Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art
Abstract
:1. Introduction
2. Hydrogen Technologies (Electrolyzers and Fuel Cells)
2.1. Electrolyzer Technologies
2.1.1. Alkaline Electrolyzer (AEL)
2.1.2. Proton Exchange Membrane Electrolyzer (PEMEL)
2.1.3. Solid-Oxide Electrolyzer (SOEL)
2.1.4. Characteristics of the Different Water Electrolysis Technologies
2.1.5. Behavioral Aging Model of the Electrolyzer
Behavioral Aging Alkaline Electrolyzer
Behavioral Aging Proton Exchange Membrane Electrolyzer
2.2. Fuel Cell Technologies
2.2.1. Alkaline Fuel Cell Technologies
2.2.2. Direct Methanol Fuel Cells (DMFCs)
2.2.3. Phosphoric Acid Fuel Cells (PAFCs)
2.2.4. Molten Carbonate Fuel Cells (MCFCs)
2.2.5. Solid-Oxide Fuel Cells (SOFCs)
2.2.6. Proton Exchange Membrane Fuel Cells (PEMFCs)
2.2.7. Characteristics of the Fuel Cell Technologies
2.2.8. Behavioral Aging Model of the Fuel Cells
3. Hydrogen Storage Units in Hydrogen Production Systems
3.1. Compressed-Gas Hydrogen Storage
3.2. Underground Hydrogen Storage
3.3. Liquid Hydrogen Storage
3.4. Solid Hydrogen Storage
4. Different Projects Realized or Currently Underway on Large-Scale Hydrogen Production
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Commission, E. The European Green Deal. Eur. Comm. 2019, 53, 24. [Google Scholar]
- European Comission. A Hydrogen s for a Climate-Neural Europe. Communication from the Commission to the European Par-Liament, the Council, the European Economic and Social Com-Mittee and Committee of Regions. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0301 (accessed on 4 July 2023).
- Genovese, M.; Schlüter, A.; Scionti, E.; Piraino, F.; Corigliano, O.; Fragiacomo, P. Power-to-Hydrogen and Hydrogen-to-X Energy Systems for the Industry of the Future in Europe. Int. J. Hydrogen Energy 2023, 48, 16545–16568. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I.; Crawford, C. A Review on Hydrogen Production and Utilization: Challenges and Opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Mali, B.; Niraula, D.; Kafle, R.; Bhusal, A. Green Hydrogen: Production Methodology, Applications and Challenges in Nepal. In Proceedings of the 2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST), Pattaya, Thailand, 1–3 April 2021; pp. 68–76. [Google Scholar]
- Li, L.; Lin, J.; Wu, N.; Xie, S.; Meng, C.; Zheng, Y.; Wang, X.; Zhao, Y. Review and Outlook on the International Renewable Energy Development. Energy Built Environ. 2022, 3, 139–157. [Google Scholar] [CrossRef]
- Scita, R.; Raimondi, P.P.; Noussan, M. Green Hydrogen: The Holy Grail of Decarbonisation? An Analysis of the Technical and Geopolitical Implications of the Future Hydrogen Economy. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3709789 (accessed on 4 July 2023).
- Panchenko, V.A.; Daus, Y.V.; Kovalev, A.A.; Yudaev, I.V.; Litti, Y.V. Prospects for the Production of Green Hydrogen: Review of Countries with High Potential. Int. J. Hydrogen Energy 2023, 48, 4551–4571. [Google Scholar] [CrossRef]
- Kakoulaki, G.; Kougias, I.; Taylor, N.; Dolci, F.; Moya, J.; Jäger-Waldau, A. Green Hydrogen in Europe—A Regional Assessment: Substituting Existing Production with Electrolysis Powered by Renewables. Energy Convers. Manag. 2021, 228, 113649. [Google Scholar] [CrossRef]
- ENTSO-E Transparency Platform. Actual Generation per Production Type. 2020. Available online: https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show (accessed on 4 July 2023).
- Eurostat. Available online: https://ec.europa.eu/eurostat/fr/web/main/data/database (accessed on 4 July 2023).
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Meng, Z.; He, Q.; Shi, X.; Cao, D.; Du, D. Research on Energy Utilization of Wind-Hydrogen Coupled Energy Storage Power Generation System. Sep. Purif. Technol. 2023, 313, 123439. [Google Scholar] [CrossRef]
- Kumar, K.; Alam, M.; Dutta, V. Energy Management Strategy for Integration of Fuel Cell-Electrolyzer Technologies in Microgrid. Int. J. Hydrogen Energy 2021, 46, 33738–33755. [Google Scholar] [CrossRef]
- Wang, J.; Li, D.; Lv, X.; Meng, X.; Zhang, J.; Ma, T.; Pei, W.; Xiao, H. Two-Stage Energy Management Strategies of Sustainable Wind-PV-Hydrogen-Storage Microgrid Based on Receding Horizon Optimization. Energies 2022, 15, 2861. [Google Scholar] [CrossRef]
- Fernandez, A.M.; Kandidayeni, M.; Boulon, L.; Chaoui, H. An Adaptive State Machine Based Energy Management Strategy for a Multi-Stack Fuel Cell Hybrid Electric Vehicle. IEEE Trans. Veh. Technol. 2019, 69, 220–234. [Google Scholar] [CrossRef]
- Yin, W.; Liu, L.; Rui, X. Analysis, Modeling and Control of a Hybrid Drive Wind Turbine with Hydrogen Energy Storage System. IEEE Access 2020, 8, 114795–114806. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, H.; Zhang, S. Overview of Electrolyser and Hydrogen Production Power Supply from Industrial Perspective. Int. J. Hydrogen Energy 2023, 49, 1048–1059. [Google Scholar] [CrossRef]
- Jarvinen, L.; Ruuskanen, V.; Koponen, J.; Kosonen, A.; Ahola, J. Effect of Power Quality on PEM Fuel Cells and Water Electrolyzers: A Literature Review with Watson Discovery. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE’19 ECCE Europe), Genova, Italy, 3–5 September 2019; p. P-1. [Google Scholar]
- Guo, Y.; Li, G.; Zhou, J.; Liu, Y. Comparison between Hydrogen Production by Alkaline Water Electrolysis and Hydrogen Production by PEM Electrolysis. IOP Conf. Ser. Earth Environ. Sci. 2019, 371, 42022. [Google Scholar] [CrossRef]
- Rashid, M.D.; Al Mesfer, M.K.; Naseem, H.; Danish, M. Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis. Int. J. Eng. Adv. Technol. 2015, 4, 80–93. [Google Scholar]
- Yu, Z.; Duan, Y.; Feng, X.; Yu, X.; Gao, M.; Yu, S. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Adv. Mater. 2021, 33, 2007100. [Google Scholar] [CrossRef]
- Smolinka, T.; Ojong, E.T.; Garche, J. Hydrogen Production from Renewable Energies—Electrolyzer Technologies. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Elsevier: Amsterdam, The Netherlands, 2015; pp. 103–128. [Google Scholar]
- Pletcher, D.; Li, X. Prospects for Alkaline Zero Gap Water Electrolysers for Hydrogen Production. Int. J. Hydrogen Energy 2011, 36, 15089–15104. [Google Scholar] [CrossRef]
- Phillips, R.; Dunnill, C.W. Zero Gap Alkaline Electrolysis Cell Design for Renewable Energy Storage as Hydrogen Gas. RSC Adv. 2016, 6, 100643–100651. [Google Scholar] [CrossRef]
- Thomassen, M.S.; Reksten, A.H.; Barnett, A.O.; Khoza, T.; Ayers, K. PEM Water Electrolysis. In Electrochemical Power Sources: Fundamentals, Systems, and Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 199–228. [Google Scholar]
- Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study. Int. J. Hydrogen Energy 2017, 42, 30470–30492. [Google Scholar] [CrossRef]
- Recharge. World’s Largest Green-Hydrogen Plant Inaugurated in Canada by Air Liquide. World’s Largest Green-Hydrogen Plant Inaugu-Rated in Canada by Air Liquide. Available online: https://www.airliquide.com/fr/groupe/activites/hydrogene (accessed on 4 July 2023).
- Gabriel, K.S.; El-Emam, R.S.; Zamfirescu, C. Technoeconomics of Large-Scale Clean Hydrogen Production–A Review. Int. J. Hydrogen Energy 2022, 47, 30788–30798. [Google Scholar] [CrossRef]
- Vidas, L.; Castro, R. Recent Developments on Hydrogen Production Technologies: State-of-the-Art Review with a Focus on Green-Electrolysis. Appl. Sci. 2021, 11, 11363. [Google Scholar] [CrossRef]
- Nechache, A.; Hody, S. Alternative and Innovative Solid Oxide Electrolysis Cell Materials: A Short Review. Renew. Sustain. Energy Rev. 2021, 149, 111322. [Google Scholar] [CrossRef]
- Kumar, S.S.; Lim, H. An Overview of Water Electrolysis Technologies for Green Hydrogen Production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- Grigoriev, S.A.; Fateev, V.N.; Bessarabov, D.G.; Millet, P. Current Status, Research Trends, and Challenges in Water Electrolysis Science and Technology. Int. J. Hydrogen Energy 2020, 45, 26036–26058. [Google Scholar] [CrossRef]
- Gago, A.S.; Bürkle, J.; Lettenmeier, P.; Morawietz, T.; Handl, M.; Hiesgen, R.; Burggraf, F.; Beltran, P.A.V.; Friedrich, K.A. Degradation of Proton Exchange Membrane (PEM) Electrolysis: The Influence of Current Density. ECS Trans. 2018, 86, 695. [Google Scholar] [CrossRef]
- Schalenbach, M.; Tjarks, G.; Carmo, M.; Lueke, W.; Mueller, M.; Stolten, D. Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis. J. Electrochem. Soc. 2016, 163, F3197. [Google Scholar] [CrossRef]
- Gambou, F.; Guilbert, D.; Zasadzinski, M.; Rafaralahy, H. A Comprehensive Survey of Alkaline Electrolyzer Modeling: Electrical Domain and Specific Electrolyte Conductivity. Energies 2022, 15, 3452. [Google Scholar] [CrossRef]
- Ursúa, A.; Sanchis, P. Static–Dynamic Modelling of the Electrical Behaviour of a Commercial Advanced Alkaline Water Electrolyser. Int. J. Hydrogen Energy 2012, 37, 18598–18614. [Google Scholar] [CrossRef]
- Iribarren, A.; Barrios, E.; Ibaiondo, H.; Sanchez-Ruiz, A.; Arza, J.; Sanchis, P.; Ursúa, A. Dynamic Modeling and Simulation of a Pressurized Alkaline Water Electrolyzer: A Multiphysics Approach. In Proceedings of the 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Bari, Italy, 7–10 September 2021; pp. 1–6. [Google Scholar]
- Amireh, S.F.; Heineman, N.N.; Vermeulen, P.; Barros, R.L.G.; Yang, D.; van der Schaaf, J.; de Groot, M.T. Impact of Power Supply Fluctuation and Part Load Operation on the Efficiency of Alkaline Water Electrolysis. J. Power Sources 2023, 560, 232629. [Google Scholar] [CrossRef]
- Hernández-Gómez, Á.; Ramirez, V.; Guilbert, D. Investigation of PEM Electrolyzer Modeling: Electrical Domain, Efficiency, and Specific Energy Consumption. Int. J. Hydrogen Energy 2020, 45, 14625–14639. [Google Scholar] [CrossRef]
- Majumdar, A.; Haas, M.; Elliot, I.; Nazari, S. Control and Control-Oriented Modeling of PEM Water Electrolyzers: A Review. Int. J. Hydrogen Energy 2023, 48, 30621–30641. [Google Scholar] [CrossRef]
- Dang, J.; Yang, F.; Li, Y.; Deng, X.; Ouyang, M. Transient Behaviors and Mathematical Model of Proton Exchange Membrane Electrolyzer. J. Power Sources 2022, 542, 231757. [Google Scholar] [CrossRef]
- Guilbert, D.; Vitale, G. Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model. Energies 2019, 12, 750. [Google Scholar] [CrossRef]
- Yodwong, B.; Guilbert, D.; Hinaje, M.; Phattanasak, M.; Kaewmanee, W.; Vitale, G. Proton Exchange Membrane Electrolyzer Emulator for Power Electronics Testing Applications. Processes 2021, 9, 498. [Google Scholar] [CrossRef]
- Guilbert, D.; Vitale, G. Experimental Validation of an Equivalent Dynamic Electrical Model for a Proton Exchange Membrane Electrolyzer. In Proceedings of the 2018 IEEE international conference on environment and electrical engineering and 2018 IEEE industrial and commercial power systems europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15 June 2018; pp. 1–6. [Google Scholar]
- Soo, L.T.; Loh, K.S.; Mohamad, A.B.; Daud, W.R.W.; Wong, W.Y. An Overview of the Electrochemical Performance of Modified Graphene Used as an Electrocatalyst and as a Catalyst Support in Fuel Cells. Appl. Catal. A Gen. 2015, 497, 198–210. [Google Scholar] [CrossRef]
- Li, P.; Qiu, D.; Peng, L.; Lai, X. KW-Grade Unitized Regenerative Fuel Cell Stack Design for High Round-Trip Efficiencies. Energy Convers. Manag. 2022, 270, 116277. [Google Scholar] [CrossRef]
- Sharaf, O.Z.; Orhan, M.F. An Overview of Fuel Cell Technology: Fundamentals and Applications. Renew. Sustain. Energy Rev. 2014, 32, 810–853. [Google Scholar] [CrossRef]
- Akinyele, D.; Olabode, E.; Amole, A. Review of Fuel Cell Technologies and Applications for Sustainable Microgrid Systems. Inventions 2020, 5, 42. [Google Scholar] [CrossRef]
- Ali, D.M.; Salman, S.K. A Comprehensive Review of the Fuel Cells Technology and Hydrogen Economy. In Proceedings of the 41st International Universities Power Engineering Conference, Newcastle upon Tyne, UK, 6–8 September 2006; Volume 1, pp. 98–102. [Google Scholar]
- Behera, P.R.; Dash, R.; Ali, S.M.; Mohapatra, K.K. A Review on Fuel Cell and Its Applications. Int. J. Res. Eng. Technol. 2014, 3, 562–565. [Google Scholar]
- Abdelkareem, M.A.; Elsaid, K.; Wilberforce, T.; Kamil, M.; Sayed, E.T.; Olabi, A. Environmental Aspects of Fuel Cells: A Review. Sci. Total Environ. 2021, 752, 141803. [Google Scholar] [CrossRef] [PubMed]
- Ferriday, T.B.; Middleton, P.H. Alkaline Fuel Cell Technology—A Review. Int. J. Hydrogen Energy 2021, 46, 18489–18510. [Google Scholar] [CrossRef]
- Alkaline Fuel Cell Solutions by AFC Energy and GenCell 2023. 2023. Available online: https://www.ammoniaenergy.org/organization/gencell-energy/ (accessed on 4 July 2023).
- Joghee, P.; Malik, J.N.; Pylypenko, S.; O’Hayre, R. A Review on Direct Methanol Fuel Cells—In the Perspective of Energy and Sustainability. MRS Energy Sustain. 2015, 2, E3. [Google Scholar] [CrossRef]
- Zainoodin, A.M.; Kamarudin, S.K.; Daud, W.R.W. Electrode in Direct Methanol Fuel Cells. Int. J. Hydrogen Energy 2010, 35, 4606–4621. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Fuel Cell Handbook; EG&G Technical Services, Inc.: Las Vegas, NV, USA, 2004.
- Singh, A.; Baredar, P.; Khare, H.; Kumar, A. Fuel Cell: Fundamental, Classification, Application, and Environmental Impact. In Low Carbon Energy Supply; Springer: Singapore, 2018; pp. 363–385. [Google Scholar]
- Guaitolini, S.V.M.; Yahyaoui, I.; Fardin, J.F.; Encarnação, L.F.; Tadeo, F. A Review of Fuel Cell and Energy Cogeneration Technologies. In Proceedings of the 2018 9th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 20–22 March 2018; pp. 1–6. [Google Scholar]
- Sazali, N.; Wan Salleh, W.N.; Jamaludin, A.S.; Mhd Razali, M.N. New Perspectives on Fuel Cell Technology: A Brief Review. Membranes 2020, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Jain, K. Hydrogen Fuel Cell: A Review of Different Types of FuelCells with Emphasis on PEM Fuel Cells and Catalysts Usedin the PEM Fuel Cell. Int. J. All Res. Educ. Sci. Methods 2021, 9, 2455–6211. [Google Scholar]
- Mtolo, S.N.; Saha, A.K. A Review of the Optimization and Control Strategies for Fuel Cell Power Plants in a Microgrid Environment. IEEE Access 2021, 9, 146900–146920. [Google Scholar] [CrossRef]
- Sarma, U.; Ganguly, S. Modelling and Cost-Benefit Analysis of PEM Fuel-Cell-Battery Hybrid Energy System for Locomotive Application. In Proceedings of the 2018 Technologies for Smart-City Energy Security and Power (ICSESP), Bhubaneswar, India, 28–30 March 2018; pp. 1–5. [Google Scholar]
- Mitra, U.; Arya, A.; Gupta, S.; Mehroliya, S. A Comprehensive Review on Fuel Cell Technologies and Its Application in Microgrids. In Proceedings of the 2021 IEEE 2nd International Conference On Electrical Power and Energy Systems (ICEPES), Bhopal, India, 10–11 December 2021; pp. 1–7. [Google Scholar]
- Wilberforce, T.; Alaswad, A.; Palumbo, A.; Dassisti, M.; Olabi, A.-G. Advances in Stationary and Portable Fuel Cell Applications. Int. J. Hydrogen Energy 2016, 41, 16509–16522. [Google Scholar] [CrossRef]
- Barckholtz, T.A.; Taylor, K.M.; Narayanan, S.; Jolly, S.; Ghezel-Ayagh, H. Molten Carbonate Fuel Cells for Simultaneous CO2 Capture, Power Generation, and H2 Generation. Appl. Energy 2022, 313, 118553. [Google Scholar] [CrossRef]
- Zarabi Golkhatmi, S.; Asghar, M.I.; Lund, P.D. A Review on Solid Oxide Fuel Cell Durability: Latest Progress, Mechanisms, and Study Tools. Renew. Sustain. Energy Rev. 2022, 161, 112339. [Google Scholar] [CrossRef]
- Nabag, M.; Fardoun, A.; Hejase, H.; Al-Marzouqi, A. Review of Dynamic Electric Circuit Models for PEM Fuel Cells. In Proceedings of the ICREGA’14-Renewable Energy: Generation and Applications; Springer: Cham, Switzerland, 2014; pp. 59–71. [Google Scholar]
- Runtz, K.J.; Lyster, M.D. Fuel Cell Equivalent Circuit Models for Passive Mode Testing and Dynamic Mode Design. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Saskatoon, SK, Canada, 1–4 May 2005; pp. 794–797. [Google Scholar]
- Fardoun, A.A.; Hejase, H.A.N.; Al-Marzouqi, A.; Nabag, M. Electric Circuit Modeling of Fuel Cell System Including Compressor Effect and Current Ripples. Int. J. Hydrogen Energy 2017, 42, 1558–1564. [Google Scholar] [CrossRef]
- Dhirde, A.M.; Dale, N.V.; Salehfar, H.; Mann, M.D.; Han, T.-H. Equivalent Electric Circuit Modeling and Performance Analysis of a PEM Fuel Cell Stack Using Impedance Spectroscopy. IEEE Trans. Energy Convers. 2010, 25, 778–786. [Google Scholar] [CrossRef]
- Jarry, T.; Jaafar, A.; Turpin, C.; Lacressonniere, F.; Bru, E.; Rallieres, O.; Scohy, M. Impact of High Frequency Current Ripples on the Degradation of High-Temperature PEM Fuel Cells (HT-PEMFC). Int. J. Hydrogen Energy 2023, 48, 20734–20742. [Google Scholar] [CrossRef]
- Emmanuel, B.O.; Barendse, P.; Chamier, J. Effect of Anode and Cathode Reletive Humidity Variance and Pressure Gradient on Single Cell PEMFC Performance. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 3608–3615. [Google Scholar]
- Meng, K.; Zhou, H.; Chen, B.; Tu, Z. Dynamic Current Cycles Effect on the Degradation Characteristic of a H2/O2 Proton Exchange Membrane Fuel Cell. Energy 2021, 224, 120168. [Google Scholar] [CrossRef]
- Zhai, Y.; Bethune, K.; Bender, G.; Rocheleau, R. Analysis of the SO2 Contamination Effect on the Oxygen Reduction Reaction in PEMFCs by Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2012, 159, B524. [Google Scholar] [CrossRef]
- Van Der Linden, F.; Pahon, E.; Morando, S.; Bouquain, D. A Review on the Proton-Exchange Membrane Fuel Cell Break-in Physical Principles, Activation Procedures, and Characterization Methods. J. Power Sources 2023, 575, 233168. [Google Scholar] [CrossRef]
- Wolf, E. Large-Scale Hydrogen Energy Storage. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Elsevier: Amsterdam, The Netherlands, 2015; pp. 129–142. [Google Scholar]
- Andersson, J.; Grönkvist, S. Large-Scale Storage of Hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Nutakor, C.; Agwa, A.M.; Kamel, S. A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-up and Its Role in Future Energy Generation. Membranes 2022, 12, 173. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, W.; Xu, Z. Overview of Key Technologies and Applications of Hydrogen Energy Storage in Integrated Energy Systems. In Proceedings of the 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 20–23 September 2020; pp. 1–5. [Google Scholar]
- Dewangan, S.K.; Mohan, M.; Kumar, V.; Sharma, A.; Ahn, B. A Comprehensive Review of the Prospects for Future Hydrogen Storage in Materials-application and Outstanding Issues. Int. J. Energy Res. 2022, 46, 16150–16177. [Google Scholar] [CrossRef]
- Elberry, A.M.; Thakur, J.; Santasalo-Aarnio, A.; Larmi, M. Large-Scale Compressed Hydrogen Storage as Part of Renewable Electricity Storage Systems. Int. J. Hydrogen Energy 2021, 46, 15671–15690. [Google Scholar] [CrossRef]
- Tarkowski, R.; Uliasz-Misiak, B. Towards Underground Hydrogen Storage: A Review of Barriers. Renew. Sustain. Energy Rev. 2022, 162, 112451. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground Hydrogen Storage: Characteristics and Prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Takach, M.; Sarajlić, M.; Peters, D.; Kroener, M.; Schuldt, F.; von Maydell, K. Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns. Energies 2022, 15, 1415. [Google Scholar] [CrossRef]
- Usman, M.R. Hydrogen Storage Methods: Review and Current Status. Renew. Sustain. Energy Rev. 2022, 167, 112743. [Google Scholar] [CrossRef]
- Prabhukhot Prachi, R.; Wagh Mahesh, M.; Gangal Aneesh, C. A Review on Solid State Hydrogen Storage Material. Adv. Energy Power 2016, 4, 11–22. [Google Scholar] [CrossRef]
- Ratnakar, R.R.; Gupta, N.; Zhang, K.; van Doorne, C.; Fesmire, J.; Dindoruk, B.; Balakotaiah, V. Hydrogen Supply Chain and Challenges in Large-Scale LH2 Storage and Transportation. Int. J. Hydrogen Energy 2021, 46, 24149–24168. [Google Scholar] [CrossRef]
- Suarez, S.H.; Chabane, D.; N’Diaye, A.; Ait-Amirat, Y.; Djerdir, A. Static and Dynamic Characterization of Metal Hydride Tanks for Energy Management Applications. Renew. Energy 2022, 191, 59–70. [Google Scholar] [CrossRef]
- Paya, J.; Linder, M.; Laurien, E.; Corberan, J.M. Dynamic Model and Experimental Results of a Thermally Driven Metal Hydride Cooling System. Int. J. Hydrogen Energy 2009, 34, 3173–3184. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen Energy, Economy and Storage: Review and Recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, W.; Wang, W.; Li, X.; Zhou, H. Large Scale of Green Hydrogen Storage: Opportunities and Challenges. Int. J. Hydrogen Energy 2023, 50, 379–396. [Google Scholar] [CrossRef]
- Nguyen, T.; Abdin, Z.; Holm, T.; Mérida, W. Grid-Connected Hydrogen Production via Large-Scale Water Electrolysis. Energy Convers. Manag. 2019, 200, 112108. [Google Scholar] [CrossRef]
- Gahleitner, G. Hydrogen from Renewable Electricity: An International Review of Power-to-Gas Pilot Plants for Stationary Applications. Int. J. Hydrogen Energy 2013, 38, 2039–2061. [Google Scholar] [CrossRef]
- Schwarze, K.; Posdziech, O.; Mermelstein, J.; Kroop, S. Operational Results of an 150/30 KW RSOC System in an Industrial Environment. Fuel Cells 2019, 19, 374–380. [Google Scholar] [CrossRef]
- Borge-Diez, D.; Rosales-Asensio, E.; Açıkkalp, E.; Alonso-Martínez, D. Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union. Energies 2023, 16, 538. [Google Scholar] [CrossRef]
- Madi, H.; Lytvynenko, D.; Schildhauer, T.; Jansohn, P. Decarbonisation of Geographical Islands and the Feasibility of Green Hydrogen Production Using Excess Electricity. Energies 2023, 16, 4094. [Google Scholar] [CrossRef]
- Boulanger, V.; Descamps, O.; Rap, C. Hydrogen-Hydrogen Goes Green: Hydrogen, Imminent Launch; Jupiter 1000: The Gas and Electricity Worlds Learn to Communicate; NortH2, a Green Hydrogen Giga-Project. J. Energies Renouvelables 2020, 51, 30–39. [Google Scholar]
- Hydrogen Projects Database. Available online: https://www.iea.org/data-and-statistics/data-product/hydrogen-production-and-infrastructure-projects-database (accessed on 4 July 2023).
- Wulf, C.; Linßen, J.; Zapp, P. Review of Power-to-Gas Projects in Europe. Energy Procedia 2018, 155, 367–378. [Google Scholar] [CrossRef]
- Thema, M.; Bauer, F.; Sterner, M. Power-to-Gas: Electrolysis and Methanation Status Review. Renew. Sustain. Energy Rev. 2019, 112, 775–787. [Google Scholar] [CrossRef]
Electrolyzers | Alkaline | PEM | SOEL | |
---|---|---|---|---|
Characteristics | ||||
Anode reaction | ||||
Cathode reaction | ||||
Overall cell | ||||
Electrolyte | Aq. KOH/NaOH | Solid polymer electrolyte (PFSA) | Yttria stabilized zirconia (YSZ) | |
Separator | Asbestos/Zirfon/Ni | Nafion | Solid electrolyte YSZ | |
Electrode/Catalyst (hydrogen side) | Nickel coated perforated stainless steel | Iridium oxide | Ni/YSZ | |
Electrode/Catalyst (oxygen side) | Nickel coated perforated stainless steel | Platinum carbon | Perovskites (LSCF, LSM) (La, Sr, Co, FE) (La, Sr, Mn) | |
Gas diffusion layer | Nickel mesh | Titanium carbon cloth | Nickel mesh/foam | |
Bipolar plates | Stainless steel/Nickel-coated stainless steel | Platinum/Gold-coatedtitanium or titanium | Cobalt-coated stainless steel | |
Nominal current density (A/cm2) | 0.2–0.8 | 1–2 | 0.3–1 | |
Voltage range (limits) (V) | 1.4–3 | 1.4–2.5 | 1.0–1.5 | |
Operating temperature (°C) | 30–90 | 20–100 | 650–1000 | |
Cell pressure (bar) | 30 | 200 | 20 | |
Cell area (m2) | 4 | 0.13 | 0.06 | |
Production rate () | <1400 | <400 | <10 | |
purity (%) | 99.5–99.9998 | 99.9–99.9999 | ||
Efficiency (%) | 50–78 | 50–83 | 89 (laboratory) | |
Lifetime (stark) (Kh) | 60–120 | 60–100 | 8–20 | |
Energy consumption | ||||
Degradation (%/y) | 0.25–1.50 | 0.5–2.50 | 3–50 | |
Development status | Mature | Commercialized | R&D | |
Capital costs (stark) minimum 1 MW (USD) | 270/KW | 400/KW | 2000/KW | |
Capital costs (stark) minimum 10 MW (USD) | 500–1000/KW | 700–1400/KW | Unknown | |
Advantages |
|
|
| |
Disadvantages |
|
|
| |
Applications |
|
|
|
PEMFC | AFC | PAFC | DMFC | MCFC | SOFC | ||
---|---|---|---|---|---|---|---|
Anode reaction | |||||||
Cathode reaction | |||||||
Catalyst layer | Pt | Pt or Ni alloys | Pt | Pt/Ru | Ni or Ni-based alloys metals | Ni-YSZ composite/Strontium LSM | |
Electrolyte used | Solid polymer (Nafion) | KOH water solution/AEM 1 | Liquid phosphoric acid | Solid polymer membrane (Nafion) | Liquid alkali carbonate (Li2CO3/Na2CO3/K2CO3) | Solid YSZ | |
Fuel used | , other hydrocarbons | , other hydrocarbons | |||||
Operating temperature | 80 °C | 23–70 °C | 180 °C | ||||
Efficiency | C | ||||||
S | |||||||
Energy density (kWh/m3) | |||||||
Power density (KW/m3) | |||||||
Life span (h) | |||||||
Power range | (250 KW module typical) | (250 KW module typical) | |||||
Power cost (USD/KW)) | ~1800 | ||||||
Applications | Backup power, portable power, distributed generation, transportation | Submarines, military, space graft, backup power | Distributed generation | Electronic devices (laptops and phones) | Auxiliary power, electrical utility, large-scale distributed generation | Auxiliary power, electrical utility, large-scale distributed generation |
Name of the Project | Type of Electrolyzer | Country | Commissioning | Progress of the Project | Type of Renewable Source | ) | Project Cost | ||
---|---|---|---|---|---|---|---|---|---|
Power to Green H2 Mallorca Phase 1 | PEMEL | Spain | 2021 | OP | SE | 2.5 | 423.27 | 0.33 | _ |
Power to Green H2 Mallorca (GREEN HYSLAND) Phase 1 | Other type | Spain | 2022 | UC | SE | 7.5 | 1666.67 | 1.30 | EUR 50 M |
Leuchtturmprojekt Power-to-Ga BadenWürttemberg | PEMEL | Germany | 2020 | OP | Hydro | 1.3 | 250.00 | 0.19 | _ |
eFarm (5 production sites in Norwegian Freize) | PEMEL | Germany | 2020 | OP | WF (onshore) | 1.125 | 226.35 | 0.17 | EUR 16 M |
Wyhlen hydroelectric power plant | AEL | Germany | 2020 | OP | Hydro | 1 | 217.39 | 0.17 | _ |
Windgas Haurup, 2nd phase | PEMEL | Germany | 2021 | OP | WF (onshore) | 1 | 192.31 | 0.15 | _ |
Vårgårda Bostäder housing complex | AEL | Sweden | 2019 | OP | SE | 0.276 | 60.00 | 0.05 | _ |
Wind to gas Brunsbüttel | PEMEL | Germany | 2018 | OP | WF (onshore) | 2.4 | 450.00 | 0.35 | EUR 4.5 M |
HyBALLANCE | PEMEL | Denmark | 2018 | OP | WF (onshore) | 1.25 | 230.77 | 0.18 | EUR 15 M |
Wind gas Haurup, 1st phase | PEMEL | Germany | 2018 | OP | WF (onshore) | 0.225 | 43.27 | 0.03 | _ |
WindGas HamburgReitbrook | PEMEL | Germany | 2015 | OP | WF (onshore) | 1.5 | 288.46 | 0.22 | EUR 13.5 M |
RH2 Grapzow, Mecklenburg Vorpommern | AEL | Germany | 2015 | OP | WF (onshore) | 1 | 200.00 | 0.16 | _ |
Don Quichote | AEL | Belgium | 2015 | OP | WF (onshore) | 0.3 | 60.00 | 0.05 | |
H2BER (Berlin airport) | AEL | Germany | 2014 | OP | WF (onshore) | 0.5 | 100.00 | 0.08 | _ |
Uniper/E-ON WindGas Falkenhagen Hydrogen Pilot Project | AEL | Germany | 2013 | OP | WF (onshore) | 1 | 180.00 | 0.14 | _ |
H2Move, Fraunhofer ISE | PEMEL | Germany | 2013 | OP | Hydro | 0.04 | 7.79 | 0.01 | _ |
Energiepark Mainz | PEMEL | Germany | 2014 | OP | WF (onshore) | 6 | 1153.85 | 0.90 | _ |
REMOTE-Agkistro (Greece) | Other | Greece | 2021 | OP | HP | 0.025 | 5.56 | 0.00 | EUR 5.75 M |
Hyoffwind Zeebrugge, 1st phase | Other | Belgium | 2022 | UC | WF (onshore) | 1 | 222.22 | 0.17 | _ |
Hystock (EnergyStock) | PEMEL | Netherlands | 2019 | OP | Hydro | 1 | 220.00 | 0.17 | _ |
HAEOLUS | PEMEL | Norway | 2022 | OP | WF (onshore) | 2.5 | 500.00 | 0.39 | EUR 7.8 M |
H2RES—Orsted Wind farms (offshore) | AEL | Denmark | 2022 | UC | WF (offshore) | 2 | 434.78 | 0.34 | |
SALCOS—WindH2 | PEMEL | Germany | 2021 | OP | WF (onshore) | 2.5 | 450.00 | 0.35 | EUR 30 M |
PtG-Fehndorf | Other | Germany | 2021 | UC | WF (onshore) | 2 | 444.44 | 0.35 | _ |
Alliander Oosterwolde—solar park of GroenLeven | AEL | Netherlands | 2022 | OP | Hydro | 1.4 | 304.35 | 0.24 | _ |
HRS CNH2 Puertollano | AEL | Spain | 2015 | OP | Hydro | 0.06 | 13.04 | 0.01 | EUR 150 M |
Duwaal | PEMEL | Netherlands | 2021 | UC | WF (onshore) | 2 | 384.62 | 0.30 | EUR 11.8 M |
Hysolar Green on Road—Nieuwegein | Other | Netherlands | 2022 | UC | Hydro | 2 | 444.44 | 0.35 | _ |
H2 Green Steel (H2GS) | Other | Sweden | 2030 | UC | HP | 800 | 177,777.78 | 138.60 | EUR 1.5 B |
Steklarna Hrastnik glass manufactuing plant | Other | Slovenia | 2019 | OP | Hydro | 0.15 | 33.33 | 0.03 | EUR 34 M |
Hydrogen Mill | Other | Netherlands | 2022 | UC | WF (onshore) | 2 | 444.44 | 0.35 | _ |
SoHyCal | PEMEL | Spain | 2022 | UC | Hydro | 7.5 | 1442.31 | 1.12 | USD 3.6 M |
Sirea—Castres site | Other | France | 2021 | OP | Hydro | 0.43 | 95.56 | 0.07 | _ |
Lhyfe offshore electrolyser | Other | France | 2022 | UC | WF (onshore) | 2 | 444.44 | 0.35 | EUR 28 M |
Lighthouse Project PtG BadenWuerttemberg | AEL | Germany | 2020 | UC | HP | 1 | 217.39 | 0.17 | EUR 4.5 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngando Ebba, J.D.; Camara, M.B.; Doumbia, M.L.; Dakyo, B.; Song-Manguelle, J. Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art. Energies 2024, 17, 130. https://doi.org/10.3390/en17010130
Ngando Ebba JD, Camara MB, Doumbia ML, Dakyo B, Song-Manguelle J. Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art. Energies. 2024; 17(1):130. https://doi.org/10.3390/en17010130
Chicago/Turabian StyleNgando Ebba, Junior Diamant, Mamadou Baïlo Camara, Mamadou Lamine Doumbia, Brayima Dakyo, and Joseph Song-Manguelle. 2024. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art" Energies 17, no. 1: 130. https://doi.org/10.3390/en17010130
APA StyleNgando Ebba, J. D., Camara, M. B., Doumbia, M. L., Dakyo, B., & Song-Manguelle, J. (2024). Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art. Energies, 17(1), 130. https://doi.org/10.3390/en17010130