Trace Elements in Maize Biomass Used to Phyto-Stabilise Iron-Contaminated Soils for Energy Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Vegetatiwe Experiment
2.2. Analytical Methods
2.3. Statistical Methods
3. Results
3.1. Biomass Yield and Dry Mater Content
3.2. Iron
3.3. Other Trace Elements
3.4. Relations beetwen Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okot, D.K.; Bilsborrow, P.E.; Phan, A.N.; Manning, D.A.C. Kinetics of maize cob and bean straw pyrolysis and combustion. Heliyon 2023, 9, e17236. [Google Scholar] [CrossRef]
- Kalak, T. Potential use of industrial biomass waste as a sustainable energy source in the future. Energies 2023, 16, 1783. [Google Scholar] [CrossRef]
- Moreira, J.R. Global biomass energy potential. Mitig. Adapt. Strat. Glob. Chang. 2006, 11, 313–342. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulutc, Ü.; Kuşkaya, S. Can biomass energy be an efficient policy tool for sustainable development? Renew. Sustain. Energy Rev. 2017, 71, 830–845. [Google Scholar] [CrossRef]
- Sahoo, G.; Sharma, A.; Dash, A.C. Biomass from trees for bioenergy and biofuels—A briefing paper. Mater. Today Proc. 2022, 65, 461–467. [Google Scholar] [CrossRef]
- Osman, A.I.; Chen, L.; Yang, M.; Msigwa, G.; Farghali, M.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environ. Chem. Lett. 2023, 21, 741–764. [Google Scholar] [CrossRef]
- Batista, R.M.; Converti, A.; Pappalardo, J.; Benachour, M.; Sarubbo, L.A. Tools for optimization of biomass-to-energy conversion processes. Processes 2023, 11, 854. [Google Scholar] [CrossRef]
- Jasinskas, A.; Petlickaite, R.; Jotautiene, E.; Lemanas, E.; Soucek, J. Assessment of energy properties of maize and multi-croppellets and environmental impact of their combustion. In Proceedings of the 21st International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 25–27 May 2022. [Google Scholar] [CrossRef]
- Hu, B.; Wang, K.; Wu, L.; Yu, S.H.; Antonietti, M.; Titirici, M.M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Thangaraj, B.; Mumtaz, F.; Abbas, Y.; Anjum, D.H.; Solomon, P.R.; Hassan, J. Synthesis of graphene oxide from sugarcane dry leaves by two-stage pyrolysis. Molecules 2023, 28, 3329. [Google Scholar] [CrossRef]
- Supriyanto, G.; Rukman, N.K.; Nisa, A.K.; Jannatin, M.; Piere, B.; Abdullah, A.; Fahmi, M.Z.; Kusuma, H.S. Graphene oxide from Indonesian biomass: Synthesis and characterization. BioResources 2018, 13, 4832–4840. [Google Scholar] [CrossRef]
- Thangaraj, B.; Solomon, P.R.; Wongyao, N.; Helal, M.I.; Abdullah, A.; Abedrabbo, S.; Hassan, J. Synthesis of reduced graphene oxide nanosheets from sugarcane dry leaves by two-stage pyrolysis for antibacterial activity. Nano Mat. Sci. 2024, 1–10. [Google Scholar] [CrossRef]
- Zbytek, Z.; Dach, J.; Pawłowski, T.; Smurzyńska, A.; Czekała, W.; Janczak, D. Energy and economic potential of maize straw used for biofuels production. MATEC Web Conf. 2016, 60, 04008. [Google Scholar] [CrossRef]
- Mazurkiewicz, J.; Marczuk, A.; Pochwatka, P.; Kujawa, S. Maize straw as a valuable energetic material for biogas plant feeding. Materials 2019, 12, 3848. [Google Scholar] [CrossRef]
- Șimon, A.; Moraru, P.I.; Ceclan, A.; Russu, F.; Chețan, F.; Bărdaș, M.; Popa, A.; Rusu, T.; Pop, A.I.; Bogdan, I. The impact of climatic factors on the development stages of maize crop in the Transylvanian plain. Agronomy 2023, 13, 1612. [Google Scholar] [CrossRef]
- Maw, M.J.W.; Houx, J.H., III; Fritschi, F.B. Maize, sweet sorghum, and high biomass sorghum ethanol yield comparison on marginal soils in Midwest USA. Biomass Bioenerg. 2017, 107, 164–171. [Google Scholar] [CrossRef]
- Ning, X.; Lin, M.; Huang, G.; Mao, J.; Gao, Z.; Wang, X. Research progress on iron absorption, transport, and molecular regulation strategy in plants. Front. Plant Sci. 2023, 14, 1190768. [Google Scholar] [CrossRef] [PubMed]
- Rout, G.R.; Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef]
- Becker, M.; Asch, F. Iron toxicity in rice—Conditions and management concepts. J. Plant Nutr. Soil Sci. 2005, 168, 558–573. [Google Scholar] [CrossRef]
- Siqueira-Silva, A.I.; Rios, C.O.; Pereira, E.G. Iron toxicity resistance strategies in tropical grasses: The role of apoplastic radicular barriers. J. Environ. Sci. 2019, 78, 257–266. [Google Scholar] [CrossRef]
- Saaltink, R.M.; Dekker, S.C.; Eppinga, M.B.; Griffioen, J.; Wassen, M.J. Plant-specific effects of iron-toxicity in wetlands. Plant Soil 2017, 416, 83–96. [Google Scholar] [CrossRef]
- Silveira, V.C.; Oliveira, A.P.; Sperotto, R.A.; Amaral, L.; Dias, J.F.; Cunha, J.B.; Fett, J.P. Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Braz. J. Plant Physiol. 2007, 19, 127–139. [Google Scholar] [CrossRef]
- Siqueira-Silva, A.I.; Silva, L.C.; Azevedo, A.A.; Oliva, M.A. Iron plaque formation and morphoanatomy of roots from species of restinga subjected to excess iron. Ecotox. Environ. Safe. 2012, 78, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Arasimowicz, M.; Niemiec, M.; Wiśniowska-Kielian, B. Post-effect of increasing bottom sediment additives to the substratum on nickel uptake by plants. Ecol. Chem. Eng. A 2012, 19, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Tapia, J.; Molina-Montenegro, M.; Sandoval, C.; Rivas, N.; Espinoza, J.; Basualto, S.; Fierro, P.; Vargas-Chacoff, L. Human activity in Antarctica: Effects on metallic trace elements (MTEs) in plants and soils. Plants 2021, 10, 2593. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Soils and Plants, 1st ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2015; p. 468. [Google Scholar] [CrossRef]
- Qishlaqi, A.; Moore, F. Statistical Analysis of accumulation and sources of heavy metals occurrence in agricultural soils of Khoshk River Banks, Shiraz, Iran. Am.-Eurasian J. Agric. Environ. Sci. 2007, 2, 565–573. [Google Scholar]
- Ukalska-Jaruga, A.; Siebielec, G.; Siebielec, S.; Pecio, M. The effect of soil amendments on trace elements’ bioavailability and toxicity to earthworms in contaminated soils. Appl. Sci. 2022, 12, 6280. [Google Scholar] [CrossRef]
- Pikuła, D.; Stępień, W. Effect of the degree of soil contamination with heavy metals on their mobility in the soil profile in a microplot experiment. Agronomy 2021, 11, 878. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Kulikowska, D.; Gusiatin, Z.M.; Bulkowska, K.; Kierklo, K. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil. Chemosphere 2015, 136, 42–49. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, H.; Zhao, L.; Shen, Y.; Hou, Y.; Cheng, H.; Song, L. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting. Bioresour. Technol. 2018, 258, 279–286. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Brodowska, M.S.; Kordala, N. Trace element contents in maize following the application of organic materials to reduce the potential adverse effects of nitrogen. Materials 2023, 16, 215. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Li, R.; Peng, S.; Liu, Q.; Zhu, X. Effect of humic acid on transformation of soil heavy metals. IOP Conf. Ser. Mater. Sci. Eng. 2017, 207, 012089. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Kordala, N.; Brodowska, M.S. Trace element content in soils with nitrogen fertilisation and humic acids addition. Agriculture 2023, 13, 968. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Bassouny, M.A.; Jahin, H.S.; Abdelhafez, A.A. Stabilization of Lead and Copper in a Contaminated Typic Torripsament Soil Using Humic Substances. Clean–Soil Air Water 2019, 47, 1800309. [Google Scholar] [CrossRef]
- Alvarenga, P.; Gonçalves, A.; Fernandes, R.; De Varennes, A.; Vallini, G.; Duarte, E.; Cunha-Queda, A.C. Organic residues as immobilizing agents in aided phytostabilization:(I) Effects on soil chemical characteristics. Chemosphere 2009, 74, 1292–1300. [Google Scholar] [CrossRef]
- Brodowska, M.S.; Wyszkowski, M.; Kordala, N. Use of organic materials to limit the potential negative effect of nitrogen on maize in different soils. Materials 2022, 15, 5755. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowski, M.; Kordala, N.; Brodowska, M. Role of humic acids-based fertilisers and nitrogen fertilisers in the regulation of the macroelement content in maize biomass. J. Elem. 2023, 28, 1289–1309. [Google Scholar] [CrossRef]
- Ampong, K.; Thilakaranthna, M.S.; Gorim, L.Y. Understanding the role of humic acids on crop performance and soil health. Front. Agron. 2022, 4, 848621. [Google Scholar] [CrossRef]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J.; Borowik, A.; Kaczyński, P. Possibilities of restoring homeostasis of soil exposed to terbuthylazine by its supplementation with HumiAgra preparation. Appl. Soil Ecol. 2022, 178, 104582. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Gao, S.; Zhang, Z.; Huang, L. Effect of humic acid on phytoremediation of heavy metal contaminated sediment. J. Hazard. Mater. Adv. 2023, 9, 100235. [Google Scholar] [CrossRef]
- Tan, L.; Yu, Z.; Tan, X.; Fang, M.; Wang, X.; Wang, J.; Xing, J.; Ai, Y.; Wang, X. Systematic studies on the binding of metal ions in aggregates of humic acid: Aggregation kinetics, spectroscopic analyses and MD simulations. Environ. Pollut. 2019, 246, 999–1007. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Kordala, N. Effects of humic acids on calorific value and chemical composition of maize biomass in iron-contaminated soil phytostabilisation. Energies 2024, 17, 1691. [Google Scholar] [CrossRef]
- Santos, F.D.; Ferreira, P.L.; Pedersen, J.S.T. The climate change challenge: A review of the barriers and solutions to deliver a Paris solution. Climate 2022, 10, 75. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; p. 236. Available online: https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (accessed on 14 April 2023).
- US-EPA Method 3051A. Microwave Assisted Acid Digestion of Sediment, Sludges, Soils, and Oils; United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–30. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed on 22 December 2022).
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Assessment of Soil and Plants Properties, 1st ed.; Institute of Environmental Protection: Warsaw, Poland, 1991; pp. 1–334. [Google Scholar]
- TIBCO Software Inc. Statistica (Data Analysis Software System), Version 13.3 2017. Available online: http://statistica.io (accessed on 29 February 2024).
- Setter, T.L.; Waters, I.; Sharma, S.K.; Singh, K.N.; Kulshreshtha, N.; Yaduvanshi, N.P.; Ram, P.C.; Singh, B.N.; Rane, J.; McDonald, G.; et al. Review of wheat improvement for waterlogging tolerance in Australia and India: The importance of anaerobiosis and element toxicities associated with different soils. Ann. Bot. 2009, 103, 221–235. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Ullah, H.; Aung, M.Z.; Tisarum, R.; Cha-Um, S. Iron toxicity tolerance of rice genotypes in relation to growth, yield and physiochemical characters. Rice Sci. 2023, 30, 321–334. [Google Scholar] [CrossRef]
- Olaleye, A.O.; Ogunkunle, A.O.; Singh, B.N.; Akinbola, G.E.; Tabi, F.O.; Fayinminu, O.O.; Iji, M.E. Ratios of nutrients in lowland rice grown on two iron toxic soils in Nigeria. J. Plant Nutr. 2009, 32, 1336–1352. [Google Scholar] [CrossRef]
- Rodrigues Filho, J.; Corte, V.B.; Perin, I.T.A.L.; dos Santos, C.R.; da Silva, R.W. Effects of iron toxicity on germination and initial growth of Carica papaya L. Sci. Plena 2020, 16, 1–12. [Google Scholar] [CrossRef]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satbhai, S.B. Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress 2021, 1, 100008. [Google Scholar] [CrossRef]
- Wu, L.B.; Shhadi, M.Y.; Gregorio, G.; Matthus, E.; Becker, M.; Frei, M. Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 2014, 7, 8. [Google Scholar] [CrossRef]
- Audebert, A.; Sahrawat, K.L. Mechanisms for iron toxicity tolerance in lowland rice. J. Plant Nutr. 2000, 7, 1877–1885. [Google Scholar] [CrossRef]
- Huang, X.; Zhu-Barker, X.; Horwath, W.R.; Faeflen, S.J.; Luo, H.; Xin, X.; Jiang, X. Effect of iron oxide on nitrification in two agricultural soils with different pH. Biogeosciences 2016, 13, 5609–5617. [Google Scholar] [CrossRef]
- Song, Y.; Wan, G.-Y.; Wang, J.-X.; Zhang, Z.-S.; Xia, J.-Q.; Sun, L.-Q.; Lu, J.; Ma, C.-X.; Yu, L.-H.; Xiang, C.-B.; et al. Balanced nitrogen–iron sufficiency boosts grain yield and nitrogen use efficiency by promoting tillering. Moleculr. Plant 2023, 16, 1661–1677. [Google Scholar] [CrossRef] [PubMed]
- Adamski, J.M.; Danieloski, R.; Deuner, S.; Braga, E.J.B.; de Castro, L.A.S.; Peters, J.A. Responses to excess iron in sweet potato: Impacts on growth, enzyme activities, mineral concentrations, and anatomy. Acta Physiol. Plant 2012, 34, 1827–1836. [Google Scholar] [CrossRef]
- De Dorlodot, S.; Lutts, S.; Bertin, P. Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. J. Plant Nutr. 2005, 28, 1–20. [Google Scholar] [CrossRef]
- Lombi, E.; Tearall, K.L.; Horwath, J.R.; Zhao, F.J.; Hawkesford, M.J.; McGrath, S.P. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 2002, 128, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Krüeger, C.; Berkowitz, O.; Stephan, U.W.; Hell, R. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J. Biol. Chem. 2002, 277, 25062–25069. [Google Scholar] [CrossRef] [PubMed]
- Souza-Santos, P.; Ramos, R.S.; Ferreira, S.T.; Carvalho-Alves, P.C. Iron-induced oxidative damage of corn root plasma membrane H+-ATPase. Biochem. Biophys. Acta 2001, 1512, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Abou Seeda, M.A.; Abou El-Nour, E.A.A.; Hammad, S.A.; Yassen, A.A. Chloride ions as a beneficial and essential micronutrient multifunctional, role and regulation in plant physiology: A review. Middle East J. Appl. Sci. 2021, 11, 76–125. [Google Scholar]
- Zhang, X.; Franzisky, B.L.; Eigner, L.; Geilfus, C.-M.; Zörb, C. Antagonism of chloride and nitrate inhibits nitrate reductase activity in chloride-stressed maize. Plant Growth Regul. 2021, 93, 279–289. [Google Scholar] [CrossRef]
- Bezuglova, O.S.; Gorovtsov, A.V.; Polienko, E.A.; Zinchenko, V.E.; Grinko, A.V.; Lykhman, V.A.; Dubinina, M.N.; Demidov, A. Effect of humic preparation on winter wheat productivity and rhizosphere microbial community under herbicide-induced stress. J. Soils Sediments 2019, 19, 2665–2675. [Google Scholar] [CrossRef]
- Yuan, Y.; Gai, S.; Tang, C.; Jin, Y.; Cheng, K.; Antonietti, M.; Yang, F. Artificial humic acid improves maize growth and soil phosphorus utilization efficiency. Appl. Soil Ecol. 2022, 179, 104587. [Google Scholar] [CrossRef]
- Raheem, S.M.; Al-Jaf, H.I.; Tofiq, G.K. Influence of foliar and soil application of humic acid on growth and yield of lettuce. J. Biol. Agricult. Healthc. 2018, 8, 199–204. Available online: https://core.ac.uk/download/pdf/234662566.pdf (accessed on 24 April 2024).
- Aylaj, M.; Sisouane, M.; Tahiri, S.; Mouchrif, Y.; El Krati, M. Effects of humic acid extracted from organic waste composts on turnip culture (Brassica rapa subsp. rapa) in a sandy soil. J. Ecol. Eng. 2023, 24, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ma, Z.; Ren, B.; Zhao, B.; Liu, P.; Zhang, J. Effects of humic acid added to controlled-release fertilizer on summer maize yield, nitrogen use efficiency and greenhouse gas emission. Agriculture 2022, 12, 448. [Google Scholar] [CrossRef]
- Nunes, R.O.; Domiciano, G.A.; Alves, W.S.; Melo, A.C.A.; Nougeira, F.C.S.; Canellas, L.P.; Olivare, F.L.; Zingali, R.B.; Soares, M.R. Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis. Sci. Rep. 2019, 9, 12019. [Google Scholar] [CrossRef] [PubMed]
- Eyheraguibel, B.; Silvestre, J.; Morard, P. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresour. Technol. 2008, 99, 4206–4212. [Google Scholar] [CrossRef] [PubMed]
- Horuz, A. Effects of humic acids from different sources on sodium and micronutrient levels in corn plants. Sains Malays. 2020, 49, 1533–1542. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rengel, Z.; Romic, D. Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity. Ecotoxicol. Environ. Saf. 2018, 151, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, A.; Spaccini, R.; De Martino, A.; Scognamiglio, F.; di Meo, V. Soil washing with solutions of humic substances from manure compost removes heavy metal contaminants as a function of humic molecular composition. Chemosphere 2019, 225, 150–156. [Google Scholar] [CrossRef]
- Wang, L.; Wei, J.; Yang, L.; Chen, Y.; Wang, M.; Xiao, L.; Yuan, G. Enhancing soil remediation of copper-contaminated soil through washing with a soluble humic substance and chemical reductant. Agronomy 2023, 13, 1754. [Google Scholar] [CrossRef]
Fe Dose mg kg−1 of Soil | Humic Acids (HAs) Application in g kg−1 of Soil | ||||
---|---|---|---|---|---|
0 | 0.3 | 0.6 | 0.9 | Average | |
Iron | |||||
0 | 34.76 ± 1.75 b | 34.76 ± 1.75 b | 23.93 ± 1.14 a | 25.35 ± 1.03 a | 29.70 A |
250 | 57.12 ± 3.26 d | 57.12 ± 4.26 d | 43.69 ± 1.11 bc | 40.54 ± 1.86 b | 49.62 B |
500 | 92.42 ± 3.19 f | 60.29 ± 4.39 d | 53.16 ± 2.00 d | 51.05 ± 0.70 cd | 64.23 C |
750 | 96.17 ± 2.40 f | 76.59 ± 0.74 e | 59.24 ± 1.15 d | 54.59 ± 0.00 d | 71.64 D |
Average | 70.12 C | 57.19 B | 45.00 A | 42.88 A | 53.80 |
r | 0.964 | 0.965 | 0.965 | 0.966 | 0.981 |
Cadmium | |||||
0 | 0.193 ± 0.003 h | 0.093 ± 0.003 ef | 0.058 ± 0.002 bc | 0.049 ± 0.004 ab | 0.098 C |
250 | 0.192 ± 0.005 h | 0.083 ± 0.003 de | 0.072 ± 0.004 cd | 0.053 ± 0.001 a–c | 0.100 C |
500 | 0.168 ± 0.005 g | 0.086 ± 0.002 de | 0.054 ± 0.002 a–c | 0.050 ± 0.006 ab | 0.089 B |
750 | 0.109 ± 0.004 f | 0.084 ± 0.002 de | 0.037 ± 0.003 a | 0.036 ± 0.002 a | 0.066 A |
Average | 0.165 D | 0.087 C | 0.055 B | 0.047 A | 0.089 |
r | −0.907 | −0.696 | −0.730 | −0.715 | −0.888 |
Lead | |||||
0 | 0.534 ± 0.003 a | 1.039 ± 0.006 c | 1.771 ± 0.023 e | 1.851 ± 0.059 ef | 1.299 A |
250 | 0.802 ± 0.015 b | 1.398 ± 0.025 d | 2.178 ± 0.033 g | 2.574 ± 0.089 h | 1.738 C |
500 | 0.913 ± 0.005 bc | 1.789 ± 0.097 e | 1.890 ± 0.053 ef | 2.163 ± 0.059 g | 1.689 BC |
750 | 0.937 ± 0.005 bc | 1.963 ± 0.099 f | 1.762 ± 0.023 e | 1.919 ± 0.067 ef | 1.645 B |
Average | 0.797 A | 1.547 B | 1.900 C | 2.127 D | 1.593 |
r | 0.923 | 0.989 | −0.211 | −0.082 | 0.640 |
Fe Dose mg kg−1 of Soil | HAs Application in g kg−1 of Soil | ||||
---|---|---|---|---|---|
0 | 0.3 | 0.6 | 0.9 | Average | |
Chromium | |||||
0 | 4.100 ± 0.098 f | 3.866 ± 0.088 ef | 4.066 ± 0.092 f | 3.933 ± 0.060 f | 3.991 B |
250 | 3.811 ± 0.098 d–f | 3.589 ± 0.019 a–f | 3.566 ± 0.079 a–f | 3.044 ± 0.051 a | 3.502 A |
500 | 3.766 ± 0.115 c–f | 3.566 ± 0.067 a–f | 3.266 ± 0.033 a–e | 3.133 ± 0.033 ab | 3.433 A |
750 | 3.255 ± 0.077 a-d | 3.655 ± 0.051 b–f | 3.133 ± 0.067 ab | 3.200 ± 0.055 a–c | 3.311 A |
Average | 3.733 C | 3.669 BC | 3.508 AB | 3.327 A | 3.559 |
r | −0.948 | −0.619 | −0.967 | −0.667 | −0.913 |
Nickel | |||||
0 | 1.581 ± 0.016 ab | 2.984 ± 0.017 c–e | 2.960 ± 0.012 a–d | 3.259 ± 0.043 c–f | 2.696 A |
250 | 1.776 ± 0.016 a | 3.050 ± 0.010 b–d | 3.224 ± 0.037 c–f | 3.722 ± 0.048 e–g | 2.943 AB |
500 | 3.106 ± 0.017 c–f | 3.750 ± 0.025 f–h | 4.105 ± 0.046 gh | 4.607 ± 0.052 h | 3.892 C |
750 | 2.570 ± 0.018 a–c | 3.099 ± 0.026 c–e | 3.235 ± 0.036 c–f | 3.621 ± 0.043 d–g | 3.131 B |
Average | 2.258 A | 3.221 B | 3.381 B | 3.802 C | 3.166 |
r | 0.783 | 0.379 | 0.441 | 0.445 | 0.564 |
Zinc | |||||
0 | 7.61 ± 0.10 cd | 5.91 ± 0.07 ab | 5.42 ± 0.37 a | 5.33 ± 0.05 a | 6.07 A |
250 | 7.62 ± 0.07 cd | 7.14 ± 0.22 c | 6.73 ± 0.42 bc | 6.78 ± 0.02 bc | 7.07 B |
500 | 11.00 ± 0.17 e | 12.17 ± 0.21 f | 11.20 ± 0.12 e | 8.21 ± 0.05 d | 10.64 C |
750 | 15.01 ± 0.05 h | 14.63 ± 0.05 h | 13.41 ± 0.14 g | 11.28 ± 0.10 fg | 13.58 D |
Average | 10.31 D | 9.96 C | 9.19 B | 7.90 A | 9.34 |
r | 0.939 | 0.976 | 0.980 | 0.979 | 0.979 |
Fe Dose mg kg−1 of Soil | HAs Application in g kg−1 of Soil | ||||
---|---|---|---|---|---|
0 | 0.3 | 0.6 | 0.9 | Average | |
Copper | |||||
0 | 2.157 ± 0.064 c–f | 2.108 ± 0.064 c–f | 1.879 ± 0.026 b–d | 1.192 ± 0.034 a | 1.834 A |
250 | 2.212 ± 0.073 c–f | 2.258 ± 0.066 d–f | 1.907 ± 0.023 bc | 1.497 ± 0.046 ab | 1.968 A |
500 | 2.322 ± 0.024 eg | 2.343 ± 0.073 fg | 2.044 ± 0.009 c–f | 1.827 ± 0.036 bc | 2.134 B |
750 | 2.857 ± 0.022 h | 2.744 ± 0.028 gh | 1.922 ± 0.009 c–f | 1.980 ± 0.026 c–f | 2.376 C |
Average | 2.387 C | 2.363 C | 1.938 B | 1.624 A | 2.078 |
r | 0.890 | 0.947 | 0.470 | 0.989 | 0.991 |
Manganese | |||||
0 | 22.60 ± 0.32 bc | 20.29 ± 0.14 ab | 19.42 ± 0.13 a | 22.80 ± 0.25 c | 21.28 A |
250 | 43.09 ± 0.99 f | 43.61 ± 0.70 f | 35.59 ± 0.00 e | 28.08 ± 0.54 d | 37.59 B |
500 | 68.04 ± 0.58 hj | 73.29 ± 0.53 j | 66.08 ± 0.61 hi | 63.24 ± 0.71 g | 67.66 C |
750 | 68.42 ± 0.36 j | 76.23 ± 0.39 k | 66.46 ± 0.33 i | 65.04 ± 0.46 gh | 69.04 C |
Average | 50.54 C | 53.36 D | 46.89 B | 44.79 A | 48.89 |
r | 0.950 | 0.962 | 0.949 | 0.930 | 0.955 |
Cobalt | |||||
0 | 0.935 ± 0.010 ef | 0.750 ± 0.019 b–d | 0.594 ± 0.000 ab | 0.485 ± 0.018 a | 0.691 A |
250 | 0.965 ± 0.020 f | 0.816 ± 0.029 c–f | 0.811 ± 0.033 c–f | 0.695 ± 0.010 b–d | 0.822 B |
500 | 0.936 ± 0.035 ef | 0.834 ± 0.009 d–f | 0.660 ± 0.015 a–d | 0.653 ± 0.021 a–c | 0.771 B |
750 | 0.772 ± 0.029 b–e | 0.677 ± 0.043 b–d | 0.623 ± 0.020 ab | 0.687 ± 0.022 b–d | 0.690 A |
Average | 0.902 C | 0.769 B | 0.672 A | 0.630 A | 0.743 |
r | −0.761 | −0.364 | −0.088 | 0.739 | −0.110 |
Variable | Biomass Yield | DM | Fe | Cd | Pb | Cr | Ni | Zn | Cu | Mn |
---|---|---|---|---|---|---|---|---|---|---|
DM | 0.811 ** | |||||||||
Fe | −0.824 ** | −0.938 ** | ||||||||
Cd | −0.019 | −0.202 | 0.273 | |||||||
Pb | 0.155 | 0.116 | −0.265 | −0.830 ** | ||||||
Cr | 0.301 * | 0.397 | −0.306 * | 0.499 ** | −0.493 ** | |||||
Ni | −0.058 | −0.099 | −0.012 | −0.638 ** | 0.679 ** | −0.574 ** | ||||
Zn | −0.960 ** | −0.845 ** | 0.804 ** | −0.026 | −0.047 | −0.415 ** | 0.109 | |||
Cu | −0.662 ** | −0.667 ** | 0.728 ** | 0.423 ** | −0.470 ** | 0.030 | −0.268 | 0.657 ** | ||
Mn | −0.833 ** | −0.894 ** | 0.804 ** | −0.088 | 0.097 | −0.483 ** | 0.383 ** | 0.879 ** | 0.535 ** | |
Co | −0.044 | −0.347 * | 0.359 * | 0.803 ** | −0.608 ** | 0.233 | −0.424 ** | 0.065 | 0.414 ** | 0.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowski, M.; Kordala, N. Trace Elements in Maize Biomass Used to Phyto-Stabilise Iron-Contaminated Soils for Energy Production. Energies 2024, 17, 2839. https://doi.org/10.3390/en17122839
Wyszkowski M, Kordala N. Trace Elements in Maize Biomass Used to Phyto-Stabilise Iron-Contaminated Soils for Energy Production. Energies. 2024; 17(12):2839. https://doi.org/10.3390/en17122839
Chicago/Turabian StyleWyszkowski, Mirosław, and Natalia Kordala. 2024. "Trace Elements in Maize Biomass Used to Phyto-Stabilise Iron-Contaminated Soils for Energy Production" Energies 17, no. 12: 2839. https://doi.org/10.3390/en17122839
APA StyleWyszkowski, M., & Kordala, N. (2024). Trace Elements in Maize Biomass Used to Phyto-Stabilise Iron-Contaminated Soils for Energy Production. Energies, 17(12), 2839. https://doi.org/10.3390/en17122839