Quantitative Assessment of the Impact of Extreme Events on Electricity Consumption
Abstract
:1. Introduction
2. Related Works
3. Study Area and Data Sources
3.1. Study Area
3.2. Data Sources and Processing
4. Research Methods
4.1. Anomaly Detection Methods
4.1.1. Z-Score
4.1.2. Isolation Forest
4.1.3. Local Outlier Factor
4.1.4. Autoencoder
4.2. Extreme Event Detection
4.3. Quantitative Assessment of Extreme Events
5. Result
5.1. Electricity Consumption Anomaly Detection
5.2. Extreme Event Recognition
5.3. The Impact of Extreme Events on Electricity Consumption
Country | Start Time | End Time | Duration (Days) | Elastic Loss | Maximum Vulnerability |
---|---|---|---|---|---|
Austria | 7 January 2019 8:00 | 22 February 2019 10:00 | 46 | 192.57 | 1.31 |
Belgium | 3 January 2019 16:00 | 1 March 2019 10:00 | 56 | 204.16 | 1.33 |
Bulgaria | 2 January 2019 16:00 | 29 January 2019 17:00 | 27 | 208.60 | 1.51 |
Croatia | 3 January 2019 16:00 | 31 January 2019 18:00 | 28 | 86.61 | 1.25 |
Czech Republic | 7 January 2019 12:00 | 8 February 2019 8:00 | 31 | 149.73 | 1.32 |
Denmark | 3 January 2019 16:00 | 7 February 2019 17:00 | 35 | 78.54 | 1.21 |
Estonia | 3 January 2019 14:00 | 13 February 2019 7:00 | 40 | 238.64 | 1.46 |
Finland | 2 January 2019 10:00 | 7 February 2019 17:00 | 36 | 288.03 | 1.55 |
France | 3 January 2019 7:00 | 15 February 2019 7:00 | 43 | 385.28 | 1.57 |
Germany | 1 January 2019 3:00 | 19 February 2019 17:00 | 49 | 142.47 | 1.26 |
Greece | 3 January 2019 8:00 | 22 January 2019 18:00 | 19 | 112.75 | 1.43 |
Hungary | 1 January 2019 2:00 | 25 January 2019 16:00 | 24 | 71.09 | 1.26 |
Italy | 1 January 2019 3:00 | 14 February 2019 17:00 | 44 | 120.27 | 1.22 |
Latvia | 3 January 2019 8:00 | 12 March 2019 8:00 | 68 | 220.55 | 1.29 |
Lithuania | 4 January 2019 15:00 | 4 February 2019 9:00 | 30 | 107.37 | 1.26 |
Luxembourg | 6 January 2019 18:00 | 29 January 2019 7:00 | 22 | 110.64 | 1.65 |
Montenegro | 3 January 2019 16:00 | 1 February 2019 16:00 | 29 | 203.18 | 1.58 |
Netherlands | 2 January 2019 16:00 | 15 March 2019 9:00 | 71 | 267.62 | 1.41 |
Norway | 14 January 2019 6:00 | 7 February 2019 16:00 | 24 | 192.94 | 1.45 |
Poland | 1 January 2019 2:00 | 11 January 2019 16:00 | 10 | 28.40 | 1.16 |
Portugal | 1 January 2019 5:00 | 20 February 2019 19:00 | 50 | 158.23 | 1.29 |
Romania | 7 January 2019 15:00 | 28 February 2019 17:00 | 52 | 193.46 | 1.27 |
Serbia | 3 January 2019 9:00 | 14 February 2019 18:00 | 42 | 347.89 | 1.59 |
Slovakia | 7 January 2019 8:00 | 13 February 2019 11:00 | 37 | 146.84 | 1.25 |
Slovenia | 1 January 2019 2:00 | 25 February 2019 12:00 | 55 | 193.46 | 1.37 |
Spain | 1 January 2019 3:00 | 19 February 2019 19:00 | 49 | 159.00 | 1.27 |
Sweden | 2 January 2019 16:00 | 12 February 2019 7:00 | 40 | 308.65 | 1.47 |
Switzerland | 7 January 2019 11:00 | 13 February 2019 9:00 | 36 | 154.49 | 1.30 |
Country | Start Time | End Time | Duration (Days) | Elastic Loss | Maximum Vulnerability |
---|---|---|---|---|---|
Austria | 1 May 2022 1:00 | 1 November 2022 3:00 | 184 | 376.83 | 1.07 |
Belgium | 29 May 2022 3:00 | 13 November 2022 3:00 | 168 | 287.00 | 1.06 |
Bulgaria | 18 July 2022 11:00 | 4 August 2022 11:00 | 17 | 62.38 | 1.37 |
Croatia | 8 May 2022 0:00 | 18 September 2022 4:00 | 133 | 386.05 | 0.99 |
Czech Republic | 15 May 2022 2:00 | 25 September 2022 3:00 | 133 | 297.81 | 1.08 |
Denmark | 5 June 2022 1:00 | 21 August 2022 3:00 | 77 | 280.11 | 1.08 |
Estonia | 24 June 2022 0:00 | 2 August 2022 1:00 | 39 | 165.61 | 0.91 |
Finland | 8 May 2022 2:00 | 1 November 2022 5:00 | 177 | 714.52 | 3.44 |
France | 30 April 2022 23:00 | 13 November 2022 4:00 | 196 | 356.29 | 1.07 |
Germany | 16 July 2022 10:00 | 2 August 2022 11:00 | 17 | 96.06 | 1.54 |
Greece | 31 July 2022 0:00 | 22 August 2022 2:00 | 22 | 49.25 | 1.02 |
Hungary | 21 June 2022 8:00 | 29 July 2022 15:00 | 38 | 162.21 | 1.35 |
Italy | 28 May 2022 1:00 | 18 October 2022 0:00 | 142 | 424.28 | 1.05 |
Latvia | 7 May 2022 22:00 | 26 June 2022 2:00 | 49 | 129.02 | 1.04 |
Lithuania | 3 June 2022 10:00 | 4 August 2022 10:00 | 62 | 291.86 | 1.38 |
Luxembourg | 22 July 2022 11:00 | 10 August 2022 12:00 | 19 | 81.59 | 1.42 |
Montenegro | 9 April 2022 12:00 | 18 October 2022 12:00 | 192 | 596.81 | 1.11 |
Netherlands | 20 July 2022 1:00 | 31 July 2022 4:00 | 11 | 60.96 | 1.08 |
Norway | 1 May 2022 3:00 | 16 October 2022 2:00 | 167 | 176.18 | 1.11 |
Poland | 14 August 2022 2:00 | 4 September 2022 4:00 | 21 | 34.80 | 1.02 |
Portugal | 23 April 2022 23:00 | 27 June 2022 0:00 | 64 | 158.76 | 1.01 |
Romania | 24 April 2022 3:00 | 19 July 2022 1:00 | 85 | 402.37 | 1.04 |
Serbia | 15 May 2022 1:00 | 13 November 2022 3:00 | 182 | 505.97 | 1.01 |
Slovakia | 10 July 2022 1:00 | 6 November 2022 4:00 | 119 | 351.50 | 1.08 |
Slovenia | 12 July 2022 11:00 | 2 August 2022 12:00 | 21 | 53.84 | 1.22 |
Spain | 24 June 2022 0:00 | 14 August 2022 3:00 | 51 | 280.04 | 0.88 |
Sweden | 2 July 2022 21:00 | 28 August 2022 11:00 | 56 | 145.08 | 1.09 |
Country | Start Time | End Time | Duration (Days) | Elastic Loss | Maximum Vulnerability |
---|---|---|---|---|---|
Austria | 5 April 2020 1:00 | 11 October 2020 2:00 | 189 | 488.35 | 1.09 |
Belgium | 3 April 2020 1:00 | 3 August 2020 2:00 | 122 | 311.75 | 1.02 |
Bulgaria | 16 April 2020 23:00 | 27 July 2020 1:00 | 101 | 416.38 | 1.00 |
Croatia | 22 March 2020 1:00 | 31 July 2020 13:00 | 131 | 433.01 | 1.22 |
Czech Republic | 10 April 2020 22:00 | 27 September 2020 3:00 | 169 | 517.43 | 1.04 |
Denmark | 23 May 2020 2:00 | 9 August 2020 3:00 | 78 | 191.30 | 1.03 |
Estonia | 24 May 2020 0:00 | 2 September 2020 0:00 | 101 | 456.08 | 0.94 |
Finland | 24 May 2020 1:00 | 24 August 2020 0:00 | 91 | 423.42 | 0.92 |
France | 11 April 2020 2:00 | 21 September 2020 2:00 | 163 | 740.44 | 0.95 |
Germany | 5 April 2020 0:00 | 4 October 2020 3:00 | 182 | 386.13 | 1.07 |
Greece | 5 April 2020 2:00 | 13 May 2020 0:00 | 37 | 189.14 | 1.07 |
Hungary | 29 March 2020 2:00 | 5 October 2020 1:00 | 189 | 430.18 | 1.08 |
Italy | 15 March 2020 1:00 | 21 June 2020 4:00 | 98 | 449.70 | 0.99 |
Latvia | 17 May 2020 1:00 | 9 August 2020 3:00 | 84 | 186.41 | 1.05 |
Lithuania | 5 April 2020 23:00 | 14 September 2020 0:00 | 161 | 382.90 | 1.12 |
Luxembourg | 3 August 2020 15:00 | 28 November 2020 16:00 | 117 | 637.57 | 1.49 |
Montenegro | 4 April 2020 11:00 | 27 April 2020 13:00 | 23 | 64.16 | 0.99 |
Netherlands | 13 June 2020 0:00 | 6 July 2020 1:00 | 23 | 129.62 | 0.82 |
Norway | 29 March 2020 1:00 | 4 October 2020 2:00 | 189 | 428.01 | 1.07 |
Poland | 22 March 2020 4:00 | 5 July 2020 6:00 | 105 | 330.73 | 1.01 |
Portugal | 12 April 2020 0:00 | 2 August 2020 3:00 | 112 | 318.73 | 1.09 |
Romania | 9 April 2020 23:00 | 5 October 2020 1:00 | 178 | 450.46 | 1.19 |
Serbia | 11 April 2020 0:00 | 4 October 2020 1:00 | 176 | 463.39 | 1.09 |
Slovakia | 22 March 2020 2:00 | 21 June 2020 5:00 | 91 | 308.31 | 1.04 |
Slovenia | 13 June 2020 2:00 | 23 August 2020 4:00 | 71 | 402.12 | 0.89 |
Spain | 9 April 2020 3:00 | 9 May 2020 23:00 | 30 | 92.26 | 1.12 |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saint Akadiri, S.; Adewale Alola, A.; Olasehinde-Williams, G.; Udom Etokakpan, M. The role of electricity consumption, globalization and economic growth in carbon dioxide emissions and its implications for environmental sustainability targets. Sci. Total Environ. 2020, 708, 134653. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Raza, M.Y. Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach. Energy 2021, 214, 118888. [Google Scholar] [CrossRef]
- Jing, C.; Guo, S.; Zhang, H.; Lv, X.; Wang, D. SmartEle: Smart Electricity Dashboard for Detecting Consumption Patterns: A Case Study at a University Campus. ISPRS Int. J. Geo-Inf. 2022, 11, 194. [Google Scholar] [CrossRef]
- Reed, K.A.; Wehner, M.F.; Zarzycki, C.M. Attribution of 2020 hurricane season extreme rainfall to human-induced climate change. Nat. Commun. 2022, 13, 1905. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E. 2020: The Year of the COVID-19 Pandemic. J. Nutr. Health Aging 2021, 25, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.; Veloso, M.; Alves, A.; Bento, C. Sensing Mobility and Routine Locations through Mobile Phone and Crowdsourced Data: Analyzing Travel and Behavior during COVID-19. ISPRS Int. J. Geo-Inf. 2023, 12, 308. [Google Scholar] [CrossRef]
- Kennedy, J.; Christidis, N.; Dunn, R.; Mccarthy, M.; Morice, C.; Rayner, N. Global and regional climate in 2021. Weather 2022, 77, 404–412. [Google Scholar] [CrossRef]
- Yang, L.; Ni, G.; Tian, F.; Niyogi, D. Urbanization Exacerbated Rainfall Over European Suburbs Under a Warming Climate. Geophys. Res. Lett. 2021, 48, 176. [Google Scholar] [CrossRef]
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef]
- Zhou, B.; Qian, J. Interpretation of IPCC AR6 report: Changes in extreme weather and climate events. Prog. Clim. Chang. Res. 2021, 17, 713–718. [Google Scholar]
- Qin, P.; Xu, H.; Liu, M.; Xiao, C.; Tarroja, B. Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China. Appl. Energy 2020, 279, 115694. [Google Scholar] [CrossRef]
- Younesi, A.; Shayeghi, H.; Wang, Z.; Siano, P.; Mehrizi-Sani, A.; Safari, A. Trends in modern power systems resilience: State-of-the-art review. Renew. Sustain. Energy Rev. 2022, 162, 93–104. [Google Scholar] [CrossRef]
- Bhusal, N.; Abdelmalak, M.; Kamruzzaman, M.; Benidris, M. Power System Resilience: Current Practices, Challenges, and Future Directions. IEEE Access 2020, 8, 18064–18086. [Google Scholar] [CrossRef]
- Bie, Z.; Lin, Y.; Li, G.; Li, F. Battling the Extreme: A Study on the Power System Resilience. Proc. IEEE 2017, 105, 1253–1266. [Google Scholar] [CrossRef]
- Mahzarnia, M.; Moghaddam, M.P.; Baboli, P.T.; Siano, P. A Review of the Measures to Enhance Power Systems Resilience. IEEE Syst. J. 2020, 14, 4059–4074. [Google Scholar] [CrossRef]
- Cutter, S.L.; Ahearn, J.A.; Amadei, B.; Crawford, P.; Eide, E.A.; Galloway, G.E.; Goodchild, M.F.; Kunreuther, H.C.; Li-Vollmer, M.; Schoch-Spana, M.; et al. Disaster Resilience: A national imperative. Environment 2013, 55, 184. [Google Scholar] [CrossRef]
- Chen, H.; Huang, Y.; Shen, H.; Chen, Y.; Ru, M.; Chen, Y.; Lin, N.; Su, S.; Zhuo, S.; Zhong, Q.; et al. Modeling temporal variations in global residential energy consumption and pollutant emissions. Appl. Energy 2016, 184, 820–829. [Google Scholar] [CrossRef]
- Wenz, L.; Levermann, A.; Auffhammer, M. North–south polarization of European electricity consumption under future warming. Proc. Natl. Acad. Sci. USA 2017, 114, E7910–E7918. [Google Scholar] [CrossRef]
- Buechler, E.; Powell, S.; Sun, T.; Astier, N.; Zanocco, C.; Bolorinos, J.; Flora, J.; Boudet, H.; Rajagopal, R. Global changes in electricity consumption during COVID-19. iScience 2022, 25, 103568. [Google Scholar] [CrossRef]
- Ghiani, E.; Galici, M.; Mureddu, M.; Pilo, F. Impact on Electricity Consumption and Market Pricing of Energy and Ancillary Services during Pandemic of COVID-19 in Italy. Energies 2020, 13, 3357. [Google Scholar] [CrossRef]
- Shi, D.; Zhang, C.; Cai, Q. Research on mining methods of outlier data. Small Microcomput. Syst. 2001, 10, 1234–1236. [Google Scholar]
- Ord, K. Outliers in statistical data. Int. J. Forecast. 1996, 12, 175–176. [Google Scholar] [CrossRef]
- Donovan, B.; Work, D.B. Empirically quantifying city-scale transportation system resilience to extreme events. Transp. Res. Part C Emerg. Technol. 2017, 79, 333–346. [Google Scholar] [CrossRef]
- Sun, N.; Wang, Y.; Ji, Z. Power consumption anomaly detection method based on deep autoencoder. J. Syst. Simul. 2022, 34, 2557–2565. [Google Scholar]
- Li, C.; Feng, G.; Liu, R.; Miao, Q. A traffic track anomaly detection method based on reconstruction error. Comput. Sci. 2022, 49, 149–155. [Google Scholar]
- Guha, D.; Chatterjee, R.; Sikdar, B. Anomaly Detection Using LSTM-Based Variational Autoencoder in Unsupervised Data in Power Grid. IEEE Syst. J. 2023, 17, 4313–4323. [Google Scholar] [CrossRef]
- Zhang, C.; Bai, C.; Zhang, M. Power load anomaly detection based on wavelet. J. Yunnan Univ. (Nat. Sci. Ed.) 2020, 42, 49–54. [Google Scholar]
- Michel, B.; Andrei, R. Exploring the Concept of Seismic Resilience for Acute Care Facilities. Earthq. Spectra 2007, 23, 45–59. [Google Scholar]
- Panteli, M.; Mancarella, P.; Trakas, D.; Kyriakides, E.; Hatziargyriou, N. Metrics and Quantification of Operational and Infrastructure Resilience in Power Systems. IEEE Trans. Power Syst. 2017, 32, 4732–4742. [Google Scholar] [CrossRef]
- Tang, W.; Yang, Y.; Li, Y.; Lu, J.; Wu, Q. Study on resiliency evaluation and improvement measures of transmission system under extreme meteorological disasters. Proc. Chin. Soc. Electr. Eng. 2020, 40, 2244–2254. [Google Scholar]
- Reed, D.A.; Kapur, K.C.; Christie, R.D. Methodology for Assessing the Resilience of Networked Infrastructure. IEEE Syst. J. 2009, 3, 174–180. [Google Scholar] [CrossRef]
- Zhou, X.; Ge, S.; Li, T.; Liu, H. Study on toughness analysis methods and improvement measures of distribution network under extreme weather conditions. Proc. Chin. Soc. Electr. Eng. 2018, 38, 505–513. [Google Scholar]
- Li, B.; Ofori-Boateng, D.; Gel, Y.R.; Zhang, J. A hybrid approach for transmission grid resilience assessment using reliability metrics and power system local network topology. Sustain. Resilient Infrastruct. 2020, 6, 26–41. [Google Scholar] [CrossRef]
- Zhang, Z.; Chai, H.; Guo, Z. Quantitative resilience assessment of the network-level metro rail service’s responses to the COVID-19 pandemic. Sustain. Cities Soc. 2023, 89, 104315. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; Song, C.; Chen, J.; Shu, H.; Wu, M.; Guo, S.; Huang, Q.; Pei, T. Quantifying human mobility resilience to the COVID-19 pandemic: A case study of Beijing, China. Sustain. Cities Soc. 2023, 89, 104314. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Bonczak, B.J.; Gupta, A.; Kontokosta, C.E. Measuring inequality in community resilience to natural disasters using large-scale mobility data. Nat. Commun. 2021, 12, 1870. [Google Scholar] [CrossRef] [PubMed]
- Halbrügge, S.; Schott, P.; Weibelzahl, M.; Buhl, H.U.; Schpf, M. How did the German and other European electricity systems react to the COVID-19 pandemic? Appl. Energy 2021, 285, 116370. [Google Scholar] [CrossRef] [PubMed]
- Bahmanyar, A.; Estebsari, A.; Ernst, D. The impact of different COVID-19 containment measures on electricity consumption in Europe. Energy Res. Soc. Sci. 2020, 68, 101683. [Google Scholar] [CrossRef]
- Garrido-Perez, J.M.; Barriopedro, D.; García-Herrera, R.; Ordóñez, C. Impact of climate change on Spanish electricity demand. Clim. Chang. 2021, 165, 50. [Google Scholar] [CrossRef]
- Liu, D.; Liu, X.; Guo, K.; Ji, Q.; Chang, Y. Spillover Effects among Electricity Prices, Traditional Energy Prices and Carbon Market under Climate Risk. Int. J. Environ. Res. Public Health 2023, 20, 1116. [Google Scholar] [CrossRef]
- Rokicki, T.; Bórawski, P.; Szeberényi, A. The Impact of the 2020–2022 Crises on EU Countries’ Independence from Energy Imports, Particularly from Russia. Energy 2023, 16, 6629. [Google Scholar] [CrossRef]
- Miík, M. The EU needs to improve its external energy security. Energy Policy 2022, 165, 112930. [Google Scholar] [CrossRef]
Data Name | Meaning | Time Scale | Unit | Data Preprocessing | Data Source |
---|---|---|---|---|---|
Temperature | 1 day | 0.1 F | Unit conversion | https://www.ncei.noaa.gov/ (accessed on 14 April 2022) | |
Precipitation | 1 day | 0.1 inch | |||
Government stringency index | An indicator of the strictness of the government’s epidemic prevention policy | 1 day | https://ourworldindata.org/ (accessed on 3 March 2023) | ||
Number of new COVID-19 cases | Number of newly reported cases | 1 day | |||
The number of deaths due to COVID-19 | Number of newly reported deaths | 1 day | |||
Epidemic prevention policy | The extent to which the government restricts internal movement/travel between regions and cities | 1 day | |||
Geographical base map of European administrative divisions | Projection transformation | https://gadm.org/ (accessed on 30 September 2022) | |||
Electricity consumption | 15 min/1 h | MW | Fill forward, statistical summary | https://transparency.entsoe.eu/ (accessed on 30 September 2022) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, D.; Yan, Y.; Qin, M.; Wu, S.; Liu, R. Quantitative Assessment of the Impact of Extreme Events on Electricity Consumption. Energies 2024, 17, 45. https://doi.org/10.3390/en17010045
Xiong D, Yan Y, Qin M, Wu S, Liu R. Quantitative Assessment of the Impact of Extreme Events on Electricity Consumption. Energies. 2024; 17(1):45. https://doi.org/10.3390/en17010045
Chicago/Turabian StyleXiong, Dan, Yiming Yan, Mengjiao Qin, Sensen Wu, and Renyi Liu. 2024. "Quantitative Assessment of the Impact of Extreme Events on Electricity Consumption" Energies 17, no. 1: 45. https://doi.org/10.3390/en17010045
APA StyleXiong, D., Yan, Y., Qin, M., Wu, S., & Liu, R. (2024). Quantitative Assessment of the Impact of Extreme Events on Electricity Consumption. Energies, 17(1), 45. https://doi.org/10.3390/en17010045