A Method for Determining Target Areas of Hot Dry Rock Resources: A Case Study in Continental China
Abstract
:1. Introduction
2. Multiscale Multidisciplinary Approach to Target Area Selection for Geothermal Resources in HDRs
2.1. Geothermal Survey Stage
2.2. Geothermal Exploration Stage
2.2.1. Regional Scale
2.2.2. Geothermal Field Scale
2.3. Reservoir Construction Stage
3. Decision Analysis Methods for the Optimization of Target Areas for Geothermal Resources in HDRs
3.1. Expert Scoring Method
3.2. Analysis of Factors Influencing the Selection of Target Areas for Hot Dry Rock Geothermal Resources
3.2.1. Regional Scale
3.2.2. Neotectonism and Surficial Evidence
3.2.3. Engineering Conditions
3.3. Determining the Weight of Each Influencing Factor and Calculating the Composite Score
4. Application Examples
4.1. Gonghe Basin
4.2. Zhangzhou Basin
4.3. Compared with Traditional Methods
5. Conclusions
- According to the geothermal geological indicators of hot dry rock resources, both the Gonghe Basin and the Zhangzhou Basin are favorable areas for the development of hot dry rock resources in mainland China, and both have good heat sources, good thermal conductivity channels, large heat-storing rock bodies, and good heat-preserving cover rocks.
- Based on the expert scoring method, although the weighting of the factors influencing the geothermal resources of hot dry rocks in different regions varies slightly among experts, the four influencing factors that have the greatest weights are the depth of burial of the thermal reservoir, the temperature of the thermal reservoir, the geothermal gradient, and the geothermal heat flow.
- Geothermal temperature measurements are the most direct and effective method for identifying hot dry rock geothermal resources. By analyzing the influencing factors, we find that the thermal storage depth, thermal reservoir temperature, geothermal temperature gradient, geothermal heat flow, and caprock thickness can all be obtained directly from geothermal temperature measurements. This approach occupies the most important position in the whole multiscale, multidisciplinary preference determination process.
- Through this decision analysis and evaluation tool, the target area conditions are divided and decomposed, the corresponding parameter evaluation index design is established, numerous experts in the relevant fields are invited to score the target area without consulting each other, and a comprehensive score is obtained through corresponding calculations. The advantage of this method is that it can quantify qualitative evaluations, and it is intuitive, simple, and easy to understand. Furthermore, this approach saves time and has strong applicability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Liu, J.; Wang, S.; Guo, Y.; Han, X.; Li, Q.; Cheng, Y.; Dong, Z.; Li, X.; Zhang, X. Numerical insights into factors affecting collapse behavior of horizontal wellbore in clayey silt hydrate-bearing sediments and the accompanying control strategy. Ocean Eng. 2024, 297, 117029. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Dong, W.; Li, Q.; Wang, F.; Bai, H.; Zhang, R.; Owusu, A.B. Effect of different factors on the yield of epoxy-terminated polydimethylsiloxane and evaluation of CO2 thickening. RSC Adv. 2018, 8, 39787–39796. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.W.; Duchane, D.V.; Heiken, G.; Hriscu, V.T. Mining the Earth’s Heat: Hot Dry Rock Geothermal Energy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Baria, R.; Baumgärtner, J.; Rummel, F.; Pine, R.J.; Sato, Y. HDR/HWR reservoirs: Concepts, understanding and creation. Geothermics 1999, 28, 533–552. [Google Scholar] [CrossRef]
- Hori, Y.; Kitano, K.; Kaieda, H.; Kiho, K. Present status of the Ogachi HDR Project, Japan, and future plans. Geothermics 1999, 28, 637–645. [Google Scholar] [CrossRef]
- Olasolo, P.; Juárez, M.; Morales, M.; Liarte, I. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [Google Scholar] [CrossRef]
- Kelkar, S.; Wolde Gabriel, G.; Rehfeldt, K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA. Geothermics 2016, 63, 5–14. [Google Scholar] [CrossRef]
- Garcia, J.; Hartline, C.; Walters, M.; Wright, M.; Rutqvist, J.; Dobson, P.F.; Jeanne, P. The Northwest Geysers EGS demonstration project, California: Part 1: Characterization and reservoir response to injection. Geothermics 2016, 63, 97–119. [Google Scholar] [CrossRef]
- Rutqvist, J.; Dobson, P.F.; Garcia, J.; Hartline, C.; Jeanne, P.; Oldenburg, C.M.; Vasco, D.W.; Walters, M. The northwest Geysers EGS demonstration project, California: Pre-stimulation modeling and interpretation of the stimulation. Math. Geosci. 2015, 47, 3–29. [Google Scholar] [CrossRef]
- Chen, D.; Wyborn, D. Habanero field tests in the Cooper Basin, Australia: A proof-of-concept for EGS. Geotherm. Resour. Counc. Trans. 2009, 33, 159–164. [Google Scholar]
- Llanos, E.M.; Zarrouk, S.J.; Hogarth, R.A. Numerical model of the Habanero geothermal reservoir, Australia. Geothermics 2015, 53, 308–319. [Google Scholar] [CrossRef]
- Genter, A.; Guillou-Frottier, L.; Feybesse, J.-L.; Nicol, N.; Dezayes, C.; Schwartz, S. Typology of potential hot fractured rock resources in Europe. Geothermics 2003, 32, 701–710. [Google Scholar] [CrossRef]
- Hooijkaas, G.R.; Genter, A.; Dezayes, C. Deep-seated geology of the granite intrusions at the Soultz EGS site based on data from 5 km-deep boreholes. Geothermics 2006, 35, 484–506. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, G.; Shi, Y.; Wang, Z.; Wang, Y.; Li, S.; Jia, X.; Hu, S.J.G. Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan plateau. Geothermics 2018, 72, 182–192. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Li, S.; Jia, X.; Jiang, G.; Gao, P.; Wang, Y.; Hu, S. Geothermal characteristics of the Qiabuqia geothermal area in the Gonghe basin, northeastern Tibetan Plateau. Chin. J. Geophys. 2018, 61, 4545–4557. [Google Scholar]
- Zhang, S.; Yan, W.; Li, D.; Jia, X.; Zhang, S.; Li, S.; Fu, L.; Wu, H.; Zeng, Z.; Li, Z.; et al. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province. Geol. China 2018, 45, 1087–1102. [Google Scholar]
- Breede, K.; Dzebisashvili, K.; Liu, X.; Falcone, G. A systematic review of enhanced (or engineered) geothermal systems: Past, present and future. Geotherm. Energy 2013, 1, 1–27. [Google Scholar] [CrossRef]
- Lin, W.; Wang, G.; Gan, H.; Zhang, S.; Zhao, Z.; Yue, G.; Long, X. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China. Gondwana Res. 2023, 122, 243–259. [Google Scholar] [CrossRef]
- Lin, W.-J.; Gan, H.-N. Occurrence prospect of HDR and target site selection study in Southeastern of China. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 14 December 2017; p. H43E-2003. Available online: https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/231190 (accessed on 8 April 2024).
- Yu, H. Preliminary application of drill hole temperature measurement in the study of karst water in mining areas. Coal Geol. Explor. 1982, 10, 34–38+47. [Google Scholar]
- Jiang, G.; Wang, Y.; Hu, J.; Zhang, C.; Wang, Y.; Zuo, Y.; Tang, X.; Ma, F.; Hu, S. Direction of exploration and preferred target areas for medium-high temperature geothermal resources in China. Sci. Technol. Rev. 2022, 40, 76–82. [Google Scholar]
- Chen, X. Research on the Application of Geophysical Methods in Dry-Heat Rock Exploration. Ph.D. Thesis, Jilin University, Changchun, China, 2016. [Google Scholar]
- Yang, Y.; Jiang, Z.; Yue, J.; Liu, S. Discussion on the application of geophysical method technology in the process of dry hot rock exploration. Prog. Geophys. 2019, 34, 1556–1567. [Google Scholar]
- Zhang, L.; Zhang, D.; Pan, M.; Zhang, Z. Application of geophysical methods in different phases of investigation of hot dry rocks. China Sci. Technol. Inf. 2022, 23, 87–90. [Google Scholar]
- Wang, J.; Hu, S.; Pang, Z.; He, L.; Zhao, P.; Zhu, C.; Rao, S.; Tang, X.; Kong, Y.; Luo, L.; et al. Assessment of geothermal resource potential of dry-heat rocks in mainland China. Sci. Technol. Rev. 2012, 30, 25–31. [Google Scholar]
- Liu, D.; Zhang, C.; Sun, M.; Wei, M.; Guan, J.; Kang, Z.; Xiong, A.; Zhou, T. Evaluation indexes and formation conditions of dry-heat rock exploration. Bull. Geol. Sci. Technol. 2021, 40, 1–11. [Google Scholar]
- Pang, Z.; Luo, J.; Cheng, Y.; Duan, Z.; Tian, J.; Kong, Y.; Li, Y.; Hu, S.; Wang, J. Evaluation of geologic conditions for deep geothermal energy exploitation in China. Earth Sci. Front. 2020, 27, 134–151. [Google Scholar]
- Lin, W.; Wang, G.; Shao, J.; Gan, H.; Tan, X. Distribution and exploration of hot dry rock resources in China: Progress and inspiration. Acta Geol. Sin. 2021, 95, 1366–1381. [Google Scholar]
- Jiang, G.; Tian, Y.; Lv, Q.; Sandiford, M.; Shi, Y.; Zou, C.; Ma, F.; Deng, C.; He, L.; Hu, S. Ground surface temperature history since the last Glacial Maximum in Northeast Asia: Reconstructions from the borehole geotherms of the international continental scientific drilling program. Geophys. Res. Lett. 2023, 50, e2023GL103055. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y. Some major issues in the research and development of hot dry rock geothermal energy. Earth Sci. Online 2015, 40, 1858–1869. [Google Scholar]
- Yu, Y.; Ma, Y. Types of hot dry rock resources in China and their development and utilization. Land Resour. Inf. 2022, 36–42. [Google Scholar]
- Li, G.; Wu, X.; Song, X.; Zhou, S.; Li, M.; Zhu, H.; Kong, Y.; Huang, Z. Current status and challenges of hot dry rock geothermal resource extraction technology. Pet. Sci. Bull. 2022, 7, 343–364. [Google Scholar]
- Sun, Z.; Li, B.; Wang, Z. Exploration of the possibility of the existence of hot dry rocks in the Gonghe Basin, Qinghai, China. Hydrogeol. Eng. Geol. 2011, 38, 119–124,129. [Google Scholar]
- Li, R.; Pei, X.; Yang, B.; Wang, W.; Wei, L.; Sun, Y.; Li, F.; Liu, M.; Zhao, C.; Li, Z.; et al. U-Pb ages of zircon from metamorphic facies of the Zuoqigang area in the western margin of the Gonghe Basin: A study on the age of the oldest sedimentary age of the protoliths and the source of the material. Acta Geol. Sin. 2016, 90, 93–114. [Google Scholar]
- Chen, Y.; Zhou, J.; Pi, Q.; Wang, Z.; Li, D. Geochemical characterization with zircon U-Pb ages and geological significance of Triassic clastic sedimentary rocks from Gonghe-Huashixia, Qinghai. Earth Sci. Front. 2009, 16, 161–174. [Google Scholar]
- Chen, Y.; Huang, Y. Discussion on neotectonic movement in Zhangzhou Basin, Fujian Province. South China Seismol. J. 1987, 01, 1–15. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Huang, Q.; Ye, J.; He, D. Downfaulted basin, plain, bay and earthquakes of coastland in Fujian Province. Crustal Deform. Earthq. 1998, 4, 57–63. [Google Scholar]
- Chu, M.; Wan, T. The research on active faults in Zhangzhou Basin, Fujian province. Chin. J. Geol. 1988, 23, 11–24. [Google Scholar]
- Zhang, L.; Qu, G.; Zhu, J.; Li, Y.; Huang, Z. Model of Quaternary tectonic movement and dynamic setting of basins along the coast of Fujian, China. Geol. Bull. China 2007, 26, 275–288. [Google Scholar]
- Gan, H.; Wang, G.; Wang, X.; Lin, W.; Yue, G. Research on the hydrochemistry and fault control mechanism of geothermal water in northwestern Zhangzhou basin. Geofluids 2019, 2019, 3925462. [Google Scholar] [CrossRef]
Expert | k1 | k2 | k3 | k4 | k5 | k6 | k7 | k8 | k9 | k10 | Remarks |
---|---|---|---|---|---|---|---|---|---|---|---|
E1 | 3 | 4 | 4 | 3 | 3 | 2 | 1 | 1 | 2 | 2 | qjk = [1, 2, 3, 4] |
E2 | 3 | 3 | 4 | 4 | 3 | 2 | 2 | 2 | 1 | 1 | |
E3 | 3 | 2 | 3 | 4 | 2 | 3 | 1 | 2 | 2 | 1 | |
E4 | 3 | 4 | 3 | 3 | 2 | 4 | 2 | 1 | 1 | 2 | |
E5 | 4 | 3 | 4 | 3 | 3 | 2 | 3 | 1 | 1 | 3 | |
E6 | 2 | 3 | 4 | 4 | 2 | 3 | 1 | 2 | 1 | 1 | |
E7 | 4 | 3 | 3 | 4 | 3 | 2 | 2 | 1 | 2 | 2 | |
E8 | 2 | 2 | 3 | 4 | 2 | 3 | 3 | 2 | 1 | 3 |
Expert | k1 | k2 | k3 | k4 | k5 | k6 | k7 | k8 | k9 | k10 | Remarks |
---|---|---|---|---|---|---|---|---|---|---|---|
E1 | 100 | 100 | 75 | 100 | 50 | 75 | 50 | 75 | 50 | 50 | Qjk = [100, 75, 50, 25] |
E2 | 75 | 75 | 100 | 75 | 75 | 50 | 25 | 25 | 75 | 75 | |
E3 | 50 | 75 | 100 | 50 | 50 | 75 | 75 | 50 | 50 | 75 | |
E4 | 100 | 100 | 75 | 100 | 50 | 75 | 50 | 50 | 50 | 25 | |
E5 | 75 | 100 | 50 | 75 | 50 | 100 | 25 | 50 | 50 | 75 | |
E6 | 75 | 100 | 75 | 75 | 75 | 50 | 75 | 75 | 75 | 25 | |
E7 | 100 | 75 | 700 | 100 | 75 | 100 | 25 | 75 | 75 | 50 | |
E8 | 100 | 75 | 50 | 100 | 50 | 50 | 75 | 75 | 50 | 50 |
Expert | k1 | k2 | k3 | k4 | k5 | k6 | k7 | k8 | k9 | k10 | Remarks |
---|---|---|---|---|---|---|---|---|---|---|---|
E1 | 3 | 3 | 2 | 2 | 1 | 4 | 1 | 1 | 4 | 3 | qjk = [1, 2, 3, 4] |
E2 | 4 | 4 | 3 | 3 | 2 | 2 | 1 | 3 | 1 | 2 | |
E3 | 4 | 3 | 4 | 3 | 2 | 1 | 2 | 1 | 2 | 3 | |
E4 | 4 | 4 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | |
E5 | 4 | 3 | 4 | 3 | 3 | 2 | 3 | 1 | 1 | 3 | |
E6 | 2 | 3 | 4 | 4 | 2 | 3 | 1 | 2 | 1 | 1 | |
E7 | 3 | 3 | 4 | 4 | 3 | 2 | 1 | 1 | 2 | 2 | |
E8 | 2 | 2 | 3 | 3 | 3 | 2 | 1 | 1 | 4 | 4 |
Expert | k1 | k2 | k3 | k4 | k5 | k6 | k7 | k8 | k9 | k10 | Remarks |
---|---|---|---|---|---|---|---|---|---|---|---|
E1 | 25 | 100 | 100 | 100 | 75 | 50 | 50 | 50 | 75 | 50 | Qjk = [100, 75, 50, 25] |
E2 | 50 | 75 | 75 | 75 | 100 | 75 | 50 | 50 | 50 | 25 | |
E3 | 50 | 100 | 50 | 75 | 100 | 75 | 50 | 50 | 50 | 75 | |
E4 | 25 | 75 | 100 | 100 | 75 | 50 | 25 | 75 | 25 | 50 | |
E5 | 75 | 100 | 75 | 100 | 50 | 100 | 50 | 25 | 75 | 25 | |
E6 | 75 | 75 | 75 | 100 | 75 | 100 | 50 | 75 | 25 | 75 | |
E7 | 50 | 75 | 100 | 75 | 700 | 50 | 75 | 50 | 50 | 25 | |
E8 | 50 | 100 | 100 | 75 | 50 | 75 | 50 | 75 | 25 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, Y.; Jiang, G.; Hu, J.; Shi, Y.; Wang, S.; Hu, S. A Method for Determining Target Areas of Hot Dry Rock Resources: A Case Study in Continental China. Energies 2024, 17, 2435. https://doi.org/10.3390/en17102435
Wang Y, Wang Y, Jiang G, Hu J, Shi Y, Wang S, Hu S. A Method for Determining Target Areas of Hot Dry Rock Resources: A Case Study in Continental China. Energies. 2024; 17(10):2435. https://doi.org/10.3390/en17102435
Chicago/Turabian StyleWang, Yaqi, Yibo Wang, Guangzheng Jiang, Jie Hu, Yizuo Shi, Shejiao Wang, and Shengbiao Hu. 2024. "A Method for Determining Target Areas of Hot Dry Rock Resources: A Case Study in Continental China" Energies 17, no. 10: 2435. https://doi.org/10.3390/en17102435
APA StyleWang, Y., Wang, Y., Jiang, G., Hu, J., Shi, Y., Wang, S., & Hu, S. (2024). A Method for Determining Target Areas of Hot Dry Rock Resources: A Case Study in Continental China. Energies, 17(10), 2435. https://doi.org/10.3390/en17102435