Potential of Offshore Wind Energy in Malaysia: An Investigation into Wind and Bathymetry Conditions and Site Selection
Abstract
:1. Introduction
2. General Geographic and Climate Information of Malaysia
3. Offshore Wind Conditions
4. Overview of Bathymetry Conditions
5. Discussions
6. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Kim, D.K. Ultimate strength characteristics of unstiffened cylindrical shell in axial compression. Ocean. Eng. 2022, 243, 110253. [Google Scholar] [CrossRef]
- Centeno-Telleria, M.; Aizpurua, J.I.; Penalba, M. Computationally efficient analytical O&M model for strategic decision-making in offshore renewable energy systems. Energy 2023, 285, 129374. [Google Scholar]
- Li, M.; Jiang, X.; Carroll, J.; Negenborn, R.R. A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty. Appl. Energy 2022, 321, 119284. [Google Scholar] [CrossRef]
- Konuk, E.B.; Centeno-Telleria, M.; Zarketa-Astigarraga, A.; Aizpurua, J.I.; Giorgi, G.; Bracco, G.; Penalba, M. On the Definition of a Comprehensive Technology-Informed Accessibility Metric for Offshore Renewable Energy Site Selection. J. Mar. Sci. Eng. 2023, 11, 1702. [Google Scholar] [CrossRef]
- Li, S.; Coraddu, A.; Brennan, F. A framework for optimal sensor placement to support structural health monitoring. J. Mar. Sci. Eng. 2022, 10, 1819. [Google Scholar] [CrossRef]
- Li, S.; Kim, D.; Ringsberg, J.; Liu, B.; Benson, S. Uncertainty of ship hull girder ultimate strength in global bending predicted by Smith-type collapse analysis. Trans. R. Inst. Nav. Archit. Part A Int. J. Marit. Eng. 2022, 164, A185–A206. [Google Scholar]
- Centeno-Telleria, M.; Aizpurua, J.; Penalba, M. Impact of accessibility on O&M of floating offshore wind turbines: Sensitivity of the deployment site. In Trends in Renewable Energies Offshore; CRC Press: Boca Raton, FL, USA, 2022; pp. 847–855. [Google Scholar]
- Chachuli, F.S.M.; Ludin, N.A.; Jedi, M.A.M.; Hamid, N.H. Transition of renewable energy policies in Malaysia: Benchmarking with data envelopment analysis. Renew. Sustain. Energy Rev. 2021, 150, 111456. [Google Scholar] [CrossRef]
- Azni, M.A.; Md Khalid, R. Hydrogen fuel cell legal framework in the United States, Germany, and South Korea—A model for a regulation in Malaysia. Sustainability 2021, 13, 2214. [Google Scholar] [CrossRef]
- Noman, F.M.; Alkawsi, G.A.; Abbas, D.; Alkahtani, A.A.; Tiong, S.K.; Ekanayake, J. Comprehensive review of wind energy in Malaysia: Past, present, and future research trends. IEEE Access 2020, 8, 124526–124543. [Google Scholar] [CrossRef]
- Mustapa, S.I.; Peng, L.Y.; Hashim, A.H. Issues and challenges of renewable energy development: A Malaysian experience. In Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010), Chiang Mai, Thailand, 2–4 June 2010; IEEE: New York, NY, USA, 2010; pp. 1–6. [Google Scholar]
- Shafie, S.M.; Mahlia, T.M.I.; Masjuki, H.H.; Andriyana, A. Current energy usage and sustainable energy in Malaysia: A review. Renew. Sustain. Energy Rev. 2011, 15, 4370–4377. [Google Scholar] [CrossRef]
- Ahmad, S.; Ab Kadir, M.Z.A.; Shafie, S. Current perspective of the renewable energy development in Malaysia. Renew. Sustain. Energy Rev. 2011, 15, 897–904. [Google Scholar] [CrossRef]
- Ong, H.; Mahlia, T.; Masjuki, H. A review on energy scenario and sustainable energy in Malaysia. Renew. Sustain. Energy Rev. 2011, 15, 639–647. [Google Scholar] [CrossRef]
- Ashnani, M.H.M.; Johari, A.; Hashim, H.; Hasani, E. A source of renewable energy in Malaysia, why biodiesel? Renew. Sustain. Energy Rev. 2014, 35, 244–257. [Google Scholar] [CrossRef]
- Petinrin, J.; Shaaban, M. Renewable energy for continuous energy sustainability in Malaysia. Renew. Sustain. Energy Rev. 2015, 50, 967–981. [Google Scholar] [CrossRef]
- Bujang, A.S.; Bern, C.; Brumm, T. Summary of energy demand and renewable energy policies in Malaysia. Renew. Sustain. Energy Rev. 2016, 53, 1459–1467. [Google Scholar] [CrossRef]
- Abdullah, W.S.W.; Osman, M.; Ab Kadir, M.Z.A.; Verayiah, R. The potential and status of renewable energy development in Malaysia. Energies 2019, 12, 2437. [Google Scholar] [CrossRef]
- Li, M.; Kang, J.; Sun, L.; Wang, M. Development of optimal maintenance policies for offshore wind turbine gearboxes based on the non-homogeneous continuous-time Markov process. J. Mar. Sci. Appl. 2019, 18, 93–98. [Google Scholar] [CrossRef]
- Li, M.; Jiang, X.; Negenborn, R.R. Opportunistic maintenance for offshore wind farms with multiple-component age-based preventive dispatch. Ocean. Eng. 2021, 231, 109062. [Google Scholar] [CrossRef]
- Safari, M.A.M.; Masseran, N.; Majid, M.H.A. Wind energy potential assessment using Weibull distribution with various numerical estimation methods: A case study in Mersing and Port Dickson, Malaysia. Theor. Appl. Climatol. 2022, 148, 1085–1110. [Google Scholar] [CrossRef]
- Ilham, Z. Multi-criteria decision analysis for evaluation of potential renewable energy resources in Malaysia. Prog. Energy Environ. 2022, 21, 8–18. [Google Scholar] [CrossRef]
- Mahdavi, M.; Schmitt, K.; Ramos, R.A.V.; Alhelou, H.H. Role of hydrocarbons and renewable energies in Iran’s energy matrix focusing on bioenergy. IET Renew. Power Gener. 2022, 16, 3384–3405. [Google Scholar] [CrossRef]
- Mahdavi, M.; Vera, D. Importance of renewable energy sources and agricultural biomass in providing primary energy demand for Morocco. Int. J. Hydrog. Energy 2023, 48, 34575–34598. [Google Scholar] [CrossRef]
- Vinhoza, A.; Schaeffer, R. Brazil’s offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis. Renew. Sustain. Energy Rev. 2021, 146, 111185. [Google Scholar] [CrossRef]
- Li, M. Towards Closed-Loop Maintenance Logistics for Offshore Wind Farms: Approaches for Strategic and Tactical Decision-Making. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2023. [Google Scholar]
- Tiang, T.L.; Ishak, D. Technical review of wind energy potential as small-scale power generation sources in Penang Island Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 3034–3042. [Google Scholar] [CrossRef]
- Lawan, S.; Abidin, W.; Chai, W.; Baharun, A.; Masri, T. Reviewing wind speed and energy distribution in Malaysia. Eur. Acad. Res. 2013, 1, 10–19. [Google Scholar]
- Ho, L.W. Wind energy in Malaysia: Past, present and future. Renew. Sustain. Energy Rev. 2016, 53, 279–295. [Google Scholar] [CrossRef]
- Didane, D.H.; Ab Wahab, A.; Shamsudin, S.; Rosly, N.S. Wind as a sustainable alternative energy source in Malaysia-a review. ARPN J. Eng. Appl. Sci. 2016, 11, 6442–6449. [Google Scholar]
- Ashwindran, S.; Azizuddin, A.; Oumer, A.; Sulaiman, M. A review on the prospect of wind power as an alternative source of energy in Malaysia. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Pekan, Malaysia, 19–20 January 2021; IOP Publishing: London, UK, 2021; Volume 1078, p. 012017. [Google Scholar]
- Li, M.; Jiang, X.; Carroll, J.; Negenborn, R.R. A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making. Renew. Sustain. Energy Rev. 2023, 184, 113535. [Google Scholar] [CrossRef]
- Tian, Z.; Jia, Y.; Du, Q.; Zhang, S.; Guo, X.; Tian, W.; Zhang, M.; Song, L. Shearing stress of shoaling internal solitary waves over the slope. Ocean Eng. 2021, 241, 110046. [Google Scholar] [CrossRef]
- Li, M.; Wang, M.; Kang, J.; Sun, L.; Jin, P. An opportunistic maintenance strategy for offshore wind turbine system considering optimal maintenance intervals of subsystems. Ocean Eng. 2020, 216, 108067. [Google Scholar] [CrossRef]
- Tian, Z.; Jia, L.; Xiang, J.; Yuan, G.; Yang, K.; Wei, J.; Zhang, M.; Shen, H.; Yue, J. Excess pore water pressure and seepage in slopes induced by breaking internal solitary waves. Ocean Eng. 2023, 267, 113281. [Google Scholar] [CrossRef]
- Tian, Z.; Chang, Y.; Chen, S.; Wang, G.; Hu, Y.; Guo, C.; Jia, L.; Song, L.; Yue, J. Physical and mechanical properties and microstructures of submarine soils in the Yellow Sea. Deep Undergr. Sci. Eng. 2023. [Google Scholar] [CrossRef]
- Wu, X.; Hu, Y.; Li, Y.; Yang, J.; Duan, L.; Wang, T.; Adcock, T.; Jiang, Z.; Gao, Z.; Lin, Z.; et al. Foundations of offshore wind turbines: A review. Renew. Sustain. Energy Rev. 2019, 104, 379–393. [Google Scholar] [CrossRef]
- Li, S.; Coraddu, A.; Oneto, L. Computationally aware estimation of ultimate strength reduction of stiffened panels caused by welding residual stress: From finite element to data-driven methods. Eng. Struct. 2022, 264, 114423. [Google Scholar] [CrossRef]
- Li, M.; Kang, J.; Sun, L.; Wang, M. Reliability analysis of offshore wind turbine gearbox. In Progress in the Analysis and Design of Marine Structures; CRC Press: Boca Raton, FL, USA, 2017; pp. 923–930. [Google Scholar]
- Coraddu, A.; Oneto, L.; Li, S.; Kalikatzarakis, M.; Karpenko, O. Surrogate models to unlock the optimal design of stiffened panels accounting for ultimate strength reduction due to welding residual stress. Eng. Struct. 2023, 293, 116645. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J.; Ma, K. Wind speed probability distribution estimation and wind energy assessment. Renew. Sustain. Energy Rev. 2016, 60, 881–899. [Google Scholar] [CrossRef]
- Quick Scatterometer (QuikSCAT). Available online: https://podaac.jpl.nasa.gov/QuikSCAT (accessed on 25 September 2023).
- National Oceanic and Atmospheric Administration. Available online: https://www.noaa.gov/ (accessed on 25 September 2023).
- Global Wind Atlas. Available online: https://globalwindatlas.info/en/ (accessed on 25 September 2023).
- Islam, M.; Saidur, R.; Rahim, N. Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function. Energy 2011, 36, 985–992. [Google Scholar] [CrossRef]
- Shamsipour, R.; Fadaeenejad, M.; Radzi, M. Assessment of Wind Energy Potential in Three Different Locations of Malaysia. Appl. Mech. Mater. 2015, 785, 621–626. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Wang, S.; Tibig, L.V. Impacts of present and future climate variability on agriculture and forestry in the humid and sub-humid tropics. Clim. Chang. 2005, 70, 73–116. [Google Scholar] [CrossRef]
- Suhaila, J.; Deni, S.M.; Zin, W.Z.W.; Jemain, A.A. Trends in peninsular Malaysia rainfall data during the southwest monsoon and northeast monsoon seasons: 1975–2004. Sains Malays. 2010, 39, 533–542. [Google Scholar]
- Chenoli, S.N.; Jayakrishnan, P.; Samah, A.A.; Hai, O.S.; Mazuki, M.Y.A.; Lim, C.H. Southwest monsoon onset dates over Malaysia and associated climatological characteristics. J. Atmos. Sol. Terr. Phys. 2018, 179, 81–93. [Google Scholar] [CrossRef]
- Ariffin, E.H.; Sedrati, M.; Akhir, M.F.; Yaacob, R.; Husain, M.L. Open sandy beach morphology and morphodynamic as response to seasonal monsoon in Kuala Terengganu, Malaysia. J. Coast. Res. 2016, 75, 1032–1036. [Google Scholar] [CrossRef]
- Albani, A.; Ibrahim, M.; Yong, K. The feasibility study of offshore wind energy potential in Kijal, Malaysia: The new alternative energy source exploration in Malaysia. Energy Explor. Exploit. 2014, 32, 329–344. [Google Scholar] [CrossRef]
- Alsubal, S.; Alaloul, W.S.; Shawn, E.L.; Liew, M.; Palaniappan, P.; Musarat, M.A. Life cycle cost assessment of offshore wind farm: Kudat malaysia case. Sustainability 2021, 13, 7943. [Google Scholar] [CrossRef]
- Mekhilef, S.; Safari, A.; Chandrasegaran, D. Feasibility study of off-shore wind farms in Malaysia. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2012, 29, 519–530. [Google Scholar]
- Chiang, E.; Zainal, Z.; Narayana, A.; Seetharamu, K. Potential of Renewable Wave and Offshore Wind Energy Sources in Malaysia. In Proceedings of the Marine Technology 2003 Seminar, Avenue Oxnard, CA, USA, 3 June 2003. [Google Scholar]
- Park, S.; Lackner, M.A.; Pourazarm, P.; Rodríguez Tsouroukdissian, A.; Cross-Whiter, J. An investigation on the impacts of passive and semiactive structural control on a fixed bottom and a floating offshore wind turbine. Wind Energy 2019, 22, 1451–1471. [Google Scholar] [CrossRef]
- Caglayan, D.G.; Ryberg, D.S.; Heinrichs, H.; Linßen, J.; Stolten, D.; Robinius, M. The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe. Appl. Energy 2019, 255, 113794. [Google Scholar] [CrossRef]
- Campanile, A.; Piscopo, V.; Scamardella, A. Mooring design and selection for floating offshore wind turbines on intermediate and deep water depths. Ocean Eng. 2018, 148, 349–360. [Google Scholar] [CrossRef]
- Vázquez, A.; Izquierdo, U.; Enevoldsen, P.; Andersen, F.H.; Blanco, J.M. A macroscale optimal substructure selection for Europe’s offshore wind farms. Sustain. Energy Technol. Assessments 2022, 53, 102768. [Google Scholar] [CrossRef]
- Albani, A.; Ibrahim, M.Z. Wind energy potential and power law indexes assessment for selected near-coastal sites in Malaysia. Energies 2017, 10, 307. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, X.; Lotfian, S. Impacts of water depth increase on offshore floating wind turbine dynamics. Ocean Eng. 2021, 224, 108697. [Google Scholar] [CrossRef]
Reference | Year | Wind Energy | Bioenergy | Solar Energy | Hydropower | Ocean Energy | Geothermal | Hydrogen |
---|---|---|---|---|---|---|---|---|
[11] | 2010 | ✔ | ✔ | ✔ | ✔ | ✔ | ||
[12] | 2011 | ✔ | ✔ | ✔ | ✔ | ✔ | ||
[13] | 2011 | ✔ | ✔ | ✔ | ||||
[14] | 2011 | ✔ | ✔ | ✔ | ✔ | |||
[15] | 2014 | ✔ | ✔ | ✔ | ✔ | ✔ | ||
[16] | 2015 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
[17] | 2016 | ✔ | ✔ | ✔ | ||||
[18] | 2019 | ✔ | ✔ | ✔ | ✔ |
Reference | Year | Perspective |
---|---|---|
[27] | 2012 | Site description, measurement mast, wind conditions |
[28] | 2013 | Wind speed distribution, power and energy densities |
[29] | 2016 | Wind energy studies, wind mapping, political and regulatory support |
[30] | 2016 | Wind speed, wind persistence, wind site selection, topography, cost |
[10] | 2020 | Potentiality and assessments, wind speed and direction modelling, wind prediction and spatial mapping, optimal sizing of wind farms |
[31] | 2021 | Geographical wind condition, government policies, challenges in initiation of wind technologies, global perspective of green energy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Carroll, J.; Ahmad, A.S.; Hasan, N.S.; Zolkiffly, M.Z.B.; Falope, G.B.; Sabil, K.M. Potential of Offshore Wind Energy in Malaysia: An Investigation into Wind and Bathymetry Conditions and Site Selection. Energies 2024, 17, 65. https://doi.org/10.3390/en17010065
Li M, Carroll J, Ahmad AS, Hasan NS, Zolkiffly MZB, Falope GB, Sabil KM. Potential of Offshore Wind Energy in Malaysia: An Investigation into Wind and Bathymetry Conditions and Site Selection. Energies. 2024; 17(1):65. https://doi.org/10.3390/en17010065
Chicago/Turabian StyleLi, Mingxin, James Carroll, Ahmad Sukri Ahmad, Nor Shahida Hasan, M. Zaid B. Zolkiffly, Gboyega Bishop Falope, and Khalik Mohamad Sabil. 2024. "Potential of Offshore Wind Energy in Malaysia: An Investigation into Wind and Bathymetry Conditions and Site Selection" Energies 17, no. 1: 65. https://doi.org/10.3390/en17010065
APA StyleLi, M., Carroll, J., Ahmad, A. S., Hasan, N. S., Zolkiffly, M. Z. B., Falope, G. B., & Sabil, K. M. (2024). Potential of Offshore Wind Energy in Malaysia: An Investigation into Wind and Bathymetry Conditions and Site Selection. Energies, 17(1), 65. https://doi.org/10.3390/en17010065