State of Health Estimation for Lithium-Ion Batteries with Deep Learning Approach and Direct Current Internal Resistance
Abstract
:1. Introduction
2. Dataset
3. Health Feature Extraction Based on Ohm’s Law
3.1. SOH Definition
3.2. DCIR Feature
3.3. Feature Correlation Analysis
4. DNN-Based Model for Battery SOH Estimation
4.1. DNN Model Structure
4.2. Training of DNN
5. Results and Discussion
5.1. Model Evaluation Metrics
5.2. K-Fold Cross-Validation
5.2.1. Effects of Hyperparameter Settings on Estimation Performance
5.2.2. Comparison of DNN and Machine Learning Models
5.3. Robustness Validation
5.3.1. Validation of Cross-Temperature Change Condition
5.3.2. Validation of Cross-Charge and -Discharge Modes
5.3.3. Validation of Cross-Manufacturing Process
5.4. Comparison with Current Research Methods
5.5. Discussion and Outlook
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Test Set | Sigmoid | LogSigmoid | 32 | 64 | ||||
---|---|---|---|---|---|---|---|---|
MAE | MAE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
B#1-1 | 0.497% | 0.646% | 0.527% | 0.676% | 0.395% | 0.520% | 0.347% | 0.458% |
B#1-2 | 0.524% | 0.674% | 0.404% | 0.502% | 0.382% | 0.489% | 0.309% | 0.448% |
B#1-3 | 0.733% | 1.061% | 0.264% | 0.415% | 1.258% | 1.939% | 0.520% | 0.769% |
B#1-4 | 0.486% | 0.710% | 0.474% | 0.687% | 0.429% | 0.636% | 0.380% | 0.577% |
B#1-5 | 0.941% | 1.469% | 0.889% | 1.364% | 0.800% | 1.263% | 0.757% | 1.217% |
B#1-6 | 0.836% | 1.202% | 0.695% | 1.007% | 0.521% | 0.799% | 0.582% | 0.865% |
B#1-7 | 0.907% | 1.400% | 0.813% | 1.241% | 0.698% | 1.080% | 0.713% | 1.095% |
Experimental Section | Test Set | DNN | SVM | XGBoost | |||
---|---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | ||
5.2.2 | B#1-1 | 0.294% | 0.383% | 4.869% | 5.982% | 3.767% | 4.738% |
B#1-2 | 0.264% | 0.386% | 2.797% | 3.837% | 0.831% | 1.085% | |
B#1-3 | 0.275% | 0.395% | 10.028% | 11.532% | 2.025% | 2.704% | |
B#1-4 | 0.416% | 0.617% | 2.149% | 3.169% | 0.612% | 0.747% | |
B#1-5 | 0.661% | 1.100% | 2.560% | 3.707% | 0.678% | 0.814% | |
B#1-6 | 0.521% | 0.789% | 1.995% | 2.818% | 0.598% | 0.700% | |
B#1-7 | 0.696% | 1.061% | 2.388% | 3.299% | 1.000% | 1.382% | |
5.3.1 | B#1-4 | 0.703% | 1.073% | 2.297% | 3.253% | 1.249% | 1.506% |
B#1-6 | 0.833% | 1.295% | 2.207% | 2.996% | 1.241% | 1.437% | |
5.3.2 | B#2-1 | 0.385% | 0.506% | 3.674% | 4.475% | 1.602% | 2.062% |
B#2-2 | 0.725% | 1.050% | 3.023% | 3.649% | 0.708% | 0.877% | |
B#2-3 | 0.835% | 1.066% | 10.549% | 13.883% | 15.327% | 18.633% | |
5.3.3 | B#3-1 | 0.484% | 0.623% | 3.098% | 3.640% | 0.642% | 0.777% |
B#3-2 | 0.581% | 0.842% | 2.376% | 3.172% | 1.020% | 1.294% |
References
- Bresser, D.; Hosoi, K.; Howell, D.; Li, H.; Zeisel, H.; Amine, K.; Passerini, S. Perspectives of Automotive Battery R&D in China, Germany, Japan, and the USA. J. Power Sources 2018, 382, 176–178. [Google Scholar]
- Stallard, J.C.; Wheatcroft, L.; Booth, S.G.; Boston, R.; Corr, S.A.; De Volder, M.F.L.; Inkson, B.J.; Fleck, N.A. Mechanical Properties of Cathode Materials for Lithium-Ion Batteries. Joule 2022, 6, 984–1007. [Google Scholar] [CrossRef]
- Bila, M.; Opathella, C.; Venkatesh, B. Grid Connected Performance of a Household Lithium-Ion Battery Energy Storage System. J. Energy Storage 2016, 6, 178–185. [Google Scholar] [CrossRef]
- Bharathraj, S.; Adiga, S.P.; Patil, R.S.; Mayya, K.S.; Song, T.; Sung, Y. An Efficient and Chemistry Independent Analysis to Quantify Resistive and Capacitive Loss Contributions to Battery Degradation. Sci. Rep. 2019, 9, 6576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; White, R.E. Capacity Fade Analysis of a Lithium Ion Cell. J. Power Sources 2008, 179, 793–798. [Google Scholar] [CrossRef]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation Diagnostics for Lithium Ion Cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Vatanparvar, K.; Al Faruque, M.A. Electric Vehicle Optimized Charge and Drive Management. ACM Trans. Des. Autom. Electron. Syst. 2017, 23, 25. [Google Scholar] [CrossRef]
- Amir, S.; Gulzar, M.; Tarar, M.O.; Naqvi, I.H.; Zaffar, N.A.; Pecht, M.G. Dynamic Equivalent Circuit Model to Estimate State-of-Health of Lithium-Ion Batteries. IEEE Access 2022, 10, 18279–18288. [Google Scholar] [CrossRef]
- Topan, P.A.; Ramadan, M.N.; Fathoni, G.; Cahyadi, A.I.; Wahyunggoro, O. State of Charge (SOC) and State of Health (SOH) Estimation on Lithium Polymer Battery via Kalman Filter. In Proceedings of the 2016 2nd International Conference on Science and Technology-Computer (ICST), Yogyakarta, Indonesia, 27–28 October 2016; pp. 93–96. [Google Scholar]
- Liu, B.; Tang, X.; Gao, F. Joint Estimation of Battery State-of-Charge and State-of-Health Based on a Simplified Pseudo-Two-Dimensional Model. Electrochim. Acta 2020, 344, 136098. [Google Scholar] [CrossRef]
- Ng, M.F.; Zhao, J.; Yan, Q.; Conduit, G.J.; Seh, Z.W. Predicting the State of Charge and Health of Batteries Using Data-Driven Machine Learning. Nat. Mach. Intell. 2020, 2, 161–170. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-Driven Health Estimation and Lifetime Prediction of Lithium-Ion Batteries: A Review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, X.; Pan, R.; Wang, Y.; Chen, Z. A Novel Gaussian Process Regression Model for State-of-Health Estimation of Lithium-Ion Battery Using Charging Curve. J. Power Sources 2018, 384, 387–395. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Li, X.; Wang, Z. State of Health Estimation for Li-Ion Battery Using Incremental Capacity Analysis and Gaussian Process Regression. Energy 2020, 190, 116467. [Google Scholar] [CrossRef]
- Yu, J. State of Health Prediction of Lithium-Ion Batteries: Multiscale Logic Regression and Gaussian Process Regression Ensemble. Reliab. Eng. Syst. Saf. 2018, 174, 82–95. [Google Scholar] [CrossRef]
- Feng, X.; Weng, C.; He, X.; Han, X.; Lu, L.; Ren, D.; Ouyang, M. Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine. IEEE Trans. Veh. Technol. 2019, 68, 8583–8592. [Google Scholar] [CrossRef]
- Patil, M.A.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Yeo, T.; Doo, S. A Novel Multistage Support Vector Machine Based Approach for Li Ion Battery Remaining Useful Life Estimation. Appl. Energy 2015, 159, 285–297. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Y.; Pan, R.; Chen, R.; Chen, Z. State-of-Health Estimation for the Lithium-Ion Battery Based on Support Vector Regression. Appl. Energy 2018, 227, 273–283. [Google Scholar] [CrossRef]
- Gao, M.; Bao, Z.; Zhu, C.; Jiang, J.; He, Z.; Dong, Z.; Song, Y. HFCM-LSTM: A Novel Hybrid Framework for State-of-Health Estimation of Lithium-Ion Battery. Energy Rep. 2023, 9, 2577–2590. [Google Scholar] [CrossRef]
- Van, C.N.; Quang, D.T. Estimation of SoH and Internal Resistances of Lithium Ion Battery Based on LSTM Network. Int. J. Electrochem. Sci. 2023, 18, 100166. [Google Scholar]
- Goh, H.H.; Lan, Z.; Zhang, D.; Dai, W.; Kurniawan, T.A.; Goh, K.C. Estimation of the State of Health (SOH) of Batteries Using Discrete Curvature Feature Extraction. J. Energy Storage 2022, 50, 104646. [Google Scholar] [CrossRef]
- Li, Y.; Tao, J. CNN and Transfer Learning Based Online SOH Estimation for Lithium-Ion Battery. In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 5489–5494. [Google Scholar]
- Yang, N.; Song, Z.; Hofmann, H.; Sun, J. Robust State of Health Estimation of Lithium-Ion Batteries Using Convolutional Neural Network and Random Forest. J. Energy Storage 2022, 48, 103857. [Google Scholar] [CrossRef]
- Lee, G.; Kwon, D.; Lee, C. A Convolutional Neural Network Model for SOH Estimation of Li-Ion Batteries with Physical Interpretability. Mech. Syst. Signal Process. 2023, 188, 110004. [Google Scholar] [CrossRef]
- Zhang, Z.; Min, H.; Guo, H.; Yu, Y.; Sun, W.; Jiang, J.; Zhao, H. State of Health Estimation Method for Lithium-Ion Batteries Using Incremental Capacity and Long Short-Term Memory Network. J. Energy Storage 2023, 64, 107063. [Google Scholar] [CrossRef]
- He, J.; Bian, X.; Liu, L.; Wei, Z.; Yan, F. Comparative Study of Curve Determination Methods for Incremental Capacity Analysis and State of Health Estimation of Lithium-Ion Battery. J. Energy Storage 2020, 29, 101400. [Google Scholar] [CrossRef]
- Li, L.; Cui, W.; Hu, X.; Chen, Z. A State-of-Health Estimation Method of Lithium-Ion Batteries Using ICA and SVM. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 15–17 October 2021; pp. 5–9. [Google Scholar]
- Wang, Q.; Ye, M.; Cai, X.; Sauer, D.U.; Li, W. Transferable Data-Driven Capacity Estimation for Lithium-Ion Batteries with Deep Learning: A Case Study from Laboratory to Field Applications. Appl. Energy 2023, 350, 121747. [Google Scholar] [CrossRef]
- Naha, A.; Han, S.; Agarwal, S.; Guha, A.; Khandelwal, A.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Yoon, J.; Oh, B. An Incremental Voltage Difference Based Technique for Online State of Health Estimation of Li-Ion Batteries. Sci. Rep. 2020, 10, 9526. [Google Scholar] [CrossRef]
- Lu, J.; Xiong, R.; Tian, J.; Wang, C.; Sun, F. Deep Learning to Estimate Lithium-Ion Battery State of Health without Additional Degradation Experiments. Nat. Commun. 2023, 14, 2760. [Google Scholar] [CrossRef]
- Yang, J.; Xia, B.; Huang, W.; Fu, Y.; Mi, C. Online State-of-Health Estimation for Lithium-Ion Batteries Using Constant-Voltage Charging Current Analysis. Appl. Energy 2018, 212, 1589–1600. [Google Scholar] [CrossRef]
- Roman, D.; Saxena, S.; Robu, V.; Pecht, M.; Flynn, D. Machine Learning Pipeline for Battery State-of-Health Estimation. Nat. Mach. Intell. 2021, 3, 447–456. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Huang, Y.; Bhushan Gopaluni, R.; Cao, Y.; Heere, M.; Mühlbauer, M.J.; Mereacre, L.; Dai, H.; Liu, X.; et al. Data-Driven Capacity Estimation of Commercial Lithium-Ion Batteries from Voltage Relaxation. Nat. Commun. 2022, 13, 2261. [Google Scholar] [CrossRef]
- Jones, P.K.; Stimming, U.; Lee, A.A. Impedance-Based Forecasting of Lithium-Ion Battery Performance amid Uneven Usage. Nat. Commun. 2022, 13, 4806. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Li, D.; Wang, K. State-of-Health Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy: A Review. Prot. Control Mod. Power Syst. 2023, 8, 1–17. [Google Scholar] [CrossRef]
- Jiang, B.; Zhu, J.; Wang, X.; Wei, X.; Shang, W.; Dai, H. A Comparative Study of Different Features Extracted from Electrochemical Impedance Spectroscopy in State of Health Estimation for Lithium-Ion Batteries. Appl. Energy 2022, 322, 119502. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A. Identifying Degradation Patterns of Lithium Ion Batteries from Impedance Spectroscopy Using Machine Learning. Nat. Commun. 2020, 11, 1706. [Google Scholar] [CrossRef]
- Qin, Q.; Li, X.; Wang, Z.; Wang, J.; Yan, G.; Peng, W.; Guo, H. Experimental and Simulation Study of Direct Current Resistance Decomposition in Large Size Cylindrical Lithium-Ion Battery. Electrochim. Acta 2023, 465, 142947. [Google Scholar] [CrossRef]
- Ruan, H.; Sun, B.; Jiang, J.; Zhang, W.; He, X.; Su, X.; Bian, J.; Gao, W. A Modified-Electrochemical Impedance Spectroscopy-Based Multi-Time-Scale Fractional-Order Model for Lithium-Ion Batteries. Electrochim. Acta 2021, 394, 139066. [Google Scholar] [CrossRef]
- Nyman, A.; Zavalis, T.G.; Elger, R.; Behm, M.; Lindbergh, G. Analysis of the Polarization in a Li-Ion Battery Cell by Numerical Simulations. J. Electrochem. Soc. 2010, 157, A1236. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Z.; Shu, X.; Shen, J.; Lei, Z.; Zhang, Y. State of Health Estimation for Lithium-Ion Batteries Based on Hybrid Attention and Deep Learning. Reliab. Eng. Syst. Saf. 2023, 232, 109066. [Google Scholar] [CrossRef]
Cell Name | Nominal Capacity (mAh) | Current Rate (C) | Cut-off Voltage (V) | Cycling Temperature |
---|---|---|---|---|
B#1-1 | 1000 | 1/1 | 3.65/2.30 | 30 °C |
B#1-2 | 1000 | 1/1 | 3.65/2.30 | 30 °C |
B#1-3 | 1000 | 2/2 | 3.65/2.30 | 30 °C |
B#1-4 | 1000 | 1/1 | 3.65/2.30 | Room |
B#1-5 | 1000 | 1/1 | 3.65/2.30 | Room |
B#1-6 | 1000 | 2/2 | 3.65/2.30 | Room |
B#1-7 | 1000 | 2/2 | 3.65/2.30 | Room |
B#2-1 | 1000 | 0.5/0.5 | 3.65/2.30 | Room |
B#2-2 | 1000 | 0.5 + 1/2 | 3.30 + 3.65/2.30 | Room |
B#2-3 | 1000 | 4/4 | 3.65/2.30 | Room |
B#3-1 | 6000 | 1/1 | 3.65/2.30 | 30 °C |
B#3-2 | 6000 | 0.5/0.5 | 3.65/2.30 | Room |
Cell Name | ρ | Cell Name | ρ |
---|---|---|---|
B#1-1 | −0.948 | B#1-2 | −0.992 |
B#1-3 | −0.818 | B#1-4 | −0.971 |
B#1-5 | −0.938 | B#1-6 | −0.933 |
B#1-7 | −0.865 | B#2-1 | −0.950 |
B#2-2 | −0.986 | B#2-3 | −0.832 |
B#3-1 | −0.969 | B#3-2 | −0.981 |
Activation Function | Hidden Size | MAE | RMSE |
---|---|---|---|
ReLU | 128 | 0.447% | 0.676% |
Sigmoid | 128 | 0.703% | 1.023% |
LogSigmoid | 128 | 0.581% | 0.842% |
ReLU | 64 | 0.515% | 0.776% |
ReLU | 32 | 0.640% | 0.961% |
Method | Refs. | Features | Data Sources | Estimation Error |
---|---|---|---|---|
HFCM-LSTM | [19] | HFCM extracts features from raw data | NASA Oxford | RMSE < 2.3% |
LSTM | [25] | ICA | NASA | MAPE < 2% |
ElasticNet XGBoost SVR | [33] | Statistical features | Laboratory experiment | RMSE < 1.7% |
GPR | [36] | EIS | Laboratory experiment | MAE < 2.2% |
CNN-LSTM-Attention | [41] | Temperature | Oxford | (MAE, RMSE) < 1.3% |
DNN in this study | DCIR | Laboratory experiment | MAE < 0.768% RMSE < 1.185% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; He, W.; Wang, J.; He, X. State of Health Estimation for Lithium-Ion Batteries with Deep Learning Approach and Direct Current Internal Resistance. Energies 2024, 17, 2487. https://doi.org/10.3390/en17112487
Sun Z, He W, Wang J, He X. State of Health Estimation for Lithium-Ion Batteries with Deep Learning Approach and Direct Current Internal Resistance. Energies. 2024; 17(11):2487. https://doi.org/10.3390/en17112487
Chicago/Turabian StyleSun, Zhongxian, Weilin He, Junlei Wang, and Xin He. 2024. "State of Health Estimation for Lithium-Ion Batteries with Deep Learning Approach and Direct Current Internal Resistance" Energies 17, no. 11: 2487. https://doi.org/10.3390/en17112487
APA StyleSun, Z., He, W., Wang, J., & He, X. (2024). State of Health Estimation for Lithium-Ion Batteries with Deep Learning Approach and Direct Current Internal Resistance. Energies, 17(11), 2487. https://doi.org/10.3390/en17112487