A Neural Network Forecasting Approach for the Smart Grid Demand Response Management Problem
Abstract
:1. Introduction
- Reducing unit production costs and preserving the efficiency of power facilities.
- Monitoring high-risk maintenance operations and managing energy reserves.
- Providing crucial data for planning and ensuring effective power delivery.
1.1. Literature Review on Forecasting Models for Load Forecasting
- Very short-term load forecasting (VSTLF): from a few seconds to several hours. These models are commonly used in flow management.
- Short-term load forecasting (STLF): ranging from hours to weeks. These models are commonly used to balance supply and demand.
- Medium-term and long-term load forecasting (MTLF and LTLF): between months and years normally. These models are used to plan resource usage.
- Auto-regressive and moving average (ARMA) models combine auto-regressive and moving average models. Auto-regressive models use the previous values to forecast future values. Moving average (MA) models calculate the residuals or errors of previous values and determine future values. In ARMA models, residuals and the effects of previous values are taken into account when predicting future values. Many modifications to the ARMA model can be found in the literature under other names like Auto-Regressive Integrated Moving Average (ARIMA), which is quite similar to the ARMA model in the use of previous values and residuals to predict future values, other than the fact that it includes one more factor known as Integrated (I).
- State-space models are used when dealing with dynamic time series issues. They use a set of input, output, and state variables to represent a physical system mathematically. The state variables are employed to describe a system with a set of first-order differential equations. State–space models are commonly used to analyze ecological and biological time-series data.
- Linear limitation: it is supposed that a variable’s future value will be a linear function of several previous data points and random errors. If the implicit mechanism is nonlinear, the ARIMA models’ estimation may be completely unsuitable. However, since non-linearity is a common feature of real-world systems (Zhang et al. [9]), it is illogical to assume that a given implementation of a time series is the result of a linear process.
- Data limitation: for ARIMA models to produce the desired results, a lot of historical data are required. Data limitation dictates that ARIMA models need at least 50, and preferably 100 or more, data points to get the required results.
1.2. Literature Review on ANN Approaches for Load Forecasting
1.3. Motivation and Novelties of Our Approach
- Time series model, utilizing multiple input measurements (hour, period, day, season, month, number of appliances) to forecast energy consumption.
- Auto-regressive model, relying on past energy consumption (within a specific period range) to predict future energy consumption.
- Hybrid auto-regressive model, incorporating both input measurements and past energy consumption to forecast energy consumption.
2. ANN Forecasting Approach for DRM
2.1. Steepest Descent Methods
2.2. Data Sets, Data Formatting and Component Analysis
2.3. Data Formatting and Cleaning
2.3.1. Correlation Analysis
2.3.2. Trend and Seasonality
3. ANN Forecasting Experimental Results
3.1. Time Series Model
3.2. Auto-Regressive Model
3.3. Hybrid Model
3.4. Experimental Results
3.5. Summary of Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raza, M.Q.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- Hippert, H.S.; Pedreira, C.E.; Souza, C.R. Neural Networks for Short-Term Load Forecasting: A review and Evaluation. IEEE Trans. Power Syst. 2001, 16, 44–51. [Google Scholar] [CrossRef]
- Hernandez, L.; Baladron, C.; Aguiar, J.; Belen, C.; Sanchez-Esguevillas, A.J.; Lloret, J.; Massana, J. A Survey on Electric Power Demand Forecasting: Future Trends in Smart Grids, Microgrids and Smart Buildings, A Survey on Electric Power Demand Forecasting: Future Trends in Smart Grids, Microgrids and Smart Buildings. IEEE Commun. Surv. Tutorials 2014, 16, 1460–1495. [Google Scholar] [CrossRef]
- Czapaj, J.S.M.; Kaminski, R. A review of auto-regressive methods applications to short-term demand forecasting in power systems. Energies 2022, 15, 6729. [Google Scholar] [CrossRef]
- Kheirkhah, A.; Azadeh, A.; Saberi, M.; Azaron, A.; Shakouri, H. Improved estimation of electricity demand function by using of artificial neural network, principal component analysis and data envelopment analysis. Comput. Ind. Eng. 2013, 64, 425–441. [Google Scholar] [CrossRef]
- Wang, Y.; Bielicki, J.M. Acclimation and the response of hourly electricity loads to meteorological variables. Energy 2018, 142, 473–485. [Google Scholar] [CrossRef]
- Rana, M.; Koprinska, I. Forecasting electricity load with advanced wavelet neural networks. Neurocomputing 2016, 182, 118–132. [Google Scholar] [CrossRef]
- Khashei, M.; Bijari, M.; Ardali, G.A.R. Improvement of auto- regressive integrated moving average models using fuzzy logic and artificial neural networks (anns). Neurocomputing 2009, 72, 956–967. [Google Scholar] [CrossRef]
- Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Dewangan, F.; Abdelaziz, A.Y.; Biswal, M. Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review. Energies 2023, 16, 1404. [Google Scholar] [CrossRef]
- Park, D.C.; El-Sharkawi, M.A.; Marks, R.J.I.I.; Atlas, L.E.; Damborg, M.J. Electric load forecasting using an artificial neural network. IEEE Trans. Power Eng. 1991, 6, 442–449. [Google Scholar] [CrossRef]
- Amjady, N.; Keynia, F. A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems. Energies 2011, 4, 488–503. [Google Scholar] [CrossRef]
- Macedo, M.N.Q.; Galo, J.J.M.; de Almeida, L.A.L.; de CLima, A.C. Demand side management using artificial neural networks in a smart grid environment. Renew. Sustain. Energy Rev. 2015, 41, 128–133. [Google Scholar] [CrossRef]
- Baliyan, A.; Gaurav, K.; Mishra, K.S. A Review of Short Term Load Forecasting using Artificial Neural Network Models. Procedia Comput. Sci. 2015, 48, 121–125. [Google Scholar] [CrossRef]
- Muralitharan, K.; Sakthivel, R.; Vishnuvarthan, R. Neural network based optimization approach for energy demand prediction in smart grid. Neurocomputing 2018, 273, 199–208. [Google Scholar] [CrossRef]
- Li, C. Designing a short-term load forecasting model in the urban smart grid system. Appl. Energy 2020, 266, 114850. [Google Scholar] [CrossRef]
- Jha, N.; Prashar, D.; Rashid, M.; Gupta, S.K.; Saket, R.K. Electricity load forecasting and feature extraction in smart grid using neural networks. Comput. Electr. Eng. 2021, 96, 107479. [Google Scholar] [CrossRef]
- Sharadga, H.; Hajimirza, S.; Balog, R.S. Time series forecasting of solar power generation for large-scale photovoltaic plants. Renew. Energy 2020, 150, 797–807. [Google Scholar] [CrossRef]
- da Silva, M.A.; Abreu, T.; Santos-Junior, C.R.; Minussi, C.R. Load forecasting for smart grid based on continuous-learning neural network. Electr. Power Syst. Res. 2021, 201, 107545. [Google Scholar] [CrossRef]
- Tarmanini, C.; Sarma, N.; Gezegin, C.; Ozgonenel, O. Short term load forecasting based on ARIMA and ANN approaches. Energy Rep. 2023, 9, 550–557. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural Networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J.L. Adam: A method for Stochastic Optimization. In Proceedings of the ICLR, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
Ranking | Authors | Year | Method, Model | MAPE |
---|---|---|---|---|
1 | Kheirkhah et al. [5] | 2013 | DEA (Data Envelopment Analysis) | 0.01% |
2 | Kheirkhah et al. [5] | 2013 | FR (Fuzzy Regression) | 0.08% |
3 | Wang et al. [6] | 2018 | GRM (General Regression Model) | 0.10% |
4 | Kheirkhah et al. [5] | 2013 | GA (Genetic Algorithm) | 0.14% |
5 | Kheirkhah et al. [5] | 2013 | ANFIS (Adaptive Neuro Fuzzy Inference System) | 0.15% |
6 | Kheirkhah et al. [5] | 2013 | ANN (Artificial Neural Network) | 0.16% |
7 | Wang et al. [6] | 2018 | FGRM (Full General Regression Model) | 0.20% |
8 | Rana et al. [7] | 2016 | WANN (Wavelet Artificial Neural Network) | 0.27% |
9 | Rana et al. [7] | 2016 | ANN (Artificial Neural Network) | 0.28% |
10 | Rana et al. [7] | 2016 | FL (Fuzzy Logic) | 0.29% |
Cov. | Day Order | Day of Week | Period | Nbr Appliances | Hour | KWH |
---|---|---|---|---|---|---|
Day Order | 1.000 | 0.319 | 0.346 | 0.450 | 0.328 | 0.204 |
Day of Week | 0.319 | 1.000 | 0.378 | 0.485 | 0.358 | 0.244 |
Period | 0.346 | 0.378 | 1.000 | 0.524 | 0.383 | 0.243 |
Nbr Appliances | 0.450 | 0.485 | 0.534 | 1.000 | 0.463 | 0.449 |
Hour | 0.328 | 0.358 | 0.383 | 0.463 | 1.000 | 0.186 |
KWH | 0.204 | 0.244 | 0.243 | 0.449 | 0.186 | 1.000 |
: Log-Sigmoid; : Selu; : Relu | ||||||
---|---|---|---|---|---|---|
Adam | Adagrad | Adamax | Avg. | |||
32 | 16 | 8 | 1.828 | 7.984 | 7.194 | 5.669 |
64 | 32 | 16 | 2.004 | 7.244 | 6.967 | 5.405 |
128 | 64 | 32 | 2.426 | 7.214 | 5.636 | 5.092 |
256 | 128 | 64 | 2.987 | 7.04 | 4.315 | 4.781 |
avg. | 2.311 | 7.371 | 6.028 | 5.237 | ||
: Selu; : Tanh; : Relu | ||||||
Adam | Adagrad | Adamax | Avg. | |||
32 | 16 | 8 | 2.907 | 7.297 | 6.099 | 5.434 |
64 | 32 | 16 | 2.372 | 7.162 | 4.500 | 4.678 |
128 | 64 | 32 | 3.480 | 6.889 | 3.276 | 4.548 |
256 | 128 | 64 | 4.002 | 5.982 | 2.187 | 4.057 |
avg. | 3.190 | 6.833 | 4.016 | 4.679 | ||
: Tanh; : Log-Sigmoid; : Relu | ||||||
Adam | Adagrad | Adamax | Avg. | |||
32 | 16 | 8 | 3.060 | 7.217 | 7.149 | 5.809 |
64 | 32 | 16 | 3.628 | 7.200 | 7.160 | 5.996 |
128 | 64 | 32 | 1.793 | 7.199 | 7.031 | 5.341 |
256 | 128 | 64 | 2.177 | 7.182 | 6.917 | 5.425 |
avg. | 2.665 | 7.200 | 7.064 | 5.643 | ||
: Relu; :Relu; : Relu | ||||||
Adam | Adagrad | Adamax | Avg. | |||
32 | 16 | 8 | 1.817 | 7.560 | 6.501 | 5.293 |
64 | 32 | 16 | 1.201 | 7.375 | 5.830 | 4.802 |
128 | 64 | 32 | 2.275 | 7.125 | 4.313 | 4.571 |
256 | 128 | 64 | 1.307 | 6.465 | 2.736 | 3.503 |
avg. | 1.650 | 7.131 | 4.845 | 4.542 |
: Sigmoid; : Selu; : Relu | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time-Series | Hybrid | Auto-Regressive | ||||||||||||
Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | |||
32 | 16 | 8 | 1.076 | 1.629 | 1.211 | 1.305 | 0.766 | 0.988 | 0.812 | 0.855 | 0.843 | 1.041 | 0.894 | 0.926 |
64 | 32 | 16 | 0.998 | 1.56 | 1.071 | 1.201 | 0.736 | 0.902 | 0.784 | 0.807 | 0.840 | 0.939 | 0.890 | 0.890 |
128 | 64 | 32 | 1.027 | 1.54 | 1.043 | 1.203 | 0.727 | 0.871 | 0.787 | 0.795 | 0.890 | 0.891 | 0.904 | 0.895 |
256 | 128 | 64 | 1.03 | 1.538 | 1.038 | 1.202 | 0.775 | 0.863 | 0.756 | 0.798 | 0.838 | 0.894 | 0.878 | 0.870 |
Avg. | 1.032 | 1.567 | 1.091 | 1.228 | 0.751 | 0.906 | 0.785 | 0.814 | 0.853 | 0.941 | 0.892 | 0.895 | ||
: Tanh; : Sigmoid; : Relu | ||||||||||||||
Time Series | Hybrid | Auto Regressive | ||||||||||||
Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | |||
32 | 16 | 8 | 1.002 | 1.568 | 1.031 | 1.2 | 0.745 | 0.994 | 0.787 | 0.842 | 0.848 | 1.029 | 0.850 | 0.909 |
64 | 32 | 16 | 1.007 | 1.484 | 1 | 1.164 | 0.710 | 0.907 | 0.731 | 0.783 | 0.855 | 0.911 | 0.882 | 0.883 |
128 | 64 | 32 | 1.005 | 1.432 | 0.993 | 1.143 | 0.706 | 0.870 | 0.727 | 0.768 | 0.824 | 0.901 | 0.840 | 0.855 |
256 | 128 | 64 | 0.981 | 1.555 | 0.997 | 1.178 | 0.809 | 0.851 | 0.760 | 0.807 | 0.862 | 0.900 | 0.895 | 0.886 |
Avg. | 0.999 | 1.510 | 1.005 | 1.171 | 0.743 | 0.906 | 0.751 | 0.800 | 0.847 | 0.935 | 0.867 | 0.883 | ||
: Tanh; : Selu; : Relu | ||||||||||||||
Time Series | Hybrid | Auto-Regressive | ||||||||||||
Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | |||
32 | 16 | 8 | 0.998 | 2.221 | 1.035 | 1.418 | 0.764 | 0.842 | 0.749 | 0.785 | 0.850 | 0.876 | 0.833 | 0.853 |
64 | 32 | 16 | 0.985 | 1.335 | 1.001 | 1.107 | 0.749 | 0.825 | 0.752 | 0.775 | 0.825 | 0.870 | 0.821 | 0.839 |
128 | 64 | 32 | 0.981 | 1.286 | 0.99 | 1.086 | 0.734 | 0.820 | 0.705 | 0.753 | 0.813 | 0.862 | 0.819 | 0.831 |
256 | 128 | 64 | 1.004 | 1.226 | 1.006 | 1.079 | 0.733 | 0.812 | 0.728 | 0.758 | 0.837 | 0.864 | 0.877 | 0.859 |
Avg. | 0.992 | 1.517 | 1.008 | 1.173 | 0.745 | 0.825 | 0.734 | 0.768 | 0.831 | 0.868 | 0.838 | 0.846 | ||
: Relu; : Relu; : Relu | ||||||||||||||
Time Series | Hybrid | Auto-Regressive | ||||||||||||
Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | |||
32 | 16 | 8 | 0.981 | 1.381 | 1.007 | 1.123 | 0.701 | 0.847 | 0.759 | 0.769 | 0.807 | 0.891 | 0.843 | 0.847 |
64 | 32 | 16 | 0.994 | 1.346 | 1.003 | 1.114 | 0.727 | 0.816 | 0.729 | 0.757 | 0.833 | 0.863 | 0.840 | 0.845 |
128 | 64 | 32 | 0.985 | 1.263 | 0.978 | 1.075 | 0.702 | 0.805 | 0.731 | 0.746 | 0.811 | 0.858 | 0.833 | 0.834 |
256 | 128 | 64 | 0.986 | 1.158 | 0.977 | 1.04 | 0.699 | 0.779 | 0.697 | 0.725 | 0.839 | 0.865 | 0.839 | 0.848 |
Avg. | 0.987 | 1.287 | 0.991 | 1.088 | 0.707 | 0.812 | 0.729 | 0.749 | 0.823 | 0.869 | 0.839 | 0.844 |
: Sigmoid; : Selu; : Relu | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time Series | Hybrid | Auto-Regressive | ||||||||||||
Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | |||
32 | 16 | 8 | 1.695 | 3.213 | 2.120 | 2.343 | 1.113 | 1.625 | 1.167 | 1.302 | 1.206 | 1.665 | 1.228 | 1.366 |
64 | 32 | 16 | 1.692 | 3.042 | 2.033 | 2.256 | 1.080 | 1.459 | 1.139 | 1.226 | 1.207 | 1.470 | 1.184 | 1.287 |
128 | 64 | 32 | 1.676 | 3.037 | 1.724 | 2.146 | 1.076 | 1.330 | 1.133 | 1.180 | 1.193 | 1.395 | 1.203 | 1.264 |
256 | 128 | 64 | 1.657 | 3.034 | 1.708 | 2.133 | 1.090 | 1.284 | 1.112 | 1.162 | 1.183 | 1.290 | 1.194 | 1.222 |
Avg. | 1.680 | 3.082 | 1.896 | 2.219 | 1.090 | 1.425 | 1.138 | 1.218 | 1.197 | 1.455 | 1.202 | 1.285 | ||
: Tanh; : Sigmoid; : Relu | ||||||||||||||
Time Series | Hybrid | Auto-Regressive | ||||||||||||
Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | |||
32 | 16 | 8 | 1.667 | 2.978 | 1.679 | 2.108 | 1.084 | 1.613 | 1.138 | 1.278 | 1.186 | 1.606 | 1.181 | 1.324 |
64 | 32 | 16 | 1.677 | 3.043 | 1.697 | 2.139 | 1.080 | 1.331 | 1.102 | 1.171 | 1.171 | 1.317 | 1.186 | 1.225 |
128 | 64 | 32 | 1.686 | 3.003 | 1.665 | 2.118 | 1.074 | 1.263 | 1.090 | 1.142 | 1.205 | 1.270 | 1.175 | 1.217 |
256 | 128 | 64 | 1.696 | 2.597 | 1.651 | 1.981 | 1.072 | 1.246 | 1.073 | 1.113 | 1.197 | 1.260 | 1.211 | 1.223 |
Avg. | 1.682 | 2.905 | 1.673 | 2.087 | 1.078 | 1.363 | 1.101 | 1.180 | 1.190 | 1.363 | 1.188 | 1.241 | ||
: Tanh; : Selu; : Relu | ||||||||||||||
Time Series | Hybrid | Auto-Regressive | ||||||||||||
Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | |||
32 | 16 | 8 | 1.675 | 2.919 | 1.740 | 2.111 | 1.078 | 1.339 | 1.127 | 1.181 | 1.186 | 1.286 | 1.209 | 1.227 |
64 | 32 | 16 | 1.696 | 2.625 | 1.673 | 1.998 | 1.075 | 1.256 | 1.087 | 1.139 | 1.162 | 1.235 | 1.183 | 1.193 |
128 | 64 | 32 | 1.665 | 2.498 | 1.674 | 1.946 | 1.080 | 1.229 | 1.084 | 1.131 | 1.193 | 1.201 | 1.179 | 1.191 |
256 | 128 | 64 | 1.662 | 2.388 | 1.653 | 1.901 | 1.106 | 1.183 | 1.067 | 1.119 | 1.182 | 1.213 | 1.187 | 1.194 |
Avg. | 1.675 | 2.608 | 1.685 | 1.989 | 1.085 | 1.252 | 1.091 | 1.142 | 1.181 | 1.234 | 1.190 | 1.201 | ||
: Relu; : Relu; : Relu | ||||||||||||||
Time Series | Hybrid | Auto-Regressive | ||||||||||||
Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | Adam | Adagrad | Adamax | Avg. | |||
32 | 16 | 8 | 1.640 | 2.866 | 1.680 | 2.062 | 1.090 | 1.376 | 1.086 | 1.084 | 1.169 | 1.251 | 1.177 | 1.199 |
64 | 32 | 16 | 1.694 | 2.599 | 1.663 | 1.986 | 1.095 | 1.259 | 1.095 | 1.150 | 1.161 | 1.253 | 1.178 | 1.197 |
128 | 64 | 32 | 1.666 | 2.408 | 1.652 | 1.909 | 1.080 | 1.183 | 1.080 | 1.114 | 1.168 | 1.215 | 1.158 | 1.180 |
256 | 128 | 64 | 1.643 | 2.089 | 1.642 | 1.791 | 1.089 | 1.149 | 1.064 | 1.101 | 1.186 | 1.203 | 1.160 | 1.183 |
Avg. | 1.661 | 2.491 | 1.659 | 1.937 | 1.089 | 1.242 | 1.081 | 1.137 | 1.171 | 1.231 | 1.168 | 1.190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belhaiza, S.; Al-Abdallah, S. A Neural Network Forecasting Approach for the Smart Grid Demand Response Management Problem. Energies 2024, 17, 2329. https://doi.org/10.3390/en17102329
Belhaiza S, Al-Abdallah S. A Neural Network Forecasting Approach for the Smart Grid Demand Response Management Problem. Energies. 2024; 17(10):2329. https://doi.org/10.3390/en17102329
Chicago/Turabian StyleBelhaiza, Slim, and Sara Al-Abdallah. 2024. "A Neural Network Forecasting Approach for the Smart Grid Demand Response Management Problem" Energies 17, no. 10: 2329. https://doi.org/10.3390/en17102329
APA StyleBelhaiza, S., & Al-Abdallah, S. (2024). A Neural Network Forecasting Approach for the Smart Grid Demand Response Management Problem. Energies, 17(10), 2329. https://doi.org/10.3390/en17102329