Experimental Study of Evaporation Characteristics of Acoustically Levitated Fuel Droplets at High Temperatures
Abstract
:1. Introduction
2. Acoustically Levitated Droplet
3. Experimental Methodology
4. Results and Discussion
4.1. Fuel Droplet Evaporation Kinetics
4.2. Effects of Temperature
4.3. Effects of Droplet Properties
4.3.1. Initial Diameters
4.3.2. Comparison of Different Fuels
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salama, R.S.; Mannaa, M.A.; Altass, H.M.; Ibrahim, A.A.; Khder, A.E.-R.S. Palladium supported on mixed-metal–organic framework (Co–Mn-MOF-74) for efficient catalytic oxidation of CO. RSC Adv. 2021, 11, 4318–4326. [Google Scholar] [CrossRef] [PubMed]
- Broatch, A.; Carreres, M.; Garcia-Tiscar, J.; Belmar-Gil, M. Spectral analysis and modelling of the spray liquid injection in a Lean Direct Injection (LDI) gas turbine combustor through Eulerian-Lagrangian Large Eddy Simulations. Aerosp. Sci. Technol. 2021, 118, 106992. [Google Scholar] [CrossRef]
- Lo Schiavo, E.; Laera, D.; Riber, E.; Gicquel, L.; Poinsot, T. On the impact of fuel injection angle in Euler-Lagrange large eddy simulations of swirling spray flames exhibiting thermoacoustic instabilities. Combust. Flame 2021, 227, 359–370. [Google Scholar] [CrossRef]
- Mehrizi, A.A.; Karimi-maleh, H.; Naddafi, M.; Karaman, O.; Karimi, F.; Karaman, C.; Cheng, C.K. Evaporation characteristics of nanofuel droplets: A review. Fuel 2022, 319, 123731. [Google Scholar] [CrossRef]
- Niimura, Y.; Hasegawa, K. Evaporation of droplet in mid-air: Pure and binary droplets in single-axis acoustic levitator. PLoS ONE 2019, 14, e0212074. [Google Scholar] [CrossRef] [PubMed]
- Hinrichs, J.; Shastry, V.; Junk, M.; Hemberger, Y.; Pitsch, H. An experimental and computational study on multicomponent evaporation of diesel fuel droplets. Fuel 2020, 275, 117727. [Google Scholar] [CrossRef]
- Jackson, D.P.; Chang, M.-H. Acoustic levitation and the acoustic radiation force. Am. J. Phys. 2021, 89, 383–392. [Google Scholar] [CrossRef]
- Zang, D.; Tarafdar, S.; Tarasevich, Y.Y.; Dutta Choudhury, M.; Dutta, T. Evaporation of a Droplet: From physics to applications. Phys. Rep. 2019, 804, 1–56. [Google Scholar] [CrossRef]
- Buchholz, M.; Haus, J.; Polt, F.; Pietsch, S.; Schönherr, M.; Kleine Jäger, F.; Heinrich, S. Dynamic model development based on experimental investigations of acoustically levitated suspension droplets. Int. J. Heat Mass Transf. 2021, 171, 121057. [Google Scholar] [CrossRef]
- Polachini, T.C.; Mulet, A.; Telis-Romero, J.; Cárcel, J.A. Acoustic fields of acid suspensions containing cassava bagasse: Influence of physical properties on acoustic attenuation. Appl. Acoust. 2021, 177, 107922. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Aydar, A.Y.; Kutlu, N.; Aslam, R.; Sahni, P.; Mitharwal, S.; Gavahian, M.; Kumar, M.; Raposo, A.; Yoo, S.; et al. Individual and interactive effect of ultrasound pre-treatment on drying kinetics and biochemical qualities of food: A critical review. Ultrason. Sonochem. 2023, 92, 106261. [Google Scholar] [CrossRef] [PubMed]
- Al Zaitone, B. Evaporation of oblate spheroidal droplets: A theoretical analysis. Chem. Eng. Commun. 2018, 205, 110–121. [Google Scholar] [CrossRef]
- Prud’homme, R.; Habiballah, M.; Matuszewski, L.; Mauriot, Y.; Nicole, A. Theoretical Analysis of Dynamic Response of a Vaporizing Droplet to Acoustic Oscillations. J. Propuls. Power 2010, 26, 74–83. [Google Scholar] [CrossRef]
- Combe, N.A.; Donaldson, D.J. Water Evaporation from Acoustically Levitated Aqueous Solution Droplets. J. Phys. Chem. A 2017, 121, 7197–7204. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Hasegawa, K.; Kaneko, A.; Abe, Y. Heat and mass transfer characteristics of binary droplets in acoustic levitation. Phys. Fluids 2020, 32, 072102. [Google Scholar] [CrossRef]
- Meshkinzar, A.; Al-Jumaily, A.M. Acoustically enhanced evaporation of a polydisperse stream of micro water droplets. J. Aerosol. Sci. 2020, 139, 105466. [Google Scholar] [CrossRef]
- Berdugo, N.; Stolar, M.; Liberzon, D. Enhancement of water droplet evaporation rate by application of low frequency acoustic field. Int. J. Multiph. Flow 2020, 126, 103217. [Google Scholar] [CrossRef]
- Fumachi, E.F.; Toledo, R.C.; Tenório, P.I.G.; An, C.Y.; Bandeira, I.N. Heat Transfer in the Samples Solidified in Drop Tubes. Microgravity Sci. Technol. 2019, 31, 185–194. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, C.; Guo, F.; Philippe, J.; Gu, Y.; Tian, Z.; Bachman, H.; Ren, L.; Yang, S.; Zhong, Z.; et al. Contactless, programmable acoustofluidic manipulation of objects on water. Lab A Chip 2019, 19, 3397–3404. [Google Scholar] [CrossRef]
- Ali Al Zaitone, B.; Tropea, C. Evaporation of pure liquid droplets: Comparison of droplet evaporation in an acoustic field versus glass-filament. Chem. Eng. Sci. 2011, 66, 3914–3921. [Google Scholar] [CrossRef]
- Yarin, A.L.; Brenn, G.; Rensink, D. Evaporation of acoustically levitated droplets of binary liquid mixtures. Int. J. Heat Fluid Flow 2002, 23, 471–486. [Google Scholar] [CrossRef]
- Schiffter, H.; Lee, G. Single-Droplet Evaporation Kinetics and Particle Formation in an Acoustic Levitator. Part 2: Drying Kinetics and Particle Formation from Microdroplets of Aqueous Mannitol, Trehalose, or Catalase. J. Pharm. Sci. 2007, 96, 2284–2295. [Google Scholar] [CrossRef] [PubMed]
- Brenn, G.; Deviprasath, L.J.; Durst, F.; Fink, C. Evaporation of acoustically levitated multi-component liquid droplets. Int. J. Heat Mass Transf. 2007, 50, 5073–5086. [Google Scholar] [CrossRef]
- Sharma, S.; Jain, S.; Saha, A.; Basu, S. Evaporation dynamics of a surrogate respiratory droplet in a vortical environment. J. Colloid Interface Sci. 2022, 623, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.A.B.; Pérez, N.; Adamowski, J.C. Review of Progress in Acoustic Levitation. Braz. J. Phys. 2018, 48, 190–213. [Google Scholar] [CrossRef]
- Moslabeh, F.G.Z.; Fouladgar, F.; Jafari, A.; Habibi, N. Substrate-free self-assembly of peptides nano-particles through acoustic levitation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130439. [Google Scholar] [CrossRef]
- Basu, S.; Saha, A.; Kumar, R. Criteria for thermally induced atomization and catastrophic breakup of acoustically levitated droplet. Int. J. Heat Mass Transf. 2013, 59, 316–327. [Google Scholar] [CrossRef]
- Li, Z.; Yang, G.; Peng, Z.; Liu, X.; Hu, X.; Yu, H.; Liu, J.; Liu, W.; Shi, Z.; He, Y.; et al. Experimental investigation on evaporation of a single droplet levitated in acoustic field. In Proceedings of the 2022 20th International Conference on Mechatronics—Mechatronika (ME), Pilsen, Czech Republic, 7–9 December 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Argyri, S.-M.; Evenäs, L.; Bordes, R. Contact-free measurement of surface tension on single droplet using machine learning and acoustic levitation. J. Colloid Interface Sci. 2023, 640, 637–646. [Google Scholar] [CrossRef]
- Al Zaitone, B. Oblate spheroidal droplet evaporation in an acoustic levitator. Int. J. Heat Mass Transf. 2018, 126, 164–172. [Google Scholar] [CrossRef]
- Leiterer, J.; Delissen, F.; Emmerling, F.; Thünemann, A.F.; Panne, U. Structure analysis using acoustically levitated droplets. Anal. Bioanal. Chem. 2008, 391, 1221–1228. [Google Scholar] [CrossRef]
- Prasad, S.; Narayanan, S.; Mandal, D.K. Acoustic induced flow around an evaporating drop and its influence on internal circulation. Int. J. Multiph. Flow 2019, 116, 91–99. [Google Scholar] [CrossRef]
- Bänsch, E.; Götz, M. Numerical study of droplet evaporation in an acoustic levitator. Phys. Fluids 2018, 30, 037103. [Google Scholar] [CrossRef]
- Yarin, A.L.; Weiss, D.A.; Brenn, G.; Rensink, D. Acoustically levitated drops: Drop oscillation and break-up driven by ultrasound modulation. Int. J. Multiph. Flow 2002, 28, 887–910. [Google Scholar] [CrossRef]
- Hasegawa, K.; Watanabe, A.; Kaneko, A.; Abe, Y. Internal flow during mixing induced in acoustically levitated droplets by mode oscillations. Phys. Fluids 2019, 31, 112101. [Google Scholar] [CrossRef]
- Liu, L.-H.; Han, Y.-F.; Wang, Q.; Fu, Q.-F. Molecular dynamics simulation of droplet evaporation in a one-dimensional standing wave acoustic field. Int. J. Therm. Sci. 2023, 184, 107939. [Google Scholar] [CrossRef]
- Kobayashi, K.; Goda, A.; Hasegawa, K.; Abe, Y. Flow structure and evaporation behavior of an acoustically levitated droplet. Phys. Fluids 2018, 30, 5037728. [Google Scholar] [CrossRef]
- Shitanishi, K.; Hasegawa, K.; Kaneko, A.; Abe, Y. Study on Heat Transfer and Flow Characteristic Under Phase-Change Process of an Acoustically Levitated Droplet. Microgravity Sci. Technol. 2014, 26, 305–312. [Google Scholar] [CrossRef]
- Saito, M.; Sato, M.; Suzuki, I. Evaporation and combustion of a single fuel droplet in acoustic fields. Fuel 1994, 73, 349–353. [Google Scholar] [CrossRef]
- Saito, M.; Hoshikawa, M.; Sato, M. Enhancement of evaporation/combustion rate coefficient of a single fuel droplet by acoustic oscillation. Fuel 1996, 75, 669–674. [Google Scholar] [CrossRef]
- Yarin, A.L.; Brenn, G.; Kastner, O.; Rensink, D.; Tropea, C. Evaporation of acoustically levitated droplets. J. Fluid Mech. 1999, 399, 151–204. [Google Scholar] [CrossRef]
- Wulsten, E.; Lee, G. Surface temperature of acoustically levitated water microdroplets measured using infra-red thermography. Chem. Eng. Sci. 2008, 63, 5420–5424. [Google Scholar] [CrossRef]
- Mondragon, R.; Hernandez, L.; Enrique Julia, J.; Carlos Jarque, J.; Chiva, S.; Zaitone, B.; Tropea, C. Study of the drying behavior of high load multiphase droplets in an acoustic levitator at high temperature conditions. Chem. Eng. Sci. 2011, 66, 2734–2744. [Google Scholar] [CrossRef]
Item | Hexadecane | Diesel |
---|---|---|
Formula | ||
Average molecular weight | 226 | 140~283 |
Boiling point | 287 | 273~392 |
Density at 20 °C | 0.77 | 0.81~0.85 |
Latent heat of vaporization | 232 | 258 |
Kinematic viscosity at 20 °C ( | 3.027 | 3.0~8.0 |
Saturated vapor pressure | 0.0995 | - |
Diffusion coefficient at 20 °C | - | |
Critical pressure | 1.44 | 1.90~2.20 |
Critical temperature | 449 | 440~470 |
Temperature (°C) | Droplet | ||
---|---|---|---|
200 | Hexadecane | 0.183 | 0.01398 |
Diesel | 0.184 | 0.00562 | |
300 | Hexadecane | 0.266 | 0.03837 |
Diesel | 0.282 | 0.02298 | |
400 | Hexadecane | 0.269 | 0.04021 |
Diesel | 0.248 | 0.04099 | |
450 | Hexadecane | 0.167 | 0.02980 |
Diesel | 0.154 | 0.04878 | |
500 | Hexadecane | 0.292 | 0.10415 |
Diesel | 0.299 | 0.09074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, B.; Yang, G.; Liu, X.; Huang, Y.; Li, W.; He, Y.; Shi, Z.; Yang, Z.; Dong, T. Experimental Study of Evaporation Characteristics of Acoustically Levitated Fuel Droplets at High Temperatures. Energies 2024, 17, 271. https://doi.org/10.3390/en17010271
Pang B, Yang G, Liu X, Huang Y, Li W, He Y, Shi Z, Yang Z, Dong T. Experimental Study of Evaporation Characteristics of Acoustically Levitated Fuel Droplets at High Temperatures. Energies. 2024; 17(1):271. https://doi.org/10.3390/en17010271
Chicago/Turabian StylePang, Bin, Guangcan Yang, Xiaoxin Liu, Yu Huang, Wanli Li, Yongqing He, Zhongyuan Shi, Zhaochu Yang, and Tao Dong. 2024. "Experimental Study of Evaporation Characteristics of Acoustically Levitated Fuel Droplets at High Temperatures" Energies 17, no. 1: 271. https://doi.org/10.3390/en17010271
APA StylePang, B., Yang, G., Liu, X., Huang, Y., Li, W., He, Y., Shi, Z., Yang, Z., & Dong, T. (2024). Experimental Study of Evaporation Characteristics of Acoustically Levitated Fuel Droplets at High Temperatures. Energies, 17(1), 271. https://doi.org/10.3390/en17010271