Partial Discharge Pattern Recognition Based on an Ensembled Simple Convolutional Neural Network and a Quadratic Support Vector Machine
Abstract
:1. Introduction
2. The Proposed PD Pattern Recognition Methodology
2.1. Three-Dimensional Graph of PRPS
2.2. MobileNet V2
2.3. CLAHE and Circular LBP Features
2.4. The Proposed PD Pattern Recognition Methodology
2.4.1. Three-Dimensional PRPSs Acquisition
2.4.2. SCNN Structure Design
2.4.3. CLBP and QSVM
2.4.4. Procedures of the Proposed ENS–SCNN–QSVM
3. Experimental Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- High-Voltage Test Techniques—Partial Discharge Measurements: = Techniques Des Essais à Haute Tension—Mesures Des Décharges Partielles, Internationale Elektrotechnische Commission, Ed.; International Standard/International Electrotechnical Commission; Edition 3.1, 2015–11, consolidated version/version consolidée; IEC Central Office: Geneva, Switzerland, 2015; ISBN 978-2-8322-3053-4.
- Drechsel, J.; Barth, H.; Rebenklau, L. Handling and Analysis of Large Datasets Using the Example of Partial Discharge Measurement. In Proceedings of the 2022 45th International Spring Seminar on Electronics Technology (ISSE), Vienna, Austria, 11–15 May 2022; pp. 1–6. [Google Scholar]
- Tang, J.; Jin, M.; Zeng, F.; Zhou, S.; Zhang, X.; Yang, Y.; Ma, Y. Feature Selection for Partial Discharge Severity Assessment in Gas-Insulated Switchgear Based on Minimum Redundancy and Maximum Relevance. Energies 2017, 10, 1516. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Wang, N.; Han, X.; Li, J. Partial Discharge Ultrasonic Signals Pattern Recognition in Transformer Using BSO-SVM Based on Microfiber Coupler Sensor. Measurement 2022, 201, 111737. [Google Scholar] [CrossRef]
- Carvalho, I.F.; da Costa, E.G.; Nobrega, L.A.M.M.; da Costa Silva, A.D. Identification of Partial Discharge Sources by Feature Extraction from a Signal Conditioning System. Sensors 2024, 24, 2226. [Google Scholar] [CrossRef]
- Sun, W.; Ma, H.; Wang, S. A Novel Fault Diagnosis of GIS Partial Discharge Based on Improved Whale Optimization Algorithm. IEEE Access 2024, 12, 3315–3327. [Google Scholar] [CrossRef]
- Sun, W.; Ma, H.; Wang, S. Application of SCNGO-VMD-SVM in Identification of Gas Insulated Switchgear Partial Discharge. IEEE Access 2024, 12, 43838–43848. [Google Scholar] [CrossRef]
- Fujioka, S.; Kawano, H.; Kozako, M.; Hikita, M.; Eda, O.; Yaguchi, S.; Shiina, Y. Examination of Insulation Diagnosis in Substation by Neural Network with Phase-Resolved Partial Discharge Pattern Reconstruction. Electron. Commun. Jpn. 2022, 105, e12360. [Google Scholar] [CrossRef]
- Haiba, A.S.; Eliwa Gad, A. Artificial Neural Network Analysis for Classification of Defected High Voltage Ceramic Insulators. Sci. Rep. 2024, 14, 1513. [Google Scholar] [CrossRef]
- Song, S.; Qian, Y.; Wang, H.; Zang, Y.; Sheng, G.; Jiang, X. Partial Discharge Pattern Recognition Based on 3D Graphs of Phase Resolved Pulse Sequence. Energies 2020, 13, 4103. [Google Scholar] [CrossRef]
- Aldosari, O.; Aldowsari, M.A.; Batiyah, S.M.; Kanagaraj, N. Image-Based Partial Discharge Identification in High Voltage Cables Using Hybrid Deep Network. IEEE Access 2023, 11, 50325–50333. [Google Scholar] [CrossRef]
- Fu, Y.; Liang, L.; Huang, W.; Huang, G.; Huang, P.; Zhang, Z.; Chen, C.; Wang, C. Partial Discharge Pattern Recognition Method Based on Transfer Learning and DenseNet Model. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 1240–1246. [Google Scholar] [CrossRef]
- Yin, K.; Wang, Y.; Liu, S.; Li, P.; Xue, Y.; Li, B.; Dai, K. GIS Partial Discharge Pattern Recognition Based on Multi-Feature Information Fusion of PRPD Image. Symmetry 2022, 14, 2464. [Google Scholar] [CrossRef]
- Wang, H.; Song, S.; Qian, Y.; Zang, Y.; Sheng, G.; Jiang, X. Recognition Algorithm of GIS Partial Discharge Phase Resolved Pulse Sequence Based on CLAHE Enhancement. High Volt. Eng. 2021, 47, 3836–3844. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, J.; Sun, Q.; Li, J.; Yang, Z. A MobileNets Convolutional Neural Network for GIS Partial Discharge Pattern Recognition in the Ubiquitous Power Internet of Things Context: Optimization, Comparison, and Application. IEEE Access 2019, 7, 150226–150236. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, J.; Yang, Z.; Zhao, Y.; Liu, T. GIS Partial Discharge Pattern Recognition via Lightweight Convolutional Neural Network in the Ubiquitous Power Internet of Things Context. IET Sci. Meas. Technol. 2020, 14, 864–871. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, S.; Sun, S.; Liu, P.; Zhang, L.; Ouyang, J.; Ni, X. Partial Discharge Pattern Recognition of Transformers Based on MobileNets Convolutional Neural Network. Appl. Sci. 2021, 11, 6984. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Hu, M.; Li, S.; Fang, J.; Rao, Z. Online Recognition Method of Transformer Partial Discharge Based on Audio Detection. AIP Adv. 2022, 12, 015023. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. arXiv 2017, arXiv:1707.01083. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv 2019, arXiv:1801.04381. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. arXiv 2019, arXiv:1905.02244. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. arXiv 2015, arXiv:1409.0575. [Google Scholar] [CrossRef]
- Zuiderveld, K. VIII.5.—Contrast Limited Adaptive Histogram Equalization. In Graphics Gems; Heckbert, P.S., Ed.; Academic Press: Cambridge, MA, USA, 1994; pp. 474–485. ISBN 978-0-12-336156-1. [Google Scholar]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:1710.05941. [Google Scholar]
- Hanley, J.A.; McNeil, B.J. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
Block Numbers | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Accuracy | 67.54% | 76.39% | 81.15% | 84.03% | 86.60% | 87.07% | 85.92% | 86.70% |
Input Size | Operator | t | c | n | s |
---|---|---|---|---|---|
224 × 224 × 3 | Conv2d | - | 32 | 1 | 2 |
112 × 112 × 32 | Bottleneck | 1 | 16 | 1 | 1 |
112 × 112 × 16 | Bottleneck | 6 | 24 | 2 | 2 |
56 × 56 × 24 | Bottleneck | 6 | 32 | 3 | 2 |
28 × 28 × 32 | Conv2d 1 × 1 | - | 192 | 1 | 1 |
28 × 28 × 192 | Avgpool | - | 192 | 1 | - |
1 × 1 × 192 | FullConnect | - | 3 | 1 | - |
Minibatch Size | 128 | 64 | 32 | 16 | 8 | 4 |
Accuracy | 74.21% | 66.20% | 74.87% | 79.01% | 80.88% | 89.98% |
Runtime | 91.6 s | 58.8 s | 34.2 s | 33.8 s | 37.0 s | 55.6 s |
Method | Train Accuracy | Test Accuracy | Overall Accuracy | Runtime | Number of Parameters |
---|---|---|---|---|---|
SCNN | 82.48% | 68.04% | 78.39% | 108.61 s | 64,500 |
QSVM | 95.03% | 69.54% | 87.36% | 0.244 s | 17,900 |
ENS–SCNN–QSVM | 93.32% | 71.70% | 86.74% | 109.34 s | 92,100 |
RF | 97.98% | 65.72% | 88.28% | 0.459 s | 100,000 |
XGBoost | 100.0% | 69.59% | 90.85% | 0.606 s | 9500 |
MobileNet V2 | 93.99% | 70.21% | 86.84% | 232.25 s | 3,500,000 |
EfficientNetB0 | 92.97% | 70.00% | 86.06% | 724.65 s | 5,300,000 |
ShuffleNet | 92.31% | 71.24% | 85.97% | 245.80 s | 5,300,000 |
Method | Metric | Suspended | Surface | Metal Tip | Accuracy |
---|---|---|---|---|---|
SCNN | Precision | 56.4% | 95% | 68.8% | 65.5% |
Recall | 67.1% | 100% | 57.3% | ||
QSVM | Precision | 65.8% | 90% | 71.4% | 70.1% |
Recall | 65.8% | 47.4% | 78.1% | ||
ENS–SCNN–QSVM | Precision | 61.7% | 95% | 75% | 70.6% |
Recall | 73.4% | 100% | 62.5% | ||
RF | Precision | 59.8% | 90% | 64.7% | 63.9% |
Recall | 62.0% | 47.4% | 68.8% | ||
XGBoost | Precision | 66.7% | 88.9% | 70.1% | 69.6% |
Recall | 65.8% | 42.1% | 78.1% | ||
MobileNet V2 | Precision | 63.9% | 93.8% | 66.7% | 68.0% |
Recall | 49.4% | 78.9% | 81.2% | ||
EfficientNetB0 | Precision | 62.1% | 94.7% | 65.1% | 67.0% |
Recall | 51.9% | 94.7% | 74.0% | ||
ShuffleNet | Precision | 85.7% | 93.8% | 63.6% | 70.1% |
Recall | 38% | 78.9% | 94.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fei, Z.; Li, Y.; Yang, S. Partial Discharge Pattern Recognition Based on an Ensembled Simple Convolutional Neural Network and a Quadratic Support Vector Machine. Energies 2024, 17, 2443. https://doi.org/10.3390/en17112443
Fei Z, Li Y, Yang S. Partial Discharge Pattern Recognition Based on an Ensembled Simple Convolutional Neural Network and a Quadratic Support Vector Machine. Energies. 2024; 17(11):2443. https://doi.org/10.3390/en17112443
Chicago/Turabian StyleFei, Zhangjun, Yiying Li, and Shiyou Yang. 2024. "Partial Discharge Pattern Recognition Based on an Ensembled Simple Convolutional Neural Network and a Quadratic Support Vector Machine" Energies 17, no. 11: 2443. https://doi.org/10.3390/en17112443
APA StyleFei, Z., Li, Y., & Yang, S. (2024). Partial Discharge Pattern Recognition Based on an Ensembled Simple Convolutional Neural Network and a Quadratic Support Vector Machine. Energies, 17(11), 2443. https://doi.org/10.3390/en17112443