Using Transfer Learning and XGBoost for Early Detection of Fires in Offshore Wind Turbine Units
Abstract
:1. Introduction
2. Boosting Fire Warnings for Offshore Wind Turbines
2.1. Principles of the XGBoost Model
2.2. Transfer Learning Concept
3. Fire Warning Methodology
3.1. Model Prediction Process
3.2. Model Tuning Methods
3.3. Evaluation Indicators for Model Prediction
4. Data Processing and Feature Selection
4.1. Data Sources
4.2. Data Preprocessing
4.3. Feature Selection
5. Analysis and Verification
5.1. XGBoost Model Prediction Results
5.2. Fire Warning
5.3. Comparison of Prediction Results of Other Models
5.4. Transfer Learning Prediction Performance of Other Units
6. Limitations
7. Conclusions
8. Future Work
- Predictive Maintenance: Applying transfer learning and XGBoost to predict potential component failures or degradation, enabling proactive maintenance strategies and reducing downtime.
- Power Output Optimization: Utilizing our approach to predict wind turbine power output based on various environmental and operational parameters, facilitating optimal control strategies and maximizing energy production.
- Anomaly Detection: Extending the application of transfer learning and XGBoost to detect anomalies in wind turbine behavior, enabling the early identification of potential issues and preventing costly repairs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, W.; Ma, X.; Wang, Y.; Cai, W.; Zeng, B. Predicting China’s energy consumption using a novel grey Riccati model. Appl. Soft Comput. 2020, 95, 106555. [Google Scholar] [CrossRef]
- Abbasi, K.R.; Shahbaz, M.; Zhang, J.; Irfan, M.; Alvarado, R. Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy. Renew. Energy 2022, 187, 390–402. [Google Scholar] [CrossRef]
- Stergaard, P.A. Renewable energy for sustainable development. Renew. Energy 2022, 199, 1145–1152. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Tee, K.F.; Li, Q.; Wu, X.-P. Comparative study of onshore and offshore wind characteristics and wind energy potentials: A case study for southeast coastal region of China. Sustain. Energy Technol. Assess. 2020, 39, 100711. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Li, Z.; Yang, S.; Chong, W.T.; Xiang, X. A review on offshore wind energy conversion system development. Int. J. Energy Res. 2020, 44, 9283–9297. [Google Scholar] [CrossRef]
- Singh, U.; Rizwan, M.; Malik, H.; García Márquez, F.P. Wind energy scenario, success and initiatives towards renewable energy in India—A review. Energies 2022, 15, 2291. [Google Scholar] [CrossRef]
- Ahmed, S.D.; Al-Ismail, F.S.M.; Shafiullah; Al-Sulaiman, F.A.; El-Amin, I.M. Grid Integration Challenges of Wind Energy: A Review. IEEE Access 2020, 8, 10857–10878. [Google Scholar] [CrossRef]
- Kou, L.; Li, Y.; Zhang, F.; Gong, X.; Hu, Y.; Yuan, Q.; Ke, W. Review on monitoring, operation and maintenance of smart offshore wind farms. Sensors 2022, 22, 2822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; You, F.; Sun, W.; Li, P.; Lin, W.; Shu, C. Fire hazard analyses of typical wind turbine nacelle oil based on single and composite indices. In Proceedings of the 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE), Chengdu, China, 18–20 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Rengel, B.; Pastor, E.; Hermida, D.; Gómez, E.; Molinelli, L.; Planas, E. Computational analysis of fire dynamics inside a wind turbine. Fire Technol. 2017, 53, 1933–1942. [Google Scholar] [CrossRef]
- Mou, J.; Jia, X.; Chen, P.; Chen, L. Research on operation safety of offshore wind farms. J. Mar. Sci. Eng. 2021, 9, 881. [Google Scholar] [CrossRef]
- You, F.; Shaik, S.; Rokonuzzaman; Rahman, K.S.; Tan, W.-S. Fire risk assessments and fire protection measures for wind turbines: A review. Heliyon 2023, 9, e19664. [Google Scholar] [CrossRef] [PubMed]
- Rohilla, M.; Saxena, A.; Tyagi, Y.K.; Singh, I.; Tanwar, R.K.; Narang, R. Condensed aerosol based fire extinguishing system covering versatile applications: A review. Fire Technol. 2021, 58, 327–351. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, S.-H.; Park, S.-J.; Yun, B.-J.; Hong, Y.-S. Wind Turbine Fire Prevention System Using Fuzzy Rules and WEKA Data Mining Cluster Analysis. Energies 2023, 16, 5176. [Google Scholar] [CrossRef]
- Sun, W.; Lin, W.-C.; You, F.; Shu, C.-M.; Qin, S.-H. Prevention of green energy loss: Estimation of fire hazard potential in wind turbines. Renew. Energy 2019, 140, 62–69. [Google Scholar] [CrossRef]
- Chen, T.; Liu, Y.; Han, X. FIRE Risk Analysis of Wind Turbine Nacelle Based On AHP. In Proceedings of the 2017 Asia-Pacific Computer Science and Application Conference, Nanjing, China, 11–13 December 2017; Volume 5, pp. 75–79. [Google Scholar]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of conventional statistical methods with machine learning in medicine: Diagnosis, drug development, and treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Fang, C.; Ji, J. Prediction of outdoor air temperature and humidity using Xgboost. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 012013. [Google Scholar] [CrossRef]
- Trizoglou, P.; Liu, X.; Lin, Z. Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore wind turbines. Renew. Energy 2021, 179, 945–962. [Google Scholar] [CrossRef]
- Kaligambe, A.; Fujita, G.; Tagami, K. Indoor Room Temperature and Relative Humidity Estimation in a Commercial Building Using the XGBoost Machine Learning Algorithm. In Proceedings of the 2022 IEEE PES/IAS PowerAfrica, Kigali, Rwanda, 22–26 August 2022; pp. 1–5. [Google Scholar]
- Dao, C.; Kazemtabrizi, B.; Crabtree, C. Wind turbine reliability data review and impacts on levelised cost of energy. Wind. Energy 2019, 22, 1848–1871. [Google Scholar] [CrossRef]
- Martinez-Luengo, M.; Shafiee, M.; Kolios, A. Data management for structural integrity assessment of offshore wind turbine support structures: Data cleansing and missing data imputation. Ocean Eng. 2019, 173, 867–883. [Google Scholar] [CrossRef]
- Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global: Hershey, PA, USA, 2010; pp. 242–264. [Google Scholar]
- Guo, F.; Liu, Z.; Hu, W.; Tan, J. Gain prediction and compensation for subarray antenna with assembling errors based on improved XGBoost and transfer learning. IET Microw. Antennas Propag. 2020, 14, 551–558. [Google Scholar] [CrossRef]
- Tang, Z.; Tang, Y.; Qiao, A.; Liu, J.; Gao, J. Transfer Learning Based Photovoltaic Power Forecasting with XGBoost. In Proceedings of the 2023 Panda Forum on Power and Energy (PandaFPE), Chengdu, China, 27–30 April 2023; pp. 1781–1785. [Google Scholar]
- Liu, W.D.; Gu, J. Predictive model for water absorption in sublayers using a Joint Distribution Adaption based XGBoost transfer learning method. J. Pet. Sci. Eng. 2020, 188, 106937. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, Y.; Kuang, S.; Wang, D. A Novel Short-Term Load Forecasting Approach for Data-Poor Areas Based on K-MIFS-XGBoost and Transfer-Learning. Electr. Power Syst. Res. 2024, 229, 110151. [Google Scholar] [CrossRef]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Zhou, T. Xgboost: Extreme Gradient Boosting. R Package Version 0.4-2 2015, 1, 1–4. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree-boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ma, B.; Yan, G.; Chai, B.; Hou, X. XGBLC: An improved survival prediction model based on XGBoost. Bioinformatics 2022, 38, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Budholiya, K.; Shrivastava, S.K.; Sharma, V. An optimized XGBoost based diagnostic system for effective prediction of heart disease. J. King Saud Univ.-Comput. Inf. Sci. 2020, 34, 4514–4523. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, J.L.; Lopez-Herrera, R.; Villalon-Turrubiates, I.E.; Grijalva-Avila, G.; Alcaraz, J.L.G. Modeling and parameter optimization of the papermaking processes by using regression tree model and full factorial design. TAPPI J. 2021, 20, 123–137. [Google Scholar] [CrossRef]
- Islam, S.F.N.; Sholahuddin, A.; Abdullah, A.S. Extreme gradient boosting (XGBoost) method in making forecasting application and analysis of USD exchange rates against rupiah. J. Physics: Conf. Ser. 2021, 1722, 012016. [Google Scholar] [CrossRef]
- Topic, A.; Russo, M. Emotion recognition based on EEG feature maps through deep learning network. Eng. Sci. Technol. Int. J. 2021, 24, 1442–1454. [Google Scholar] [CrossRef]
- Ogunleye, A.; Wang, Q.-G. XGBoost model for chronic kidney disease diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 17, 2131–2140. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, G.S.K.; Kumar Verma, A.; Radhika, S. K-Nearest neighbors and grid search CV based real time fault monitoring system for industries. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology, I2CT 2019, Bombay, India, 29–31 March 2019; p. 5. [Google Scholar]
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, J.; Wang, Y.; Han, L.; Yan, H. WC-KNNG-PC: Watershed clustering based on k-nearest-neighbor graph and Pauta Criterion. Pattern Recognit. 2021, 121, 108177. [Google Scholar] [CrossRef]
- Henderi, H.; Wahyuningsih, T.; Rahwanto, E. Comparison of Min-Max Normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. Int. J. Inform. Inf. Syst. 2021, 4, 13–20. [Google Scholar] [CrossRef]
- Cohen, I.; Huang, Y.; Chen, J.; Benesty, J. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Wan, A.; Gong, Z.; Chen, T.; Al-Bukhaiti, K. Mass flow characteristics prediction of refrigerants through electronic expansion valve based on XGBoost. Int. J. Refrig. 2024, 158, 345–352. [Google Scholar] [CrossRef]
- Wan, A.; Chang, Q.; Al-Bukhaiti, K.; He, J. Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism. Energy 2023, 282, 128274. [Google Scholar] [CrossRef]
Parameters | Maximum | Minimum | Average | Standard Deviation |
---|---|---|---|---|
Average Cabin Temperature (°C) | 54.30 | 25.80 | 40.78 | 2.703 |
Average Outdoor Temperature (°C) | 33.58 | 8.340 | 23.61 | 5.006 |
Average Cabin Humidity (%RH) | 58.44 | 15.53 | 31.60 | 6.821 |
Average Atmospheric Humidity (%RH) | 58.45 | 15.53 | 34.60 | 6.821 |
Average Blade Angle 2B (°C) | 66.98 | −0.110 | 1.605 | 3.951 |
Average Gearbox Oil Temperature (°C) | 55.08 | 33.25 | 53.22 | 2.582 |
Average Gearbox Main Bearing Temperature (°C) | 53.80 | 26.21 | 48.87 | 2.730 |
Average Converter 1 Water-Cooled Inlet Temperature (°C) | 49.67 | 25.46 | 34.80 | 3.348 |
Average Hydraulic Pump Outlet Pressure (MPa) | 179.3 | 0.000 | 140.8 | 20.72 |
Average Gearbox Water Pump 1 Outlet Pressure (MPa) | 4.590 | 1.710 | 3.836 | 0.421 |
Average Cabin Circuit Breaker Cabinet 1 Temperature (°C) | 63.66 | 27.69 | 47.05 | 3.624 |
Average Tower Second Floor Platform Temperature (°C) | 48.84 | 25.15 | 38.95 | 3.939 |
Average Cabin Air-cooled Internal Circulation Outlet Temperature (°C) | 56.39 | 26.29 | 41.50 | 3.342 |
Average Hub Temperature (°C) | 38.00 | 18.00 | 29.96 | 3.970 |
Input Parameters | Output Parameters |
---|---|
Average Blade Angle 2B (°) | |
Average Gearbox Oil Temperature (°C) | |
Average Gearbox Main Bearing Temperature (°C) | |
Average Converter 1 Water-Cooled Inlet Temperature (°C) | Average Atmospheric Humidity (%RH) |
Average Hydraulic Pump Outlet Pressure (MPa) | Average Cabin Temperature (°C) |
Average Gearbox Water Pump 1 Outlet Pressure (MPa) | Average Outdoor Temperature (°C) |
Average Cabin Circuit Breaker Cabinet 1 Temperature (°C) | Average Cabin Humidity (%RH) |
Average Tower Second Floor Platform Temperature (°C) | |
Average Cabin Air-cooled Internal Circulation Outlet Temperature (°C) | |
Average Hub Temperature (°C) |
Parameters | MAPE | RMSE |
---|---|---|
Average Cabin Temperature (°C) | 0.0081 | 0.5165 |
Average Outdoor Temperature (°C) | 0.0132 | 0.4447 |
Average Cabin Humidity (%RH) | 0.0251 | 1.2518 |
Average Atmospheric Humidity (%RH) | 0.0187 | 0.9671 |
Parameters | MAPE (XGBoost) | MAPE (BP) | MAPE (Random Forest) | RMSE (XGBoost) | RMSE (BP) | RMSE (Random Forest) |
---|---|---|---|---|---|---|
Average Cabin Temperature (°C) | 0.0081 | 0.0176 | 0.0113 | 0.5165 | 0.9641 | 0.6421 |
Average Outdoor Temperature (°C) | 0.0132 | 0.0396 | 0.0227 | 0.4447 | 1.1508 | 0.7007 |
Average Cabin Humidity (%RH) | 0.0251 | 0.0727 | 0.0431 | 1.2518 | 2.9824 | 1.9357 |
Average Atmospheric Humidity (%RH) | 0.0187 | 0.0730 | 0.0427 | 0.9671 | 2.9845 | 1.9236 |
Parameters | Average (6.8 MW) | Standard Deviation (6.8 MW) | Average (8.3 MW) | Standard Deviation (8.3 MW) |
---|---|---|---|---|
Average Blade Angle 2B (°) | 1.602 | 3.950 | 23.69 | 39.14 |
Average Gearbox Oil Temperature (°C) | 53.21 | 2.589 | 54.22 | 0.568 |
Average Gearbox Main Bearing Temperature (°C) | 48.88 | 2.734 | 52.02 | 3.883 |
Average Hub Temperature (°C) | 29.97 | 3.976 | 36.54 | 3.631 |
Average Gearbox Water Pump 1 Outlet Pressure (MPa) | 3.838 | 0.420 | 3.535 | 0.705 |
Average Converter 1 Water-Cooled Inlet Temperature (°C) | 34.81 | 3.349 | 0.000 | 0.000 |
Average Hydraulic Pump Outlet Pressure (MPa) | 140.8 | 20.70 | 173.7 | 1.700 |
Average Tower Second Floor Platform Temperature (°C) | 38.95 | 3.944 | 39.50 | 2.086 |
Average Cabin Circuit Breaker Cabinet 1 Temperature (°C) | 47.06 | 3.618 | 43.72 | 4.809 |
Average Cabin Air-cooled Internal Circulation Outlet Temperature (°C) | 41.50 | 3.347 | 42.74 | 1.213 |
Average Cabin Temperature (°C) | 40.78 | 2.707 | 39.88 | 1.665 |
Average Outdoor Temperature (°C) | 23.62 | 5.011 | 31.05 | 2.148 |
Average Cabin Humidity (%RH) | 31.62 | 6.844 | 55.75 | 3.428 |
Average Atmospheric Humidity (%RH) | 31.62 | 6.844 | 55.75 | 3.428 |
Parameters | MAPE | RMSE |
---|---|---|
Average Cabin Temperature | 0.015 | 0.876 |
Average Outdoor Temperature | 0.028 | 1.593 |
Average Cabin Humidity | 0.022 | 1.708 |
Average Atmospheric Humidity | 0.022 | 1.700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, A.; Du, C.; Gong, W.; Wei, C.; AL-Bukhaiti, K.; Ji, Y.; Ma, S.; Yao, F.; Ao, L. Using Transfer Learning and XGBoost for Early Detection of Fires in Offshore Wind Turbine Units. Energies 2024, 17, 2330. https://doi.org/10.3390/en17102330
Wan A, Du C, Gong W, Wei C, AL-Bukhaiti K, Ji Y, Ma S, Yao F, Ao L. Using Transfer Learning and XGBoost for Early Detection of Fires in Offshore Wind Turbine Units. Energies. 2024; 17(10):2330. https://doi.org/10.3390/en17102330
Chicago/Turabian StyleWan, Anping, Chenyu Du, Wenbin Gong, Chao Wei, Khalil AL-Bukhaiti, Yunsong Ji, Shidong Ma, Fareng Yao, and Lizheng Ao. 2024. "Using Transfer Learning and XGBoost for Early Detection of Fires in Offshore Wind Turbine Units" Energies 17, no. 10: 2330. https://doi.org/10.3390/en17102330
APA StyleWan, A., Du, C., Gong, W., Wei, C., AL-Bukhaiti, K., Ji, Y., Ma, S., Yao, F., & Ao, L. (2024). Using Transfer Learning and XGBoost for Early Detection of Fires in Offshore Wind Turbine Units. Energies, 17(10), 2330. https://doi.org/10.3390/en17102330