Design, Simulation, and Fabrication of a 500 kV Ultrawideband Coaxial Matched Load and Its Connectors for Fast Transient Pulse Measurement Systems
Abstract
:1. Introduction
- They do not have a sufficient broadband frequency to measure pulses with rise times in the range of few hundreds of picoseconds and fall times going down to a few tens to hundreds of nanoseconds.
- More importantly, the amplitudes levels are limited only up to a maximum of a few hundred kilovolts. Therefore, these systems are not suited to measure voltage amplitudes up to 500 kV levels.
- The absence of connectors makes these systems rigid and they lack flexibility which makes it difficult to calibrate each component separately to avoid their footprint.
2. Conception of Broadband 500 kV Coaxial 50 Ω Load
2.1. Choice of the 50 Ω Resistor
- A low-inductance resistor with a DC resistance value of 50 Ω.
- A sufficient high-voltage insulation and an adequate level of separation between the metallic contacts of the resistor to avoid flashovers. These flashovers could also appear at the resistor–insulator interface, as indicated in Figure 1 by the dotted line representing air pockets. The flashovers could be transmitted to the measuring instruments present in the measurement circuit, resulting in their breakdown.
- A bulk resistor for better energy dissipation. The load, apart from its principal role of matched termination of the transmission line, is also destined for the dissipation of the energy present in the incident pulse. Bulk resistors facilitates this process.
- High specific heat of the resistive material used to avoid excess heating of the load. Materials with low specific heat constituting the resistor could rise rapidly in temperature and cause extra heating of the load. This heating could therefore change the value of the resistor and the 50 Ω value of the load resistor will not be assured.
2.2. Main Line Insulator
2.3. Theoretical Analysis of a Reflection-Free Load
- : permeability of free space ( × 10−6 H/m);
- : relative permeability of the dielectric of the transmission line;
- : permittivity of free space ( × 10−12 F/m);
- : relative permittivity of the dielectric of the transmission line;
- c: inner radius of the metallic shielding of the transmission line (m);
- a: radius of the central conductor of the transmission line (m).
2.4. Electromagnetic Simulation of Exponential 50 Ω Load
3. Development of High-Voltage Connectors and Transition Cones
4. Characterization
4.1. Characterization of Connectors and Transition Cones
4.2. Characterization of 50 Ω Exponential Termination Load
4.3. High-Voltage Characterization
- E: total energy dissipated in the resistor;
- m: mass of the resistor;
- : specific heat of the resistor.
5. Discussion
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prather, W.D.; Baum, C.E.; Torres, R.J.; Sabath, F.; Nitsch, D. Survey of Worldwide High-Power Wideband Capabilities. IEEE Trans. Electromagn. Compat. 2004, 46, 335–344. [Google Scholar] [CrossRef]
- Mesyats, G.A.; Korovin, S.D.; Rostov, V.V.; Shpak, V.G.; Yalandin, M.I. The RADAN Series of Compact Pulsed Power Generators and Their Applications. Proc. IEEE 2004, 92, 1166–1179. [Google Scholar] [CrossRef]
- Deng, Z.; Yuan, Q.; Chang, R.; Ding, Z.; Ding, W.; Ren, L.; Wang, Y. High Voltage Nanosecond Pulse Generator Based on Pseudospark Switch and Diode Opening Switch. Rev. Sci. Instrum. 2023, 94, 024703. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhao, Y.; Yao, C.; Schmelz, E.M.; Davalos, R.V. Differential Effects of Nanosecond Pulsed Electric Fields on Cells Representing Progressive Ovarian Cancer. Bioelectrochemistry 2021, 142, 107942. [Google Scholar] [CrossRef]
- Scholtz, V.; Khun, J.; Šerá, B. Nonthermal Plasma for Food Quality and Safety. J. Food Qual. 2019, 2019, e6468018. [Google Scholar] [CrossRef]
- Yokoo, T.; Saiki, K.; Hotta, K.; Jiang, W. Repetitive Pulsed High-Voltage Generator Using Semiconductor Opening Switch for Atmospheric Discharge. IEEE Trans. Plasma Sci. 2008, 36, 2638–2643. [Google Scholar] [CrossRef]
- Namihira, T.; Tsukamoto, S.; Wang, D.; Katsuki, S.; Hackam, R.; Akiyama, H.; Uchida, Y.; Koike, M. Improvement of NOX Removal Efficiency Using Short-Width Pulsed Power. IEEE Trans. Plasma Sci. 2000, 28, 434–442. [Google Scholar] [CrossRef]
- Mizuno, A.; Clements, J.S.; Davis, R.H. A Method for the Removal of Sulfur Dioxide from Exhaust Gas Utilizing Pulsed Streamer Corona for Electron Energization. IEEE Trans. Ind. Appl. 1986, IA-22, 516–522. [Google Scholar] [CrossRef]
- Rukin, S.N. Pulsed Power Technology Based on Semiconductor Opening Switches: A Review. Rev. Sci. Instrum. 2020, 91, 11501. [Google Scholar] [CrossRef]
- Carin, L.; Sichina, J.; Harvey, J.F. Microwave Underground Propagation and Detection. IEEE Trans. Microw. Theory Tech. 2002, 50, 945–952. [Google Scholar] [CrossRef]
- Martin, K.; Carsten, R. 3D Reconstruction of Buildings and Vegetation from Synthetic Aperture Radar (SAR) Images. IAPR Workshop Mach. Vis. Appl. MVA 1998, 228–231. [Google Scholar]
- Vitebskiy, S.; Carin, L.; Ressler, M.A.; Le, F.H. Ultra-Wideband, Short-Pulse Ground-Penetrating Radar: Simulation and Measurement. IEEE Trans. Geosci. Remote Sens. 1997, 35, 762–772. [Google Scholar] [CrossRef]
- Looker, Q.; Wood, M.G.; Lake, P.W.; Kim, J.K.; Serkland, D.K. GaAs X-ray Detectors with Sub-Nanosecond Temporal Response. Rev. Sci. Instrum. 2019, 90, 113505. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.; Raymond, P.; Wey, J. New Model for Ultracompact Coaxial Marx Pulse Generator Simulations. Rev. Sci. Instrum. 2006, 77, 43505. [Google Scholar] [CrossRef]
- Nollet, J.-A. Recherches Sur Les Causes Particulières Des Phénomènes Électriques, Et Sur Les Effets Nuisibles Ou Avantageux Qu’on Peut En Attendre; Guerin, C.H.L., Delatour, L.F., Eds.; Legare Street Press: London, UK, 1749. [Google Scholar]
- Sale, A.J.H.; Hamilton, W.A. Effects of High Electric Fields on Microorganisms: I. Killing of Bacteria and Yeasts. Biochim. Biophys. Acta BBA Gen. Subj. 1967, 148, 781–788. [Google Scholar] [CrossRef]
- Geboers, B.; Scheffer, H.J.; Graybill, P.M.; Ruarus, A.H.; Nieuwenhuizen, S.; Puijk, R.S.; van den Tol, P.M.; Davalos, R.V.; Rubinsky, B.; de Gruijl, T.D.; et al. High-Voltage Electrical Pulses in Oncology: Irreversible Electroporation, Electrochemotherapy, Gene Electrotransfer, Electrofusion, and Electroimmunotherapy. Radiology 2020, 295, 254–272. [Google Scholar] [CrossRef] [PubMed]
- Okino, M.; Mohri, H. Effects of a High-Voltage Electrical Impulse and an Anticancer Drug on In Vivo Growing Tumors. Jpn. J. Cancer Res. GANN 1987, 78, 1319–1321. [Google Scholar]
- Kotnik, T.; Miklavcic, D. Theoretical Evaluation of Voltage Inducement on Internal Membranes of Biological Cells Exposed to Electric Fields. Biophys. J. 2006, 90, 480–491. [Google Scholar] [CrossRef]
- Staderini, E.M. UWB Radars in Medicine. IEEE Aerosp. Electron. Syst. Mag. 2002, 17, 13–18. [Google Scholar] [CrossRef]
- Zhang, Q.; Barbosa-Cánovas, G.V.; Swanson, B.G. Engineering Aspects of Pulsed Electric Field Pasteurization. J. Food Eng. 1995, 25, 261–281. [Google Scholar] [CrossRef]
- Dyatlov, N.S.; Epifantsev, K.A.; Skorobogatov, P.K. Automation of Pulse Electric Strength Test of Electronic Component Base. Russ. Microelectron. 2019, 48, 340–345. [Google Scholar] [CrossRef]
- Ekdahl, C.A. Voltage and Current Sensors for a High-Density Z-Pinch Experiment. Rev. Sci. Instrum. 1980, 51, 1645–1648. [Google Scholar] [CrossRef]
- Huiskamp, T.; Beckers, F.J.C.M.; van Heesch, E.J.M.; Pemen, A.J.M. B-Dot and D-Dot Sensors for (Sub)Nanosecond High-Voltage and High-Current Pulse Measurements. IEEE Sens. J. 2016, 16, 3792–3801. [Google Scholar] [CrossRef]
- Brady, M.M.; Dedrick, K.G. High-Voltage Pulse Measurement with a Precision Capacitive Voltage Divider. Rev. Sci. Instrum. 1962, 33, 1421–1428. [Google Scholar] [CrossRef]
- Edson, W.A.; Oetzel, G.N. Capacitance Voltage Divider for High-Voltage Pulse Measurement. Rev. Sci. Instrum. 1981, 52, 604–606. [Google Scholar] [CrossRef]
- Jayaram, S.; Xu, X.; Cross, J.D. High Divider Ratio Fast Response Capacitive Dividers for High Voltage Pulse Measurements. In Proceedings of the IAS’95 Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting (IEEE), Orlando, FL, USA, 8–12 October 1995; Volume 2, pp. 1201–1205. [Google Scholar]
- Liu, J.-L.; Ye, B.; Zhan, T.-W.; Feng, J.-H.; Zhang, J.-D.; Wang, X.-X. Coaxial Capacitive Dividers for High-Voltage Pulse Measurements in Intense Electron Beam Accelerator with Water Pulse-Forming Line. IEEE Trans. Instrum. Meas. 2009, 58, 161–166. [Google Scholar] [CrossRef]
- Ulmaskulov, M.R.; Shunailov, S.A.; Sharypov, K.A.; Ulmaskulov, E.M. Picosecond High-Voltage Pulse Measurements. Rev. Sci. Instrum. 2021, 92, 034701. [Google Scholar] [CrossRef]
- Cadilhon, B.; Pecastaing, L.; Reess, T.; Silvestre de Ferron, A.; Pignolet, P.; Vauchamp, S.; Andrieu, J.; Lalande, M. High Pulsed Power Sources for Broadband Radiation. IEEE Trans. Plasma Sci. 2010, 38, 2593–2603. [Google Scholar] [CrossRef]
- Liu, K.; Hu, Q.; Qiu, J.; Xiao, H. A High Repetition Rate Nanosecond Pulsed Power Supply for Nonthermal Plasma Generation. IEEE Trans. Plasma Sci. 2005, 33, 1182–1185. [Google Scholar] [CrossRef]
- Pecastaing, L.; Paillol, J.; Reess, T.; Gibert, A.; Domens, P. Very Fast Rise-Time Short-Pulse High-Voltage Generator. IEEE Trans. Plasma Sci. 2006, 34, 1822–1831. [Google Scholar] [CrossRef]
- Lyubutin, S.K.; Rukin, S.N.; Slovikovsky, B.G.; Tsyranov, S.N. High-Power Ultrafast Current Switching by a Silicon Sharpener Operating at an Electric Field Close to the Threshold of the Zener Breakdown. IEEE Trans. Plasma Sci. 2010, 38, 2627–2632. [Google Scholar] [CrossRef]
- Pokryvailo, A.; Yankelevich, Y.; Shapira, M. A Compact Source of Subgigawatt Subnanosecond Pulses. IEEE Trans. Plasma Sci. 2004, 32, 1909–1918. [Google Scholar] [CrossRef]
- Ryu, S.-K.; Kim, Y.-H. Coaxial Termination Load for High-Voltage Fast Transient Pulse Measurement. IEEE Trans. Plasma Sci. 2013, 41, 528–539. [Google Scholar] [CrossRef]
- Li, Z. Improved CuSO4 HV Pulse Divider. Rev. Sci. Instrum. 1988, 59, 1244–1245. [Google Scholar] [CrossRef]
- He, W.; Yin, H.; Phelps, A.D.R.; Cross, A.W.; Spark, S.N. Study of a Fast, High-Impedance, High-Voltage Pulse Divider. Rev. Sci. Instrum. 2001, 72, 4266–4269. [Google Scholar] [CrossRef]
- Wagoner, T.C.; Stygar, W.A.; Ives, H.C.; Gilliland, T.L.; Spielman, R.B.; Johnson, M.F.; Reynolds, P.G.; Moore, J.K.; Mourning, R.L.; Fehl, D.L.; et al. Differential-Output B-Dot and D-Dot Monitors for Current and Voltage Measurements on a 20-MA, 3-MV Pulsed-Power Accelerator. Phys. Rev. Spec. Top. Accel. Beams 2008, 11, 100401. [Google Scholar] [CrossRef]
- Ryu, J.; Kwon, H.-O.; Park, S.H.; Yim, D.W. A Square Patch Capacitive Voltage Divider for Measuring High-Voltage Ultrawideband Pulses in a Coaxial Pulse Forming Line. IEEE Trans. Instrum. Meas. 2016, 65, 680–684. [Google Scholar] [CrossRef]
- Huiskamp, T.; Höft, H.; Kettlitz, M.; Pemen, A.J.M.G. Visualization of a Spark Discharge Driven by a High-Voltage Pulse with Sub-ns Rise-Time at Atmospheric Pressure. IEEE Trans. Plasma Sci. 2014, 42, 2414–2415. [Google Scholar] [CrossRef]
- Novac, B.M.; Ganciu, M.; Enache, M.C.; Smith, I.R.; Stewardson, H.R.; Vadher, V.V. A Fast Electro-Optic High-Voltage Sensor. Meas. Sci. Technol. 1995, 6, 241. [Google Scholar] [CrossRef]
- Novac, B.M.; Xiao, R.; Huiskamp, T.; Pecastaing, L.; Wang, M.; Senior, P.; De Ferron, A.S.; Pemen, A.J.M.; Rivaletto, M. Theoretical and Experimental Studies of off-the-Shelf V-Dot Probes. IEEE Trans. Plasma Sci. 2018, 46, 2985–2992. [Google Scholar] [CrossRef]
- Nicolson, A.M.; Ross, G.F. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Trans. Instrum. Meas. 1970, 19, 377–382. [Google Scholar] [CrossRef]
- Jargon, J.A.; Cho, C.; Williams, D.F.; Hale, P.D. Physical Models for 2.4 mm and 3.5 mm Coaxial VNA Calibration Kits Developed within the NIST Microwave Uncertainty Framework. In Proceedings of the 2015 85th Microwave Measurement Conference (ARFTG), Phoenix, AZ, USA, 22 May 2015; pp. 1–7. [Google Scholar]
- Hoffmann, J.P.; Ruefenacht, J.; Wollensack, M.; Zeier, M. Comparison of 1.85 mm Line Reflect Line and Offset Short Calibration. In Proceedings of the 2010 76th ARFTG Microwave Measurement Conference, Clearwater Beach, FL, USA, 30 November–3 December 2010; pp. 1–7. [Google Scholar]
- Harris, I.A. The Theory and Design of Coaxial Resistor Mounts for the Frequency Band 0–4000 Mc/s. Proc. IEE Part C Monogr. 1956, 103, 1–10. [Google Scholar] [CrossRef]
- Tag, A.; Leinhos, J.; Hechtfischer, G.; Leibfritz, M.; Eibert, T. Design, Simulation, and Fabrication of Broadband Coaxial Matched Loads for the Frequency Range from 0 to 110 GHz. Int. J. Microw. Wirel. Technol. 2014, 6, 297–304. [Google Scholar] [CrossRef]
- Kohn, C. The Radio Frequency Coaxial Resistor Using a Tractorial Jacket. Proc. IRE 1955, 43, 951–960. [Google Scholar] [CrossRef]
- E5071C ENA Vector Network Analyzer. Available online: https://www.keysight.com/hk/en/product/E5071C/e5071c-ena-vector-network-analyzer.html (accessed on 14 September 2020).
- Ferrero, A.; Pisani, U. Two-Port Network Analyzer Calibration Using an Unknown “Thru”. IEEE Microw. Guid. Wave Lett. 1992, 2, 505–507. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.S.; Agazar, M.; Le Bihan, Y. Design, Simulation, and Fabrication of a 500 kV Ultrawideband Coaxial Matched Load and Its Connectors for Fast Transient Pulse Measurement Systems. Energies 2024, 17, 166. https://doi.org/10.3390/en17010166
Khan MS, Agazar M, Le Bihan Y. Design, Simulation, and Fabrication of a 500 kV Ultrawideband Coaxial Matched Load and Its Connectors for Fast Transient Pulse Measurement Systems. Energies. 2024; 17(1):166. https://doi.org/10.3390/en17010166
Chicago/Turabian StyleKhan, Mohammad Saif, Mohamed Agazar, and Yann Le Bihan. 2024. "Design, Simulation, and Fabrication of a 500 kV Ultrawideband Coaxial Matched Load and Its Connectors for Fast Transient Pulse Measurement Systems" Energies 17, no. 1: 166. https://doi.org/10.3390/en17010166
APA StyleKhan, M. S., Agazar, M., & Le Bihan, Y. (2024). Design, Simulation, and Fabrication of a 500 kV Ultrawideband Coaxial Matched Load and Its Connectors for Fast Transient Pulse Measurement Systems. Energies, 17(1), 166. https://doi.org/10.3390/en17010166