Aerial Inspection of High-Voltage Power Lines Using YOLOv8 Real-Time Object Detector
Abstract
:1. Introduction
1.1. Contributions
- In this work, we created an image dataset with annotation files, both for object detection (bounding boxes) and instance segmentation (polygons), containing 2056 images of the three main components of high-voltage power line facilities: towers, insulators, and conductors. To the best of our knowledge, there is only one dataset publicly available, containing 1100 images of high-voltage towers and conductors with annotations for instance segmentation [5], indicating the need for more data in the field.
- Our proposed method of utilizing our model’s pre-trained weights for detecting defects of insulators increased precision and recall class predictions (f1-score), outperforming state-of-the-art work.
- This work contributes to the evaluation of recently developed YOLOv8-based models for real-time power line detection, focusing on the capabilities of onboard processing. The research builds upon our prior work [6], improving the detection accuracy across all three object classes.
1.2. Related Work
2. Materials and Methods
2.1. Methodology
- a.
- The backbone is based on a modified CSPDarknet53 architecture, consisting of 53 convolutional layers, while incorporating cross-stage partial connections to enable enhanced information flow between the layers.
- b.
- The head is composed of several convolutional layers followed by fully connected layers. These layers play a crucial role in predicting bounding boxes and class probabilities for detected objects in an image.
2.2. Model Training
2.3. Insulators’ Inspection Method
2.4. Data Description
2.4.1. Tower, Insulator, and Conductor (TIC) Dataset
2.4.2. Chinese Power Line Insulator Dataset (CPLID)
- a.
- 600 images of normal insulators captured by UAVs, with bounding box annotations in VOC2007 format;
- b.
- 248 synthesized images of defective insulators, also with bounding box annotations in VOC2007 format.
3. Results
3.1. Evaluation Metrics
- true positive (TP): object is present and predicted;
- false positive (FP): object is predicted when not present (confused with background);
- false negative (FN): object is present and not predicted.
3.2. Models’ Performance for Detecting Key Components
3.3. Models’ Performance for Detecting Defects in Insulators
3.4. Inference
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martins, W.M.; Dantas Filho, A.J.; Dejesus, L.D.; Desouza, A.D.; Ramos, A.C.; Pimenta, T.C. Tracking for inspection in energy transmission power lines using unmanned aerial vehicles: A systematic review of current and specific literature. IAES Int. J. Robot. Autom. 2020, 9, 233. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, Z.; Zhang, W.; Huang, Z.; Wu, S.; Long, Y.; Chen, J. The Development of Unmanned Aerial Vehicle Intelligent Inspection Technology in Power System. In Proceedings of the 2023 Panda Forum on Power and Energy (PandaFPE), Chengdu, China, 27–30 April 2023; pp. 393–398. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics (Version 8.0.0) [Computer Software]. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 15 December 2023).
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Abdelfattah, R.; Wang, X.; Wang, S. TTPLA: An Aerial-Image Dataset for Detection and Segmentation of Transmission Towers and Power Lines. In Proceedings of the Asian Conference on Computer Vision, Kyoto, Japan, 30 November–4 December 2020. [Google Scholar]
- Bellou, E.; Pisica, I.; Banitsas, K. Real-Time Object Detection on High-Voltage Powerlines Using an Unmanned Aerial Vehicle (UAV). In Proceedings of the 2023 58th International Universities Power Engineering Conference (UPEC), Dublin, Ireland, 29 August–1 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, G.; Qi, Y.; Liu, N.; Zhang, T. Multi-patch deep features for power line insulator status classification from aerial images. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 3187–3194. [Google Scholar]
- Li, S.; Zhou, H.; Wang, G.; Zhu, X.; Kong, L.; Hu, Z. Cracked insulator detection based on R-FCN. J. Phys. Conf. Ser. 2018, 1069, 012147. [Google Scholar] [CrossRef]
- Ling, Z.; Qiu, R.C.; Jin, Z.; Zhang, Y.; He, X.; Liu, H.; Chu, L. An accurate and real-time self-blast glass insulator location method based on faster R-CNN and U-net with aerial images. arXiv 2018, arXiv:1801.05143. [Google Scholar]
- Chen, B.; Miao, X. Distribution Line Pole Detection and Counting Based on YOLO Using UAV Inspection Line Video. J. Electr. Eng. Technol. 2020, 15, 441–448. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, Y.; Peng, Y.; Zhang, J.; Sun, K. Accurate Object Recognition for Unmanned Aerial Vehicle Electric Power Inspection using an Improved YOLOv2 Algorithm. In Proceedings of the 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC), Hangzhou, China, 23–25 June 2019; pp. 610–617. [Google Scholar]
- Feng, Z.; Guo, L.; Huang, D.; Li, R. Electrical Insulator Defects Detection Method Based on YOLOv5. In Proceedings of the IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), Suzhou, China, 14–16 May 2021; pp. 979–984. [Google Scholar] [CrossRef]
- Gu, J.; Hu, J.; Jiang, L.; Wang, Z.; Zhang, X.; Xu, Y.; Zhu, J.; Fang, L. Research on object detection of overhead transmission lines based on optimized YOLOv5s. Energies 2023, 16, 2706. [Google Scholar] [CrossRef]
- Li, Y.; Ni, M.; Lu, Y. Insulator defect detection for power grid based on light correction enhancement and YOLOv5 model. Energy Rep. 2022, 8, 807–814. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, F.; Xu, Z.; Wang, J.; Liu, K.; Qin, L. Insulator and damage detection and location based on YOLOv5. In Proceedings of the 2022 International Conference on Power Energy Systems and Applications (ICoPESA), Virtual, 25–27 February 2022; pp. 17–24. [Google Scholar]
- Qi, Y.; Li, Y.; Du, A. Research on an Insulator Defect Detection Method Based on Improved YOLOv5. Appl. Sci. 2023, 13, 5741. [Google Scholar] [CrossRef]
- Singh, G.; Stefenon, S.F.; Yow, K.C. Interpretable visual transmission lines inspections using pseudo-prototypical part network. Mach. Vis. Appl. 2023, 34, 41. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Jocher, G. YOLOv5 by Ultralytics (Version 7.0) [Computer Software]. 2020. Available online: https://zenodo.org/records/7347926(accessed on 15 December 2023).
- Tao, X.; Zhang, D.; Wang, Z.; Liu, X.; Zhang, H.; Xu, D. Detection of Power Line Insulator Defects Using Aerial Images Analyzed with Convolutional Neural Networks. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1486–1498. [Google Scholar] [CrossRef]
- Nayak, R. Focal Loss: A Better Alternative for Cross-Entropy. Towards Data Science. 2022. Available online: https://towardsdatascience.com/focal-loss-a-better-alternative-for-cross-entropy-1d073d92d075 (accessed on 15 December 2023).
- Vemula, S.; Frye, M. Real-Time Powerline Detection System for an Unmanned Aircraft System. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 4493–4497. [Google Scholar] [CrossRef]
- Zhao, Q.; Ji, T.; Liang, S.; Yu, W.; Yan, C. Real-time power line segmentation detection based on multi-attention with strong semantic feature extractor. J. Real-Time Image Proc. 2023, 20, 117. [Google Scholar] [CrossRef]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9157–9166. [Google Scholar]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT++ Better Real-Time Instance Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1108–1121. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Soto, R.A.R.; Xiao, F.; Lee, Y.J. Yolactedge: Real-time instance segmentation on the edge. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xian, China, 30 May–5 June 2021; pp. 9579–9585. [Google Scholar]
- Chen, C.; Yuan, G.; Zhou, H.; Ma, Y. Improved YOLOv5s model for key components detection of power transmission lines. Math. Biosci. Eng. 2023, 20, 7738–7760. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Yang, B.; Li, Y.; Wang, B. An improved CenterNet model for insulator defect detection using aerial imagery. Sensors 2022, 22, 2850. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Zhang, K.; Xie, Z.; Shi, C. An improved cascade RCNN detection method for key components and defects of transmission lines. IET Gener. Transm. Distrib. 2023, 17, 4277–4292. [Google Scholar] [CrossRef]
- Zhao, W.Q.; Cheng, H.H.; Zhao, Z.B.; Zhai, Y.J. Combining attention mechanism and Faster RCNN for insulator recognition. CAAI Trans. Int. Syst. 2020, 15, 92–98. [Google Scholar] [CrossRef]
- Wang, S.; Tan, W.; Yang, T.; Zeng, L.; Hou, W.; Zhou, Q. High-Voltage Transmission Line Foreign Object and Power Component Defect Detection Based on Improved YOLOv5. J. Electr. Eng. Technol. 2023, 19, 851–866. [Google Scholar] [CrossRef]
- Wang, S.; Zou, X.; Zhu, W.; Zeng, L. Insulator Defects Detection for Aerial Photography of the Power Grid Using You Only Look Once Algorithm. J. Electr. Eng. Technol. 2023, 18, 3287–3300. [Google Scholar] [CrossRef]
- Hu, D.; Yu, M.; Wu, X.; Hu, J.; Sheng, Y.; Jiang, Y.; Zheng, Y. DGW-YOLOv8: A small insulator target detection algorithm based on deformable attention backbone and WIoU loss function. IET Image Process. 2023, 18, 1096–1108. [Google Scholar] [CrossRef]
- Li, X.; Su, H.; Liu, G. Insulator defect recognition based on global detection and local segmentation. IEEE Access 2020, 8, 59934–59946. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Hua, D.; Zheng, Z. Semantic segmentation of transmission lines and their accessories based on UAV-taken images. IEEE Access 2019, 7, 80829–80839. [Google Scholar] [CrossRef]
- Sampedro, C.; Rodriguez-Vazquez, J.; Rodriguez-Ramos, A.; Carrio, A.; Campoy, P. Deep learning-based system for automatic recognition and diagnosis of electrical insulator strings. IEEE Access 2019, 7, 101283–101308. [Google Scholar] [CrossRef]
Model | Model Version | Pre-Trained Model | Parameters (M) | GFLOPs (B) |
---|---|---|---|---|
YOLOv8 | Yolov8n | yolov5n.pt | 3.2 | 8.7 |
Yolov8s | yolov5s.pt | 11.2 | 28.6 | |
Yolov8m | yolov5m.pt | 25.9 | 78.9 | |
Yolov8l | yolov5l.pt | 43.7 | 165.2 | |
Yolov8x | yolov8x.pt | 68.2 | 257.8 |
Hyperparameter | Value | Hyperparameter | Value |
---|---|---|---|
Lr0 | 0.00106 | Scale | 0.82518 |
Lrf | 0.01 | Mosaic | 0.94583 |
Momentum | 0.98 | Flipud | 0.25826 |
Weight decay | 0.00058 | Copy_paste | 0.09673 |
Epochs | 80–100 | ||
patience | 20 | ||
Hsv_h | 0.01443 | ||
Hsv_s | 0.68579 | ||
Hsv_v | 0.28021 | ||
Translate | 0.12681 |
Dependencies/Hardware | Version |
---|---|
python | 3.10.11 |
Ultralytics | 8.0.112 |
CUDA | 12.0 |
GPU | Tesla 4 15 GB (google colab) |
CPU | AMD Ryzen 5 2500U 8 GB RAM (2 GHz) |
TIC Models | Precision | Recall | [email protected] | mAP@[.50:.95] | Inference (FPS) | Model Size | Time to Train |
---|---|---|---|---|---|---|---|
YOLOv8n | 0.793 | 0.781 | 0.822 | 0.606 | 277 | 5.9 MB | 31 min 18 s |
YOLOv8s | 0.813 | 0.784 | 0.838 | 0.646 | 138 | 21.5 MB | 30 min 34 s |
YOLOv8m | 0.833 | 0.78 | 0.84 | 0.678 | 61 | 49.6 MB | 1 h 17 min |
YOLOv8l | 0.841 | 0.787 | 0.852 | 0.694 | 35.7 | 83.6 MB | 1 h 12 min |
YOLOv8x | 0.837 | 0.799 | 0.856 | 0.699 | 21.5 | 130 MB | 1 h 77 min |
Object Class | Precision | Recall | [email protected] | mAP@[.50:.95] |
---|---|---|---|---|
Tower | 0.956 | 0.891 | 0.97 | 0.916 |
Insulator | 0.836 | 0.865 | 0.91 | 0.696 |
Conductor | 0.718 | 0.641 | 0.689 | 0.486 |
Model | Hardware | Image Size | [email protected] | ms | fps |
---|---|---|---|---|---|
TIC model | GPU | 640 | 83.8% | 4.1 | 243 |
CPU | 320 | 25.6 | 39 | ||
TIC model + ONNX | CPU | 320 | 82.2% | 32.4 | 30.8 |
TIC model + Tensor-RT | GPU | 640 | 82.2% | 3.9 | 256 |
Model | mAP@[.50:.95] | [email protected] | Inference (FPS) |
---|---|---|---|
YOLACT-Resnet50-FPN [26] | 32.71 | 53.14 | 26 |
YOLACT++-RESNET50 [27] | 32.11 | 53.14 | 27.8 |
YOLACT Edge-Resnet50 [28] | 32.34 | 53.02 | 33 |
YOLOv5s [6] | 60.7 | 82 | 303 |
TIC YOLOv8s | 64.6 | 83.8 | 138 |
Authors | Model | Precision | Recall | [email protected] | F1 |
---|---|---|---|---|---|
Tao et al. [22] | CNN/VGG-16 | 91% | 96% | N/A | 93.4% |
Qi et al. [16] | YOLOv5 + anchor, NAM, and gn Conv | 94.8% | 91.9% | 93.7% | 93.32% |
Feng et al. [12] | YOLOv8x + Anchor changing | 86.8% | 1 | 99.5% | 92.93% |
Chen et al. [29] | YOLOv5 + CBAM + Focal loss | N/A | 1 | 99.5% | N/A |
Xia et al. [30] | CenterNet | 95.8% | N/A | 79.4% | N/A |
Dong et al. [31] | Cascade RCNN + SwingV2 | 96.5% | 98.55% | 94.6% | 97.51% |
Zhao et al. [32] | Attention mechanism + Fast-RCNN | N/A | 98.42% | 94.3% | N/A |
Wang et al. [33,34] | Improved YOLOv5 [33] | 98.6% | 94.3% | 97.8% | 96.4% |
YOLOv4 + data augmentation [34] | 91% | 98.84% | 99.08% | 94.7% | |
Ours | Base YOLOv8s | 96% | 98.1% | 98.7% | 97.04% |
Ours | TIC model | 97.7% | 97.6% | 99% | 97.65% |
defect | 0.998% | 1 | 99.5% | 99.89% | |
normal | 0.955% | 0.953% | 98.5% | 97.35% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellou, E.; Pisica, I.; Banitsas, K. Aerial Inspection of High-Voltage Power Lines Using YOLOv8 Real-Time Object Detector. Energies 2024, 17, 2535. https://doi.org/10.3390/en17112535
Bellou E, Pisica I, Banitsas K. Aerial Inspection of High-Voltage Power Lines Using YOLOv8 Real-Time Object Detector. Energies. 2024; 17(11):2535. https://doi.org/10.3390/en17112535
Chicago/Turabian StyleBellou, Elisavet, Ioana Pisica, and Konstantinos Banitsas. 2024. "Aerial Inspection of High-Voltage Power Lines Using YOLOv8 Real-Time Object Detector" Energies 17, no. 11: 2535. https://doi.org/10.3390/en17112535
APA StyleBellou, E., Pisica, I., & Banitsas, K. (2024). Aerial Inspection of High-Voltage Power Lines Using YOLOv8 Real-Time Object Detector. Energies, 17(11), 2535. https://doi.org/10.3390/en17112535