Assessing the Additional Benefits of Thailand’s Approaches to Reduce Motor Vehicle Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vehicle Emission Model
2.2. Data Collection
2.2.1. Vehicle Technology and Fuel Type
2.2.2. Number of Vehicles and Mobility in Thailand
2.2.3. Vehicle Kilometres Travelled (VKT) Calculation
2.3. Vehicle Emission Model Input Data
2.3.1. Driving Pattern
2.3.2. Fleet Characteristics
2.3.3. Base Adjustment
2.4. Emission Inventory Calculation
2.5. Scenario Analysis
3. Results and Discussion
3.1. VKT Estimation
3.2. Emission Factor and Emission Inventory in the Base Year
3.3. Uncertainty Analysis
3.4. BAU Scenario
3.5. Mitigation Measures Scenario and Co-Benefit
- (1)
- Passenger car scenarios
- (2)
- Bus scenarios
3.6. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Apergis, N.; Bhattacharya, M.; Hadhri, W. Health care expenditure and environmental pollution: A cross-country comparison across different income groups. Environ. Sci. Pollut. Res. 2020, 27, 8142–8156. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, J.; Brauer, M.; Ezzati, M. The role of cities in reducing the cardiovascular impacts of environmental pollution in low-and middle-income countries. BMC Med. 2020, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Badida, P.; Krishnamurthy, A.; Jayaprakash, J. Meta analysis of health effects of ambient air pollution exposure in low-and middle-income countries. Environ. Res. 2023, 216, 114604. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.; Taylor, J.; Davies, M.; Shrubsole, C.; Symonds, P.; Dimitroulopoulou, S. Exposure to indoor air pollution across socio-economic groups in high-income countries: A scoping review of the literature and a modelling methodology. Environ. Int. 2020, 143, 105748. [Google Scholar] [CrossRef] [PubMed]
- Bowe, B.; Xie, Y.; Li, T.; Yan, Y.; Xian, H.; Al-Aly, Z. Estimates of the 2016 global burden of kidney disease attributable to ambient fine particulate matter air pollution. BMJ Open 2019, 9, e022450. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Franchineau, G. Fine particle environmental pollution and cardiovascular diseases. Metab. 2019, 100, 153944. [Google Scholar] [CrossRef]
- Filippelli, G.; Anenberg, S.; Taylor, M.; van Geen, A.; Khreis, H. New approaches to identifying and reducing the global burden of disease from pollution. GeoHealth 2020, 4, e2018GH000167. [Google Scholar] [CrossRef] [PubMed]
- Kateja, A. Looming Threat of Vehicular Pollution to Human Health. In Urban Growth and Environmental Issues in India; Kateja, A., Jain, R., Eds.; Springer: Singapore, 2021; pp. 157–171. [Google Scholar] [CrossRef]
- Li, W.W. Air Pollution, Air Quality, Vehicle Emissions, and Environmental Regulations; Traffic-Related Air Pollution; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 2; pp. 23–49. [Google Scholar] [CrossRef]
- Pompilio, A.; Di Bonaventura, G. Ambient air pollution and respiratory bacterial infections, a troubling association: Epidemiology, underlying mechanisms, and future challenges. Crit. Rev. Microbiol. 2020, 46, 600–630. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.R.; Paudel, S. Impacts of Air Pollution on Epidemiology and Cardiovascular Systems; Air Pollution and Environmental Health; Springer: Singapore, 2020; pp. 179–207. [Google Scholar] [CrossRef]
- Tiotiu, A.I.; Novakova, P.; Nedeva, D.; Chong-Neto, H.J.; Novakova, S.; Steiropoulos, P.; Kowal, K. Impact of air pollution on asthma outcomes. Int. J. Environ. Res. Public Health 2020, 17, 6212. [Google Scholar] [CrossRef]
- World Health Organization (WHO) Website. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health?gclid=CjwKCAjw4P6oBhBsEiwAKYVkq1PnhGQCeb1TGAaP6aourfQo4IVbVojqU10HM4d3-421e55kc2KfiBoC_iIQAvD_BwE (accessed on 10 October 2023).
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J.; et al. Extreme weather and climate change: Population health and health system implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Guillén Bolaños, T.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K.; et al. The human imperative of stabilizing global climate change at 1.5 C. Science 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [PubMed]
- Jessel, S.; Sawyer, S.; Hernández, D. Energy, poverty, and health in climate change: A comprehensive review of an emerging literature. Front. Public Health 2019, 7, 357. [Google Scholar] [CrossRef]
- Milner, J.; Hamilton, I.; Woodcock, J.; Williams, M.; Davies, M.; Wilkinson, P.; Haines, A. Health benefits of policies to reduce carbon emissions. BMJ 2020, 368, l6758. [Google Scholar] [CrossRef]
- Romanello, M.; McGushin, A.; Di Napoli, C.; Drummond, P.; Hughes, N.; Jamart, L.; Kennard, H.; Lampard, P.; Rodriguez, B.S.; Arnell, N.; et al. The 2021 report of the Lancet Countdown on health and climate change: Code red for a healthy future. Lancet 2021, 398, 1619–1662. [Google Scholar] [CrossRef]
- World Health Organization (WHO) Website. Available online: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health?gclid=CjwKCAjwyY6pBhA9EiwAMzmfwYqp1wJnVOIq1Tk3ihKhon54ov0e2rxk5aeIZBDRI4h7LZ3KkrW-1BoC2BQQAvD_BwE (accessed on 15 October 2023).
- Albuquerque, F.D.; Maraqa, M.A.; Chowdhury, R.; Mauga, T.; Alzard, M. Greenhouse gas emissions associated with road transport projects: Current status, benchmarking, and assessment tools. Transp. Res. Proc. 2020, 48, 2018–2030. [Google Scholar] [CrossRef]
- Cheng, L.; Ji, D.; He, J.; Li, L.; Du, L.; Cui, Y.; Zhang, H.; Zhou, L.; Li, Z.; Zhou, Y. Characteristics of air pollutants and greenhouse gases at a regional background station in southwestern China. Aerosol Air Qual. Res. 2019, 19, 1007–1023. [Google Scholar] [CrossRef]
- World Resources Institute Website. Available online: https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors?ref=thesustainableinvestor.org.uk (accessed on 15 December 2023).
- Sirithian, D.; Thanatrakolsri, P.; Pongpan, S. CO2 and CH4 Emission Factors from Light-Duty Vehicles by Fuel Types in Thailand. Atmosphere 2022, 13, 1588. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA), Website. Available online: https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle (accessed on 15 October 2023).
- Crippa, M.; Guizzardi, D.; Pagani, F.; Banja, M.; Muntean, M.; Schaaf, E.; Becker, W.; Monforti-Ferrario, F.; Quadrelli, R.; Risquez Martin, A.; et al. GHG Emissions of All World Countries; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP) Website. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/43922/EGR2023.pdf?sequence=3&isAllowed=y (accessed on 15 December 2023).
- Ministry of Natural Resources and Environment (MONRE) Website. Available online: https://unfccc.int/sites/default/files/resource/Thailand_BUR4_final_28122022.pdf (accessed on 10 September 2023).
- Mbandi, A.M.; Malley, C.S.; Schwela, D.; Vallack, H.; Emberson, L.; Ashmore, M.R. Assessment of the impact of road transport policies on air pollution and greenhouse gas emissions in Kenya. Energy Strategy Rev. 2023, 49, 101120. [Google Scholar] [CrossRef]
- Duan, L.; Hu, W.; Deng, D.; Fang, W.; Xiong, M.; Lu, P.; Li, Z.; Zhai, C. Impacts of reducing air pollutants and CO2 emissions in urban road transport through 2035 in Chongqing. China Environ. Sci. Ecotechnol. 2021, 8, 100125. [Google Scholar] [CrossRef]
- Aslam, A.; Ibrahim, M.; Shahid, I.; Mahmood, A.; Irshad, M.K.; Yamin, M.; Ghazala, T.M.; Shamshiri, R.R. Pollution characteristics of particulate matter (PM2. 5 and PM10) and constituent carbonaceous aerosols in a South Asian future megacity. Appl. Sci. 2020, 10, 8864. [Google Scholar] [CrossRef]
- Bajwa, A.U.; Sheikh, H.A. Contribution of Road Transport to Pakistan’s Air Pollution in the Urban Environment. Air 2023, 1, 237–257. [Google Scholar] [CrossRef]
- Anenberg, S.; Miller, J.; Henze, D.A.V.E.N.; Minjares, R. A Global Snapshot of the Air Pollution-Related Health Impacts of Transportation Sector Emissions in 2010 and 2015; International Council on Clean Transportation: Washington, DC, USA, 2019; pp. 1–48. [Google Scholar]
- Baayoun, A.; Itani, W.; El Helou, J.; Halabi, L.; Medlej, S.; El Malki, M.; Moukhadder, A.; Aboujaoude, L.K.; Kabakian, V.; Mounajed, H.; et al. Emission inventory of key sources of air pollution in Lebanon. Atmos. Environ. 2019, 215, 116871. [Google Scholar] [CrossRef]
- Pollution Control Department (PCD). Thailand State of Pollutant Report 2022; Ministry of Natural Resources and Environment: Bangkok, Thailand, 2023. [Google Scholar]
- Narita, D.; Oanh, N.T.K.; Sato, K.; Huo, M.; Permadi, D.A.; Chi, N.N.H.; Ratanajaratroj, T.; Pawarmart, I. Pollution characteristics and policy actions on fine particulate matter in a growing Asian economy: The case of Bangkok Metropolitan Region. Atmosphere 2019, 10, 227. [Google Scholar] [CrossRef]
- Chirasophon, S.; Pochanart, P. The Long-term Characteristics of PM10 and PM2.5 in Bangkok, Thailand. Asian J. Atmos. Environ. 2020, 14, 73–83. [Google Scholar] [CrossRef]
- Castesana, P.; Diaz Resquin, M.; Huneeus, N.; Puliafito, E.; Darras, S.; Gómez, D.; Granier, C.; Osses Alvarado, M.; Rojas, N.; Dawidowski, L. PAPILA dataset: A regional emission inventory of reactive gases for South America based on the combination of local and global information. Earth Syst. Sci. Data 2022, 14, 271–293. [Google Scholar] [CrossRef]
- Zhou, M.; Jiang, W.; Gao, W.; Gao, X.; Ma, M.; Ma, X. Anthropogenic emission inventory of multiple air pollutants and their spatiotemporal variations in 2017 for the Shandong Province, China. Environ Pollut. 2021, 288, 117666. [Google Scholar] [CrossRef] [PubMed]
- 40 Prakash, J.; Vats, P.; Sharma, A.K.; Ganguly, D.; Habib, G. New emission inventory of carbonaceous aerosols from the on-road transport sector in India and its implications for direct radiative forcing over the region. Aerosol Air Qual. Res. 2020, 20, 741–761. [Google Scholar] [CrossRef]
- Patiño-Aroca, M.; Parra, A.; Borge, R. On-road vehicle emission inventory and its spatial and temporal distribution in the city of Guayaquil, Ecuador. Sci. Total Environ. 2020, 848, 157664. [Google Scholar] [CrossRef]
- Limmeechokchai, B.; Dul, D. Achievement of Paris Agreement in selected Greater Mekong Sub-region countries: Analyses of renewable electricity and emissions gap. Energy 2023, 1, 29–66. [Google Scholar]
- Meeros, W.; Wichakul, S. Thailand Nationally Determined Contributions (NDCs): Analysis of climate policy for enhancing climate resilience in infrastructure construction sector. In Proceedings of the 2022 International Conference and Utility Exhibition on Energy, Environment and Climate Change (ICUE), Pattaya, Thailand, 26–28 October 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Muangjai, P.; Wongsapai, W.; Jaitiang, T.; Ritkrerkkrai, C.; Daroon, S.; Thepsaskul, W. The Pathway to NDC and Carbon Neutrality: Roles of Optimum Degree between Marginal Abatement Cost and Social Cost of Carbon in the Thai Power and Industrial Sector. Sustainability 2023, 16, 160. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Jiao, J.; Huang, Y.; Liao, C. Co-benefits of reducing CO2 and air pollutant emissions in the urban transport sector: A case of Guangzhou. Energy Sustain. Dev. 2020, 59, 131–143. [Google Scholar] [CrossRef]
- Kim, S.E.; Xie, Y.; Dai, H.; Fujimori, S.; Hijioka, Y.; Honda, Y.; Hashizume, M.; Masui, T.; Hasegawa, T.; Xu, X.; et al. Air quality co-benefits from climate mitigation for human health in Sout Korea. Environ. Int. 2020, 136, 105507. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gao, J. Co-benefits of reducing greenhouse gas emissions. In Health of People, Health of Planet and Our Responsibility: Climate Change, Air Pollution and Health; Al-Delaimy, W.K., Ramanathan, V., Sorondo, M.S., Eds.; Springer: Cham, Switzerland, 2020; pp. 295–307. [Google Scholar] [CrossRef]
- Lu, Z.; Huang, L.; Liu, J.; Zhou, Y.; Chen, M.; Hu, J. Carbon dioxide mitigation co-benefit analysis of energy-related measures in the Air Pollution Prevention and Control Action Plan in the Jing-Jin-Ji region of China. Resour. Conserv. Recycl. X 2019, 1, 100006. [Google Scholar] [CrossRef]
- Wei, X.; Tong, Q.; Magill, I.; Vithayasrichareon, P.; Betz, R. Evaluation of potential co-benefits of air pollution control and climate mitigation policies for China’s electricity sector. Energy Econ. 2020, 92, 104917. [Google Scholar] [CrossRef]
- Yang, X.; Yang, X.; Zhu, J.; Jiang, P.; Lin, H.; Cai, Z.; Huang, H. Achieving co-benefits by implementing the low-carbon city pilot policy in China: Effectiveness and efficiency. Environ. Technol. Innov. 2023, 30, 103137. [Google Scholar] [CrossRef]
- Bamwesigye, D.; Hlavackova, P. Analysis of sustainable transport for smart cities. Sustainability 2019, 11, 2140. [Google Scholar] [CrossRef]
- Economic and Social Commission for Asia and the Pacific (ESCAP) Website. Available online: https://www.unescap.org/sites/default/files/publications/bulletin87_Fulltext.pdf (accessed on 8 September 2023).
- Nguyen, Y.L.T.; Nghiem, T.D.; Le, A.T.; Duc, K.N.; Nguyen, D.H. Emission characterization and co-benefits of bus rapid transit: A case study in Hanoi, Vietnam. Atmos. Pollut. Res. 2021, 12, 101148. [Google Scholar] [CrossRef]
- Kim Oanh, N.T.; Huy, L.N.; Didin, D.A.; Zusman, E.; Nakano, R.; Nugroho, S.B.; Lestari, P.; Sofyan, A. Assessment of urban passenger fleet emissions to quantify climate and air quality co-benefits resulting from potential interventions. Carbon Manag. 2018, 9, 367–381. [Google Scholar] [CrossRef]
- Viteri, R.; Borge, R.; Paredes, M.; Pérez, M.A. A high resolution vehicular emissions inventory for Ecuador using the IVE modelling system. Chemosphere 2023, 315, 137634. [Google Scholar] [CrossRef]
- Chaudhry, S.K.; Elumalai, S.P. Assessment of sustainable school transport policies on vehicular emissions using the IVE model. J. Clean. Prod. 2024, 434, 140437. [Google Scholar] [CrossRef]
- International Sustainable Systems Research Center (ISSRC). IVE Model Users Manual Version 2.0; International Sustainable Systems Research Center: La Habra, CA, USA, 2008. [Google Scholar]
- Wei, Y.; Yu, Y.; Xu, L.; Huang, W.; Guo, J.; Wan, Y.; Cao, J. Vehicle emission computation through microscopic traffic simulation calibrated using genetic algorithm. J. Artif. Intell. Soft Comput. Res. 2019, 9, 67–80. [Google Scholar] [CrossRef]
- International Sustainable Systems Research Center (ISSRC) Website. Available online: http://www.issrc.org/ive/downloads/manuals/AttachC_DA.pdf (accessed on 10 May 2023).
- Awad, O.I.; Ma, X.; Kamil, M.; Ali, O.M.; Zhang, Z.; Shuai, S. Particulate emissions from gasoline direct injection engines: A review of how current emission regulations are being met by automobile manufacturers. Sci. Total Environ. 2020, 718, 137302. [Google Scholar] [CrossRef] [PubMed]
- Hooftman, N.; Messagie, M.; Van Mierlo, J.; Coosemans, T. A review of the European passenger car regulations–Real driving emissions vs local air quality. Renew. Sustain. Energy Rev. 2018, 86, 1–21. [Google Scholar] [CrossRef]
- Cheewaphongphan, P.; Hanaoka, T.; Chatani, S. Long-term trend of regional passenger road transport demand and emission estimation under exhaust emission regulation scenario in Thailand. Environ. Res. Commun. 2020, 2, 051009. [Google Scholar] [CrossRef]
- Pollution Control Department (PCD) Website. Available online: https://www.pcd.go.th/wp-content/uploads/2020/06/pcdnew-2020-06-05_03-22-03_837433.pdf (accessed on 10 September 2023).
- Dutta, A.; Chavalparit, O. Assessment of health burden due to the emissions of fine particulate matter from motor vehicles: A case of Nakhon Ratchasima province, Thailand. Sci. Total Environ. 2023, 872, 162128. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Transport Website. Available online: https://web.dlt.go.th/statistics/ (accessed on 15 April 2023).
- Pongthanaisawan, J.; Sorapipatana, C. Relationship between level of economic development and motorcycle and car ownerships and their impacts on fuel consumption and greenhouse gas emission in Thailand. Renew. Sustain. Energy Rev. 2010, 14, 2966–2975. [Google Scholar] [CrossRef]
- Prabnasak, J.; Taylor, M.A.P.; YUE, W.L. An Investigation of Vehicle Ownership and the Effects of Income and Vehicle Expenses in Mid-Sized City of Thailand. In Proceedings of the 9th International Conference of Eastern Asia Society for Transportation Studies, Jeju, Republic of Korea, 20–23 June 2011; Volume 8. [Google Scholar] [CrossRef]
- Thaithatkul, P.; Chalermpong, S.; Laosinwattana, W.; Liang, J.; Kato, H. The relationship between RHA use and car purchases: Trends emerging in Bangkok, Thailand. Asian Transp. Stud. 2023, 9, 100095. [Google Scholar] [CrossRef]
- Giraldo, M.; Huertas, J.I. Real emissions, driving patterns and fuel consumption of in-use diesel buses operating at high altitude. Transp. Res. D Trans. Environ. 2019, 77, 21–36. [Google Scholar] [CrossRef]
- Lois, D.; Wang, Y.; Boggio-Marzet, A.; Monzon, A. Multivariate analysis of fuel consumption related to eco-driving: Interaction of driving patterns and external factors. Transp. Res. D Trans. Environ. 2019, 72, 232–242. [Google Scholar] [CrossRef]
- The Intelligent Traffic Information Center Foundation (iTIC) Website. Available online: https://itic.longdo.com/averagespeed (accessed on 5 September 2023).
- de Oliveira, A.; Bernardes, A.P.; Ferreira, F. Reduction of a Diesel Engine NO Emissions Using the Exhaust Gas Recirculation Technique; SAE Technical Paper, No. 2019-36-0067; SAE: Brasilia, Brazil, 2020. [Google Scholar] [CrossRef]
- TIS.2560-2554; Exhaust Emissions from Motor Vehicles: Test Method. The Thai Industrial Standards Institute (TISI) Department, Ministry of Industry: Bangkok, Thailand, 2012.
- Pollution Control Department (PCD) Website. Available online: https://www.pcd.go.th/wp-content/uploads/2021/02/pcdnew-2021-02-18_08-03-46_086635.pdf (accessed on 17 October 2023).
- Zhao, P.; Tian, B.S.; Yang, Q.; Zhang, S. Influencing Factors and Their Spatial–Temporal Heterogeneity of Urban Transport Carbon Emissions in China. Energies 2024, 17, 756. [Google Scholar] [CrossRef]
- Office of Transport and Traffic Policy and Planning (OTP) Website. Available online: https://www.otp.go.th/uploads/tiny_uploads/PDF/2562-04/25620314-NDCPlan.pdf (accessed on 5 September 2023).
- Kwan, S.K.; Zakaria, S.B.; Ibrahim, M.F.; Mahiyuddin, W.R.W.; Sofwan, N.M.; Wahab, M.I.A.; Ahmad, R.D.R.; Abbas, A.R.; Woon, W.K.; Sahani, M. Health impacts from TRAPs and carbon emissions in the projected electric vehicle growth and energy generation mix scenarios in Malaysia. Environ. Res. 2023, 216, 114524. [Google Scholar] [CrossRef] [PubMed]
- Aiello, G.; Quaranta, S.; Inguanta, R.; Certa, A.; Venticinque, M. A Multi-Criteria Decision-Making Framework for Zero Emission Vehicle Fleet Renewal Considering Lifecycle and Scenario Uncertainty. Energies 2024, 17, 1371. [Google Scholar] [CrossRef]
- Thanatrakolsri, P.; Siritian, D.; Pongpan, S. Evaluation of Greenhouse Gas Emissions from Motor Vehicles in Bangkok, Thailand. BUSCIJ 2023, 28, 223–247. [Google Scholar]
- Huy, L.N.; Oanh, N.T.K.; Htut, T.T.; Hlaing, O.M.T. Emission inventory for on-road traffic fleets in Greater Yangon, Myanmar. Atmos. Pollut. Res. 2020, 11, 702–713. [Google Scholar] [CrossRef]
- Gong, M.; Yin, S.; Gu, X.; Xu, Y.; Jiang, N.; Zhang, R. Refined 2013-based vehicle emission inventory and its spatial and temporal characteristics in Zhengzhou, China. Sci. Total Environ. 2017, 599, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yu, C.; Yuan, W.; Wu, X.; Zhang, W.; Wang, X. (2018). High-resolution vehicle emission inventory and emission control policy scenario analysis, a case in the Beijing-Tianjin-Hebei (BTH) region, China. J. Clean. Prod. 2018, 203, 530–539. [Google Scholar] [CrossRef]
- Gao, C.; Gao, C.; Song, K.; Xing, Y.; Chen, W. Vehicle emissions inventory in high spatial–temporal resolution and emission reduction strategy in Harbin-Changchun Megalopolis. Process Saf. Environ. Prot. 2020, 138, 236–245. [Google Scholar] [CrossRef]
- Office of Transport and Traffic Policy and Planning (OTP) Website. Available online: https://www.otp.go.th/uploads/tiny_uploads/ProjectOTP/2561/Project10/FinalReport.pdf (accessed on 20 December 2023).
- The board of investment of the prime minister (BOI) Website. Available online: https://www.boi.go.th/upload/content/PR20_2567EN.pdf (accessed on 29 February 2024).
- Wu, P.; Guo, F.; Cai, B.; Wang, C.; Lv, C.; Liu, H.; Huang, J.; Huang, Y.; Cao, L.; Pang, L.; et al. Co-benefits of peaking carbon dioxide emissions on air quality and health, a case of Guangzhou, China. J Environ Manag. 2021, 282, 111796. [Google Scholar] [CrossRef]
- Deng, H.M.; Liang, Q.M.; Liu, L.J.; Anadon, L.D. Co-benefits of greenhouse gas mitigation: A review and classification by type, mitigation sector, and geography. Environ. Res. Lett. 2018, 12, 123001. [Google Scholar] [CrossRef]
Vehicle Type | Passenger Car | Van | Pick up | Motorcycle | Bus | Truck |
---|---|---|---|---|---|---|
1. Fuel type | ||||||
| 61% | 7% | 3% | 100% | 3% | - |
| 29% | 86% | 94% | - | 78% | 77% |
| 2% | 3% | 1% | - | 17% | 3% |
| 7% | 4% | 2% | - | 2% | - |
| 1% | - | - | - | - | - |
2. Technology | ||||||
2.1 Exhaust | Euro 1-/3Way | Euro 1-/3Way | Euro 1-/3Way | Catalyst | Euro 2–3/3Way/EGR | Euro 2–3/3Way/EGR |
2.2 Air/fuel control | FI/MPFI/Carburettor | FI/MPFI/Carburettor | FI/MPFI/Carburettor | FI/Carburettor/4 cycle | FI/MPFI/Carburettor | FI/MPFI/Carburettor |
3. Vehicle size | Light/Medium | Medium | Medium | Medium | Medium | Medium |
Vehicle Type | Annual Average VKT (Thousands of Kilometres) | N | Total VKT (2019) (Billions of Kilometres) |
---|---|---|---|
Passenger car | 23.98 | 747 | 210.93 |
Motorcycle | 4.24 | 687 | 86.64 |
Van and pickup | 26.85 | 559 | 7.20 (Van); 132.92 (Pickup) |
Bus | 74.53 | 508 | 8.81 |
Truck | 62.33 | 404 | 38.14 |
Pollutant and GHG | Emission Factor (Unit) | Vehicle Type | |||||
---|---|---|---|---|---|---|---|
Passenger Car | Motorcycle | Van | Pickup | Bus | Truck | ||
CO | g/start | 28.64 | 16.83 | 12.81 | 6.57 | 1.70 | 0.45 |
g/km | 90.37 | 33.49 | 37.73 | 13.70 | 31.71 | 2.78 | |
VOC | g/start | 1.75 | 3.98 | 0.48 | 0.32 | 0.06 | 0.04 |
g/km | 0.63 | 1.73 | 0.22 | 0.10 | 0.64 | 0.30 | |
VOCevap | g/start | 1.19 | 0.54 | 0.35 | 0.13 | 0.63 | 0.07 |
g/km | 0.18 | 0.15 | 0.04 | 0.02 | 0.20 | 0.02 | |
NOx | g/start | 1.05 | 0.78 | 0.57 | 0.38 | 0.76 | 0.70 |
g/km | 1.30 | 0.32 | 5.59 | 5.93 | 6.96 | 6.12 | |
SOx | g/start | 5.96 × 10−4 | 1.04 × 10−4 | 4.67 × 10−4 | 4.62 × 10−4 | 2.81 × 10−4 | 2.23 × 10−4 |
g/km | 1.62 × 10−3 | 4.86 × 10−4 | 1.21 × 10−3 | 1.19 × 10−3 | 2.51 × 10−3 | 1.98 × 10−3 | |
PM10 | g/start | 0.18 | 0.14 | 0.59 | 0.63 | 0.64 | 0.59 |
g/km | 0.04 | 0.10 | 0.09 | 0.09 | 0.48 | 0.44 | |
CO2 | g/start | 65.95 | 21.17 | 105.05 | 111.13 | 87.50 | 71.61 |
g/km | 446.86 | 114.32 | 1590.40 | 1714.83 | 815.22 | 651.27 | |
N2O | g/start | 0.04 | 3.34 × 10−3 | 0.03 | 0.03 | 0.06 | 0.05 |
g/km | 0.01 | N.A. * | 0.01 | 0.01 | 0.07 | 0.08 | |
CH4 | g/start | 0.66 | 0.85 | 0.63 | 0.16 | 0.04 | 0.01 |
g/km | 0.50 | 0.57 | 0.67 | 0.15 | 0.54 | 0.08 |
Pollutants and Greenhouse Gas | Emissions (Gg) | |||||
---|---|---|---|---|---|---|
Passenger Car | Motorcycle | Van | Pickup | Bus | Truck | |
CO | 1065.80 | 1192.80 | 4.61 | 18.94 | 15.57 | 20.89 |
VOC | 7.10 | 52.42 | 0.05 | 0.87 | 0.89 | 4.01 |
VOCevap | 4.16 | 3.46 | 0.01 | 0.02 | 0.20 | 0.02 |
NOx | 17.00 | 10.59 | 7.29 | 171.08 | 17.76 | 80.39 |
SOx | 0.04 | 0.02 | 1.41 × 10−3 | 0.03 | 0.01 | 0.03 |
PM10 | 0.54 | 3.19 | 0.12 | 2.69 | 1.38 | 6.47 |
CO2 | 9672.55 | 3893.96 | 2029.32 | 46,707.89 | 1859.68 | 8397.76 |
N2O | 0.25 | 2.96 × 10−5 | 0.01 | 0.26 | 0.14 | 0.77 |
CH4 | 2.16 | 16.77 | 0.08 | 0.09 | 0.56 | 0.07 |
Pollutant and GHG | Passenger Car Scenarios (A) (% Reduction) | Bus Scenarios (B) (% Reduction) | (A) and (B) (% Reduction) | ||||
---|---|---|---|---|---|---|---|
(1) EV 50% | (2) EV 50% with a 20% Reduction in VKT | (3) EV 100% | (4) EV 100 with a 20% Reduction in VKT | (5) EV 50% | (6) EV 100% | (4) + (6) | |
CO | 0.31–5.44 | 8.23–13.41 | 0.59–5.64 | 8.37–13.57 | 0.07–0.10 | 0.13–0.23 | 8.48–13.65 |
VOC | 0.02–0.64 | 1.89–2.73 | 0.13–0.73 | 1.95–2.81 | 0.58–0.95 | 0.71–1.06 | 2.90–3.52 |
VOCevap | 0–1.05 | 9.45–12.92 | 0.71–1.72 | 10.72–13.46 | 0.02–0.11 | 0.06–0.45 | 10.87–13.54 |
NOx | 0.02–0.52 | 1.12–2.27 | 0.20–1.02 | 1.21–2.70 | 2.74–4.10 | 3.17–4.38 | 5.09–6.06 |
SOx | 0.69–3.51 | 4.80–10.52 | 2.05–6.64 | 6.16–13.03 | 1.29–2.53 | 2.26–3.77 | 8.71–14.41 |
PM10 | 0.03–0.18 | 0.80–1.13 | 0.11–0.30 | 0.88–1.49 | 3.12–5.69 | 3.54–5.97 | 4.70–6.58 |
GHG | 0.14–2.65 | 0.96–7.12 | 1.45–5.99 | 2.26–9.79 | 1.22–1.67 | 1.32–1.67 | 3.93–11.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thanatrakolsri, P.; Sirithian, D. Assessing the Additional Benefits of Thailand’s Approaches to Reduce Motor Vehicle Emissions. Energies 2024, 17, 2336. https://doi.org/10.3390/en17102336
Thanatrakolsri P, Sirithian D. Assessing the Additional Benefits of Thailand’s Approaches to Reduce Motor Vehicle Emissions. Energies. 2024; 17(10):2336. https://doi.org/10.3390/en17102336
Chicago/Turabian StyleThanatrakolsri, Pantitcha, and Duanpen Sirithian. 2024. "Assessing the Additional Benefits of Thailand’s Approaches to Reduce Motor Vehicle Emissions" Energies 17, no. 10: 2336. https://doi.org/10.3390/en17102336
APA StyleThanatrakolsri, P., & Sirithian, D. (2024). Assessing the Additional Benefits of Thailand’s Approaches to Reduce Motor Vehicle Emissions. Energies, 17(10), 2336. https://doi.org/10.3390/en17102336