food 2017, 8, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Iacono, R.; Slavov, G.T.; Davey, C.L.; Clifton-Brown, J.; Allison, G.; Bosch, M. Variability of cell wall recalcitrance and composition in genotypes of Miscanthus from different genetic groups and geographical origin. Front. Plant Sci. 2023, 14, 1155188. [Google Scholar] [CrossRef]
- Zhu, H.; Li, C.; Gao, C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 2020, 21, 661–677. [Google Scholar] [CrossRef]
- Trieu, A.; Belaffif, M.B.; Hirannaiah, P.; Manjunatha, S.; Wood, R.; Bathula, Y.; Billingsley, R.L.; Arpan, A.; Sacks, E.J.; Clemente, T.E.; et al. Transformation and gene editing in the bioenergy grass Miscanthus. Biotechnol. Biofuels Bioprod. 2022, 15, 148. [Google Scholar] [CrossRef] [PubMed]
- Movahedi, A.; Wei, H.; Kadkhodaei, S.; Sun, W.; Zhuge, Q.; Yang, L.; Xu, C. CRISPR-mediated genome editing in poplar issued by efficient transformation. Front. Plant Sci. 2023, 14, 1159615. [Google Scholar] [CrossRef] [PubMed]
- Koçar, G.; Civa, N. An overview of biofuels from energy crops: Current status and future prospects. Renew. Sustain. Energy Rev. 2013, 28, 900–916. [Google Scholar] [CrossRef]
- Jańczak-Pieniążek, M.; Pikuła, W.; Pawlak, R.; Drygaś, B.; Szpunar-Krok, E. Physiological Response of Miscanthus sinensis (Anderss.) to Biostimulants. Agriculture 2024, 14, 33. [Google Scholar] [CrossRef]
- Dauber, J.; Miyake, S. To integrate or to segregate food crop and energy crop cultivation at the landscape scale?Perspectives on biodiversity conservation in agriculture in Europe. Energy Sustain. Soc. 2016, 6, 25. [Google Scholar] [CrossRef]
- Deolu-Ajayi, A.O.; van der Meer, I.M.; van der Werf, A.; Karlova, R. The power of seaweeds as plant biostimulants to boost cropproduction under abiotic stress. Plant Cell Environ. 2021, 45, 2537–2553. [Google Scholar] [CrossRef] [PubMed]
- Agyemang, F.; Waterlot, C.; Manu, J.; Laloge, R.; Cancin, R.F.; Papazoglou, E.G.; Alexopoulou, E.; Lounès-Hadj Sahraoui, A.; Tisserant, B.; Mench, M.; et al. Plant testing with hemp and miscanthus to assess phytomanagement options including biostimulants and mycorrhizae on a metal-contaminated soil to provide biomass for sustainable biofuel production. Sci. Total Environ. 2024, 912, 169527. [Google Scholar] [CrossRef] [PubMed]
- Pidlisnyuk, V.; Stefanovska, T.; Zhukov, O.; Medkow, A.; Shapoval, P.; Stadnik, V.; Sozanskyi, M. Impact of Plant Growth Regulators to Development of the Second Generation Energy Crop Miscanthus × giganteus Produced Two Years in Marginal Post-Military Soil. Appl. Sci. 2022, 12, 881. [Google Scholar] [CrossRef] [PubMed]
- Farrar, K.; Bryant, D.; Cope-Selby, N. Understanding and engineering beneficial plant–microbeinteractions: Plant growth promotion in energy crops. Plant Biotechnol. J. 2014, 12, 1193–1206. [Google Scholar] [CrossRef]
- Fei, H.; Crouse, M.; Papadopoulos, J.A.; Vessey, J.K. Improving biomass yield of giant Miscanthus by application of beneficial soil microbes and a plant biostimulant. Can. J. Plant Sci. 2020, 100, 29–39. [Google Scholar] [CrossRef]
- Digruber, T.; Sass, L.; Cseri, A.; Paul, K.; Nagy, A.V.; Remenyik, J.; Molnár, I.; Vass, I.; Toldi, O.; Gyuricza, V.; et al. Stimulation of energy willow biomass with triacontanol and seaweed extract. Ind. Crop. Prod. 2018, 120, 104–112. [Google Scholar] [CrossRef]
- Mlonka-Mędrala, A.; Magdziarz, A.; Gajek, M.; Nowińska, K.; Nowak, W. Alkali metals association in biomass and their impact on ash melting behaviour. Fuel 2020, 261, 116421. [Google Scholar] [CrossRef]
- Chai, Y.; Bai, M.; Chen, A.; Peng, L.; Shao, J.; Shang, C.; Zhou, Y. Thermochemical conversion of heavy metal contaminated biomass: Fate of the metals and their impact on products. Sci. Total Environ. 2022, 822, 153426. [Google Scholar] [CrossRef] [PubMed]
- Woźniak-Gientka, E.; Tyczewska, A.; Twardowski, T. Public opinion on biotechnology and genetic engineering in the European Union: Polish consumer study. BioTechnologia 2022, 103, 185–201. [Google Scholar] [CrossRef] [PubMed]
- Menary, J.; Fuller, S.S. New genomic techniques, old divides: Stakeholder attitudes towards new biotechnology regulation in the EU and UK. PLoS ONE 2024, 19, e0287276. [Google Scholar] [CrossRef] [PubMed]
- Mazhandu, Z.S.; Muzenda, E.; Mamvura, T.A.; Belaid, M.; Nhubu, T. Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities. Sustainability 2020, 12, 8360. [Google Scholar] [CrossRef]
- European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2020; Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 13 May 2024).
- European Commission. The European Green Deal. In Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2019; Available online: https://www.eea.europa.eu/policy-documents/com-2019-640-final (accessed on 13 May 2024).
- The European Parliament and the Council of the European Union. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003 (Text with EEA Relevance). Off. J. Eur. Union 2019, 170, 1–114. [Google Scholar]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Liu, C.; Huang, M.; Liu, K.; Yan, D. Effects of Foliar Fertilization: A Review of Current Status and Future Perspectives. J. Soil Sci. Plant Nutr. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.; Nagarajan, L.; Roy, A.; Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 2015, 51, 897–911. [Google Scholar] [CrossRef]
- Schuman, G.E.; Janzen, H.H.; Herrick, J.E. Soil carbon dynamics and potential carbon sequestration by rangelands. Environ. Pollut. 2002, 116, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed]
- Ławińska, K.; Lasoń-Rydel, M.; Gendaszewska, D.; Grzesiak, E.; Sieczyńska, K.; Gaidau, C.; Epure, D.G.; Obraniak, A. Coating of seeds with collagen hydrolysates from leather waste. Fibres Text. East. Eur. 2019, 27, 59–64. [Google Scholar] [CrossRef]
- Black, M.; Canova, M.; Rydin, S.; Scalet, B.M.; Roudier, S.; Sancho, L.D. Best available techniques (BAT) reference document for the tanning of hides and skins. Eur. Comm. Database 2013, 46, 2013. [Google Scholar]
- Pekhtasheva, E.L.; ZAIKOV, G.E. Degradation mechanism of leather and fur. In Key Engineering Materials. Interdiscip. Concepts Res. 2014, II, 317–336. [Google Scholar]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Rai, V.K. Role of amino acids in plant responses to stresses. Biol. Plant. 2002, 45, 481–487. [Google Scholar] [CrossRef]
- Popko, M.; Michalak, I.; Wilk, R.; Gramza, M.; Chojnacka, K.; Górecki, H. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules 2018, 23, 470. [Google Scholar] [CrossRef]
- Shukla, R.; Sharma, Y.K.; Shukla, A.K. Molecular mechanism of nutrient uptake in plants. Int. J. Curr. Res. Acad. Rev. 2014, 2, 142–154. [Google Scholar]
- Radkowski, A.; Radkowska, I.; Godyn, D. Effects of fertilization with an amino acid preparation on the dry matter yield and chemical composition of meadow plants. J. Elem. 2018, 23, 947–958. [Google Scholar] [CrossRef]
- Ali, Q.; Haider, M.Z.; Shahid, S.; Aslam, N.; Shehzad, F.; Naseem, J.; Ashraf, R.; Ali, A.; Hussain, S.M. Role of amino acids in improving abiotic stress tolerance to plants. In Plant Tolerance to Environmental Stress; Informa UK Limited: London, UK, 2019; pp. 175–204. [Google Scholar] [CrossRef]
- Tegeder, M.; Rentsch, D. Uptake and partitioning of amino acids and peptides. Mol. Plant 2010, 3, 997–1011. [Google Scholar] [CrossRef] [PubMed]
- Gendaszewska, D.; Lasoń-Rydel, M.; Ławińska, K.; Grzesiak, E.; Pipiak, P. Characteristics of collagen preparations from leather wastes by the high pressure liquid chromatography method. Fibres Text. East. Eur. 2021, 5, 149. [Google Scholar] [CrossRef]
- Niculescu, M.; Bajenaru, S.; Gaidau, C.; Simion, D.; Filipescu, L. Extraction of the protein components as amino-acids hydrolysates from chrome leather wastes through hydrolytic processes. Rev. Chim. 2009, 60, 1070–1078. [Google Scholar]
- Gendaszewska, D.; Miśkiewicz, K.; Wieczorek, D. Use of plants in Cosmetology, Medicine and Pharmacy. In Application of Selected Biostimulators in Agriculture; Janiszewska, M., Ed.; Wydawnictwo Naukowe TYGIEL: Lublin, Poland, 2023; pp. 214–231. Available online: https://bc.wydawnictwo-tygiel.pl/publikacja/C7472DDE-41C4-E694-15C3-2023B37E3B98 (accessed on 13 May 2024).
- Trovato, M.; Funck, D.; Forlani, G.; Okumoto, S.; Amir, R. Amino acids in plants: Regulation and functions in development and stress defense. Front. Plant Sci. 2021, 12, 772810. [Google Scholar] [CrossRef] [PubMed]
- Jolayemi, O.L.; Malik, A.H.; Ekblad, T.; Fredlund, K.; Olsson, M.E.; Johansson, E. Protein-based biostimulants to enhance plant growth—State-of-the-art and future direction with sugar beet as an example. Agronomy 2022, 12, 3211. [Google Scholar] [CrossRef]
- Hartman, F.C.; Harpel, M.R. Structure, function, regulation, and assembly of D-ribulose-1, 5-bisphosphate carboxylase/oxygenase. Annu. Rev. Biochem. 1994, 63, 197–232. [Google Scholar] [CrossRef] [PubMed]
- Gandini, E.M.M.; Costa, E.S.P.; dos Santos, J.B.; Soares, M.A.; Barroso, G.M.; Corrêa, J.M.; Carvalho, A.G.; Zanuncio, J.C. Compatibility of pesticides and/or fertilizers in tank mixtures. J. Clean. Prod. 2020, 268, 122152. [Google Scholar] [CrossRef]
- Wrześniewska-Tosik, K.; Marchut-Mikołajczyk, O.; Mik, T.; Wieczorek, D.; Pałczyńska, M. Mats for Removing Technical Oil Contamination. Fibres Text. East. Eur. 2012, 20, 101–106. [Google Scholar]
- Gendaszewska, D.; Liwarska-Bizukojc, E. Adaptation of microbial communities in activated sludge to 1-decyl-3-methylimidazolium bromide. Water Sci. Technol. 2016, 74, 1227–1234. [Google Scholar] [CrossRef]
- Lawinska, K.; Gendaszewska, D.; Grzesiak, E.; Lason-Rydel, M.; Obraniak, A. Coating of leguminosarum seeds with collagen hydrolyzates from tanning waste. Przem. Chem. 2017, 9, 1877–1880. [Google Scholar] [CrossRef]
- Lawinska, K.; Serweta, W.; Modrzewski, R. Studies on water absorptivity and desorptivity of tannery shavings-based composites with mineral additives. Przem. Chem. 2019, 1, 106–109. [Google Scholar] [CrossRef]
- Obraniak, A.; Gluba, T.; Lawinska, K.; Derbiszewski, B. Minimisation of Environmental Effects Related with Storing Fly Ash from Combustion of Hard Coal. Environ. Prot. Eng. 2018, 4, 177–189. [Google Scholar] [CrossRef]
- Lawinska, K.; Serweta, W.; Gendaszewska, D. Applications of Bamboo Textiles in Individualised Children’s Footwear. Fibres Text. East. Eur. 2018, 26, 87–92. [Google Scholar] [CrossRef]
- Chambard, M.; Albert, B.; Cadiou, M.; Auby, S.; Profizi, C.; Boulogne, I. Living yeast-based biostimulants: Different genes for the same results? Front. Plant Sci. 2023, 14, 1171564. [Google Scholar] [CrossRef] [PubMed]
- Vargas, M.F.; Mestre, M.V.; Vergara, C.; Maturano, P.; Petrignani, D.; Pesce, V.; Vazquez, F. Residual brewer’s Saccharomyces cerevisiae yeasts as biofertilizers in horticultural seedlings: Towards a sustainable industry and agriculture. Front. Ind. Microbiol. 2024, 2, 1360263. [Google Scholar] [CrossRef]
- Wieczorek, D.; Lasoń-Rydel, M.; Gendaszewska, D. Wpływ obecności strużyn garbarskich na wzrost drożdży z rodziny Dipodascaceae. Technol. I Jakość Wyr. 2020, 66, 170–184. [Google Scholar]
- Wieczorek, D.; Miśkiewicz, K.; Gendaszewska, D.; Pipiak, P.; Lasoń-Rydel, M.; Sieczyńska, K.; Ławińska, K. Extracellular activity of proteases from IPS21 as a function of the carbon and nitrogen source. Fibres Text. East. Eur. 2023, 31, 66–74. [Google Scholar] [CrossRef]
- Wieczorek, D.; Gendaszewska, D.; Miśkiewicz, K.; Słubik, A.; Ławińska, K. Biotransformation of protein-rich waste by Yarrowia lipolytica IPS21 to high-value products—Amino acid supernatants. Microbiol. Spectr. 2023, 11, e02749-23. [Google Scholar] [CrossRef]
- Nasri, M. Protein hydrolysates and biopeptides: Production, biological activities, and applications in foods and health benefits. A review. Adv. Food Nutr. Res. 2017, 81, 109–159. [Google Scholar] [CrossRef]
- Lawinska, K.; Obraniak, A.; Modrzewski, R. Granulation Process of Waste Tanning Shavings. Fibres Text. East. Eur. 2019, 27, 107–110. [Google Scholar] [CrossRef]
- Obraniak, A.; Lawinska, K. Spectrophotometric analysis of disintegration mechanisms (abrasion and crushing) of agglomerates during the disc granulation of dolomite. Granul. Matter 2018, 20, 7. [Google Scholar] [CrossRef]
- Edixhoven, J.D.; Gupta, J.; Savenije, H.H.G. Recent revisions of phosphate rock reserves and resources: A critique. Earth Syst. Dynam. 2014, 5, 491–507. [Google Scholar] [CrossRef]
- Kisinyo, P.O.; Opala, P.A. Depletion of phosphate rock reserves and world food crisis: Reality or hoax? Afr. J. Agric. Res. 2020, 16, 1223–1227. [Google Scholar] [CrossRef]
- Thielicke, M.; Ahlborn, J.; Životić, L.; Saljnikov, E.; Eulenstein, F. Microgranular fertilizer and biostimulants as alternatives to diammonium phosphate fertilizer in maize production on marshland soils in northwest Germany. Zemljište I biljka 2022, 71, 53–66. [Google Scholar] [CrossRef]
- Oancea, F.; Raut, I.; Şesan, T.E.; Cornea, P.C. Dry Flowable Formulation of Biostimulants Trichoderma Strains. Agric. Agric. Sci. Procedia 2016, 10, 494–502. [Google Scholar] [CrossRef]
- Hernández Jiménez, J.E.; Nyiraneza, J.; Fraser, T.D.; Peach Brown, H.C.; Lopez-Sanchez, I.J.; Botero-Botero, L.R. Enhancing phosphorus release from struvite with biostimulants. Can. J. Soil Sci. 2020, 101, 22–32. [Google Scholar] [CrossRef]
- Sorgonà, A.; Longo, L.; Proto, A.R.; Cavalletti, P.; Cecchini, M.; Salvati, L.; Gallucci, F.; Colantoni, A. Characterization of Biochar and Syngas Obtained from Pellets of Grape Vine and Sun Flower Husk Using A Pyrolysis System, Procedia. Soc. Behav. Sci. 2016, 223, 871–878. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Santa-Olalla, A.; Campos, P.; López-Núñez, R.; González-Pérez, J.A.; Almendros, G.; Knicker, H.E.; Sánchez-Martín, Á.; Fernández-Boy, E. Impact of Biochar Amendment on Soil Properties and Organic Matter Composition in Trace Element-Contaminated Soil. Int. J. Environ. Res. Public Health 2022, 19, 2140. [Google Scholar] [CrossRef]
- Kang, M.W.; Yibeltal, M.; Kim, Y.H.; Oh, S.J.; Lee, J.C.; Kwon, E.E.; Lee, S.S. Enhancement of soil physical properties and soil water retention with biochar-based soil amendments. Sci. Total Environ. 2022, 836, 155746. [Google Scholar] [CrossRef]
Parameter | Plant | ||
---|---|---|---|
Miscanthus × giganteus | Salix viminalis | Populus × euroamericana | |
Sowing, crop duration (days), and harvesting for maximum energy yields | Sowing: spring Economic life: >20 years. Harvesting: annually (spring), when the crop has senesced, yields stabilize from the second year onwards. | Planting: spring Economic life: 25–30 years. Harvested on 3–4 years rotation (winter) | Planting: spring Economic life: 25–30 years. Harvested on 3–7 years rotation (winter) |
Nitrogen requirement (kg ha−1) | 0–100 | 80–150 | 112–450 |
Water needs (mm) | 700–800 | 1000 | >350 |
Gross calorific value (MJ kg−1) | 19.60 | 19.63 | 19.47 |
Heating value (MJ kg−1) | 16.29 | 16.33 | 16.18 |
Total aboveground biomass production (t dm ha−1) | 30–40 | 60–70 | 110–120 |
Ash | 2.67–3.43 | 1.16–1.28 | 1.71–2.58 |
Analysis wt.% | |||
C | 45.28–49.70 | 49.29–48.34 | 49.03–50.14 |
H | 5.38–6.12 | 6.08–6.41 | 5.97–6.14 |
N | 0.29–0.51 | 0.61–1.05 | 0.60 |
O | 41.4–49.52 | 43.69–45.70 | 42.86–43.29 |
Sources | [19,20,21,22] | [19,20,23] | [19,24,25] |
Energy Crops | Dry Matter Yield (Mg ha−1) | Energy Output (GJ ha−1 year−1) | Energy Inputs (GJ ha−1 year−1) | Energy Gain (GJ ha−1 year−1) | Source |
---|---|---|---|---|---|
Maize | 21.7 | 255.3 | 25.1 | 230.2 | [53,54] |
Sweet sorghum | 17.7 | 194.5 | 22.1 | 172.4 | |
Giant miscanthus | 15.5 | 271.6 | 20.0 | 251.5 | [45,55,56] |
Amur silver grass | 9.3 | 163.2 | 22.2 | 141 | |
Black locust | 7.91 | nd | nd | 107.7 | |
Poplar | 24.73 | nd | nd | 345.5 | |
Willow | 20.71 | nd | nd | 336.3 | [45,57] |
A Type of Stress | Energy Crop | A Type of Biostimulator | Sources |
---|---|---|---|
Salt stress | M. sinensis | 70.0% organic matter content, 35.0% seaweed concentrate, 30.0% organic carbon, 5.0% free L-amino acids, polysaccharides, phosphorus, potassium, magnesium, iron, calcium, copper, vitamins B1, B2, B3, B6, and B9; | [80] |
Salt stress | M. sinensis | 1% total nitrogen (N), 0.9% organic nitrogen (Norg), 9.3% potassium (in conversion to K2O), 4.6% calcium (in conversion to CaO), dry matter: 52%, and organic matter: 26% | [80] |
Salt stress | M. sinensis | 2.0% Ntot; 0.3% Mg; 5.0% S; 0.15% B; 0.05% Cu; 0.20% Fe; 0.10% Mn; 0.50% Zn; 1.25% C; 5.0% extract from algae; traces of plant hormones, betaine (C5H11NO2), amino acids, and thiamine | [80] |
Salt stress | M. sinensis | Amino acids (proline and tryptophan), glycosides, polysaccharides, organic nitrogen, and organic carbon | [80] |
Metal-contaminated agricultural soil | Miscanthus × giganteus J.M | Protein hydrolysate | [83] |
Metal-contaminated agricultural soil | Miscanthus × giganteus J.M | Humic and fulvic acid | [83] |
Metal-contaminated agricultural soil | Miscanthus × giganteus J.M | Mycorrhizal fungi | [83] |
Metal-contaminated agricultural soil | Cannabis sativa L. | Protein hydrolysate | [83] |
Metal-contaminated agricultural soil | Cannabis sativa L. | Humic and fulvic acid | [83] |
Metal-contaminated agricultural soil | Cannabis sativa L. | Mycorrhizal fungi | [83] |
Marginal post-military soil | Miscanthus × giganteus | Plant growth regulators (PGRs) | [84] |
Salt stress | Miscanthus | Endophytic bacteria Clostridium and anondiazotrophic Enterobacter sp. | [85] |
Poor-quality, marginal land | Miscanthus × giganteus ‘Amuri’ and ‘Nagara’ | Ascophyllum nodosum seaweed extract | [86] |
Poor-quality, marginal land | Willow plants Inger (Salix triandra × Salix viminalis) | 1-triacontanol (TRIA), | [87] |
Poor-quality, marginal land | Willow plants Inger (Salix triandra × Salix viminalis) | Seaweed extract (Kelpak®) | [87] |
Poor-quality, marginal land | Willow plants Tordis (Salix schwerinii × Salix viminalis) | 1-triacontanol (TRIA), | [87] |
Poor-quality, marginal land | Willow plants Tordis (Salix schwerinii × Salix viminalis) | Seaweed extract (Kelpak®) | [87] |
Samples (µg/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Amino acid | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Alanine | ALA | 909 | 850 | 286 | 495 | 296 | 124 | 648 | 642 | 758 |
Glycine | GLY | 3600 | 4000 | 1500 | 1000 | 1400 | 2141 | 1856 | 3200 | 4100 |
Valine | VAL | 150 | 95 | 19 | 13 | 28 | 35 | 18 | 86 | 145 |
Leucine | LEU | 170 | 140 | 54 | 59 | 45 | 65 | 126 | 125 | 93 |
Isoleucine | ILE | 74 | 87 | 67 | 98 | 67 | 28 | 68 | 54 | 68 |
Threonine | THR | 10 | 96 | 25 | 28 | 99 | 101 | 87 | 65 | 86 |
Serine | SER | 90 | 35 | 15 | 51 | 67 | 27 | 21 | 79 | 99 |
Proline | PRO | 1200 | 160 | 425 | 254 | 352 | 554 | 658 | 1400 | 982 |
Aspartic acid | ASP | 555 | 640 | 251 | 99 | 152 | 201 | 157 | 752 | 854 |
Methionine | MET | 51 | 24 | 58 | 15 | 67 | 48 | 10 | 35 | 15 |
Hydroxyproline | HYP | 1735 | 181 | 556 | 684 | 823 | 797 | 798 | 1825 | 1760 |
Glutamic acid | GLU | 655 | 750 | 250 | 154 | 215 | 189 | 147 | 546 | 749 |
Phenylalanine | PHE | 148 | 100 | 58 | 75 | 86 | 42 | 75 | 76 | 58 |
Lysine | LYS | 280 | 120 | 145 | 89 | 174 | 189 | 258 | 327 | 420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostocki, A.; Wieczorek, D.; Pipiak, P.; Ławińska, K. Use of Biostimulants in Energy Crops as a New Approach for the Improvement of Performance Sequestration CO2. Energies 2024, 17, 2881. https://doi.org/10.3390/en17122881
Rostocki A, Wieczorek D, Pipiak P, Ławińska K. Use of Biostimulants in Energy Crops as a New Approach for the Improvement of Performance Sequestration CO2. Energies. 2024; 17(12):2881. https://doi.org/10.3390/en17122881
Chicago/Turabian StyleRostocki, Andrzej, Dorota Wieczorek, Paulina Pipiak, and Katarzyna Ławińska. 2024. "Use of Biostimulants in Energy Crops as a New Approach for the Improvement of Performance Sequestration CO2" Energies 17, no. 12: 2881. https://doi.org/10.3390/en17122881
APA StyleRostocki, A., Wieczorek, D., Pipiak, P., & Ławińska, K. (2024). Use of Biostimulants in Energy Crops as a New Approach for the Improvement of Performance Sequestration CO2. Energies, 17(12), 2881. https://doi.org/10.3390/en17122881