Comparative Study on Lithium Recovery with Ion-Selective Adsorbents and Extractants: Results of Multi-Stage Screening Test with the Use of Brine Simulated Solutions with Increasing Complexity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Commercially Available Extractants and Adsorbents
2.1.2. Chemicals for Synthesis
2.2. Sorbent Synthesis
2.2.1. Synthesis of Zirconium Phosphates and Mixed Zirconium and Titanium Phosphate
2.2.2. Synthesis of Zirconium Phosphonates and Mixed Zirconium and Titanium Phosphonate
2.2.3. Synthesis of Manganese Oxide-Based Adsorbents
2.2.4. Synthesis of Titanium Oxide-Based Adsorbents
2.2.5. Preparation of Silica Modified by Aminophosphonate Groups
2.3. Analytical Method
2.4. Screening Test Procedure
2.5. Lithium Recovery Tests (for Each Stage of Screening Test)
2.6. Determination of Maximum Lithium Capacity Values for Selected Cases
3. Results and Discussion
3.1. Effect of Brine Composition on Performance of Lithium Ion-Selective Materials—Results from Multi-Stage Screening Test
3.2. Recovery of Lithium from Pure Lithium Solution
3.3. Sodium Ion Effect
3.4. Calcium Ion Effect
3.5. Magnesium Ion Effect
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Zirconium Phosphate Sorbents | |||||
Sorbent Name | Synthesis Method | Zr Source | P Source | P:Zr Molar Ratio in the Reaction Mixture | Sorbent Characteristics |
ZrP1 | precipitation method; synthesis at room temperature | zirconium carbonate basic hydrate treated with 65 wt% nitric acid | 42.5 wt% phosphoric acid | 1:1 | white, amorphous |
ZrP2 | 2:1 | white, amorphous | |||
ZrP3 | 10:1 | white, crystalline Zr(HPO4)2∙H2O | |||
ZrP4 | 0.5:1 | white, amorphous | |||
ZrP5 | 2:1 | white, crystalline Zr(HPO4)2∙H2O | |||
ZrP6 | 2:1 | white, amorphous | |||
ZrTiP | 2:1 (P:(Zr + Ti)) | white, amorphous | |||
Zirconium phosphonate sorbents | |||||
Sorbent name | Synthesis method | Zr source | P source | P:Zr molar ratio in the reaction mixture | Sorbent characteristics |
Zr-ATMP1 | precipitation method; synthesis at room temperature | zirconium carbonate basic hydrate treated with 65 wt% nitric acid | 50 wt% aminotris(methylenephosphonic acid) | 100:1 | white, amorphous |
Zr-ATMP2 | 6.5:1 | white, amorphous | |||
Zr-ATMP3 | 12.5:1 | white, amorphous | |||
Zr-ATMP4 | 25:1 | white, amorphous | |||
Zr-ATMP5 | 50:1 | white, amorphous | |||
ZrTi-ATMP | 2.5:1 (P:(Zr + Ti)) | light beige, amorphous | |||
Manganese oxide-based sorbents | |||||
Sorbent name | Synthesis method | Mn source | Li source | Li:Mn molar ratio in the reaction mixture | Sorbent characteristics |
LIS10 | solid state reaction; at 400 °C for 4 h | manganese(II) acetate tetrahydrate | lithium carbonate | 2:1 | black, crystalline Li1.33Mn1.67O4 |
LIS11 | 1:1 | black, crystalline Li1.33Mn1.67O4 | |||
LIS12 | 0.5:1 | black, crystalline Li1.33Mn1.67O4 | |||
Titanium oxide-based sorbents | |||||
Sorbent name | Synthesis method | Ti source | Li source | Li:Ti molar ratio in the reaction mixture | Sorbent characteristics |
LIS1 | solid state reaction; at 500–700 °C for 4 h | titanium oxide anatase | lithium carbonate | 2.5:1 | white, crystalline Li2TiO3 |
LIS2 | titanium oxide rutile | 2.5:1 | white, crystalline Li2TiO3 | ||
LIS3 | titanium oxide anatase | 4.3:1 | white, crystalline Li2TiO3 | ||
LIS4 | titanium oxide anatase | 1.1:1 | white, crystalline Li2TiO3 | ||
LIS5 | titanium oxide anatase | 2.0:1 | white, crystalline Li2TiO3 |
Sample Name | RLi1 (RLi2 pH 9) | RLi2 (RLi2 pH 9) | RLi3 (RLi3 pH 9) | RLi4 (RLi4 pH 9) | RLi5 (RLi5 pH 9) | RLi6 (RLi6 pH 9) | RLi7 (RLi7 pH 9) | RLi8 (RLi8 pH 9) |
---|---|---|---|---|---|---|---|---|
Commercially available resins | ||||||||
MAC3 | 16.6% (68.8%) | 16.7% (94.6%) | 9.1% (16.7%) | X | X | X | X | X |
Lewatit MonoPlus SP112 | 80.8% | 72.2% | 37.5% | 9.1% (9.1%) | X | X | X | X |
Purolite CT169 | 94.3% | 88.1% | 41.2% | 9.1% (16.7%) | X | X | X | X |
Purolite C100 | 87.3% | 80.4% | 33.3% | 9.1% (9.1%) | X | X | X | X |
Lewatit TP260 | 93.3% | 91.5% | 64.3% | 33.3% | 23.1% (28.6%) | 9.1% (9.1%) | X | X |
Puromet MTS9500 | 94.7% | 91.7% | 71.4% | 33.3% | 33.3% | 9.1% (9.1%) | X | X |
HPR 1200H | 86.5% | 76.7% | 16.7% (16.7%) | X | X | X | X | X |
IRC 120H | 87.8% | 80.0% | 16.7% (16.7%) | X | X | X | X | X |
Commercially available organophosphate extractants | ||||||||
D2EHPA | 23.1% | 9.1% (23.1%) | X | X | X | X | X | X |
TBP | 9.1% (16.7%) | X | X | X | X | X | X | X |
TCP | 16.7% (23.1%) | X | X | X | X | X | X | X |
PhPO(OH)2 | 16.7% (28.6%) | 33.3% | 16.7% (16.7%) | X | X | X | X | X |
mono- D2EHPA | 9.1% (28.6%) | 33.3% | 9.1% (47.4%) | X | X | X | X | X |
CYPHOSIL 104 | 37.5% | 33.3% | 16.7% (16.7%) | X | X | X | X | X |
TOPO | 0%(16.7%) | X | X | X | X | X | X | X |
Other commercially available extractants | ||||||||
BTA | 23.1% | 9.1% (23.1%) | X | X | X | X | X | X |
Commercially available carbon-based adsorbents | ||||||||
Norit SX2 R | 16.7% (16.7%) | X | X | X | X | X | X | X |
RGO | 16.7% (16.7%) | X | X | X | X | X | X | X |
Commercially available mineral (including zeolites) adsorbents | ||||||||
Silica 60 Å | 9.1% (16.7%) | X | X | X | X | X | X | X |
γ-Al2O3 | 41.2% | 52.4% | 65.5% | 47.4% | 41.2% | 44.4% | 28.6% | 16.7% (44.4%) |
Halloysite | 28.6% | 16.7% (28.6%) | 16.7% (16.7%) | X | X | X | X | X |
Kaolinite | 9.1% (23.1%) | X | X | X | X | X | X | X |
SBA-15 | 33.3% | 28.6% | 16.7% (16.7%) | X | X | X | X | X |
Zr(OH)4 | 0% (9.1%) | X | X | X | X | X | X | X |
β-zeolite | 33.3% | 33.3% | 16.7% (16.7%) | X | X | X | X | X |
ZSM-5 | 28.6% | 16.7% (23.1%) | X | X | X | X | X | X |
Other commercially available adsorbents | ||||||||
CellPhos | 47.4% | 33.3% | 16.7% (16.7%) | X | X | X | X | X |
SiO2-Et/Bu-PO(OH)2 | 52.4% | 60.0% | 23.1% (33.3%) | 9.1% (16.7%) | X | X | X | X |
Manganese oxide-based adsorbents (prepared) | ||||||||
LIS10 | 37.5% | 16.7% (>99.7%) | 9.1% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) |
LIS11 | 33.3% | 16.7% (>99.7%) | 9.1% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (93.2%) |
LIS12 | 33.3% | 16.7% (>99.7%) | 33.3% | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (96.8%) |
Zirconium phosphate and phosphonate-based adsorbents (prepared) | ||||||||
ZrTiP | 28.6% | 23.1% (28.6%) | 16.7% (69.7%) | 33.3% | <9.1% (9.1%) | X | X | X |
ZrP1 | 33.3% | 9.1% (28.6%) | 9.1% (56.5%) | 16.7% (65.5%) | <9.1% (23.1%) | X | X | X |
ZrP2 | 33.3% | 23.1% (28.6%) | 16.7% (65.5%) | 16.7% (54.5%) | <9.1% (23.1%) | X | X | X |
ZrP3 | 37.5% | 28.6% | 16.7% (28.6%) | 16.7% (28.6%) | <9.1% (<9.1%) | X | X | X |
ZrP4 | 9.1% (16.7%) | X | X | X | X | X | X | X |
ZrP5 | 37.5% | 9.1% (88.4%) | 9.1% (52.4%) | 16.7% (28.6%) | 9.1% (33.3%) | <9.1% (16.7%) | X | X |
ZrP6 | 33.3% | 23.1% (28.6%) | 9.1% (78.3%) | 28.6% | <9.1% (23.1%) | X | X | X |
Zr-ATMP1 | 28.6% | 28.6% | 23.1% (16.7%) | X | X | X | X | X |
Zr-ATMP2 | 50.0% | 47.4% | 23.1% (16.7%) | X | X | X | X | X |
Zr-ATMP3 | 52.4% | 50.0% | 23.1% (33.3%) | 16.7% (<9.1%) | X | X | X | X |
Zr-ATMP4 | 52.4% | 50.0% | 23.1% (16.7%) | X | X | X | X | X |
Zr-ATMP5 | 54.5% | 50.0% | 28.6% | 16.7% (<9.1%) | X | X | X | X |
ZrTi-ATMP | 16.7% (16.7%) | X | X | X | X | X | X | X |
Titanium oxide-based adsorbents (prepared) | ||||||||
LIS1 | 16.7% (50.0%) | 9.1% (28.6%) | 9.1% (28.6%) | 9.1% (54.5%) | 9.1% (16.7%) | X | X | X |
LIS2 | 16.7% (33.3%) | 9.1% (16.7%) | X | X | X | X | X | X |
LIS3 | 23.1% (>99.7%) | 16.7% (>99.7%) | 9.1% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) |
LIS4 | 16.7% (>99.7%) | 33.3% | 9.1% (>99.7%) | 9.1% (>99.7%) | 9.1% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) | 16.7% (>99.7%) |
LIS5 | 28.6% | 9.1% (9.1%) | X | X | X | X | X | X |
Other adsorbents (prepared) | ||||||||
SiO2-APTES-CH2-PO(OH)2 | 47.4% | 33.3% | 28.6% | 16.7% (33.3%) | <9.1% (16.7%) | X | X | X |
Appendix B
References
- Greim, P.; Solomon, A.A.; Breyer, C. Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. Nat. Commun. 2020, 11, 4570. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M. The Great Lithium Boom. Statista. Available online: https://www.statista.com/chart/28037/lithium-carbonate-price-timeline/ (accessed on 22 February 2023).
- REPowerEU: Affordable, Secure and Sustainable Energy for Europe. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en (accessed on 25 March 2023).
- Securing Europe’s Supply of Critical Raw Materials. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/739394/EPRS_BRI(2023)739394_EN.pdf (accessed on 25 March 2023).
- Sun, X.; Ouyang, M.; Hao, H. Surging lithium price will not impede the electric vehicle boom. Joule 2022, 6, 1738–1742. [Google Scholar] [CrossRef]
- Williams, A. Powering Electric Cars: The Race to Mine Lithium in America’s Backyard. Financial Times. Available online: https://www.ft.com/content/dd6f2dd0-1dad-4747-8ca4-cb63b026a757 (accessed on 25 January 2023).
- Shine, I. The World Needs 2 Billion Electric Vehicles to Get to Net Zero. But Is There Enough Lithium to Make All These Batteries? World Economic Forum. Available online: https://www.weforum.org/agenda/2022/07/electric-vehicles-world-enough-lithium-resources/ (accessed on 12 February 2023).
- Szlugaj, J.; Radwanek-Bąk, B. Lithium sources and their current use. Min. Miner. Resour. Manag. 2022, 38, 61–88. [Google Scholar] [CrossRef]
- Jaskula, B. Mineral Commodity Summaries. Lithium. U.S. Geological Survey. Available online: https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-lithium.pdf (accessed on 20 February 2023).
- World Energy Outlook. The International Energy Agency. Available online: https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf (accessed on 21 February 2023).
- European Commission. Study on the EU’s List of Critical Raw Materials (2020). Available online: https://rmis.jrc.ec.europa.eu/uploads/CRM_2020_Report_Final.pdf (accessed on 21 February 2023).
- Vera, M.L.; Torres, W.R.; Galli, C.I.; Chagnes, A.; Flexer, V. Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 2023, 4, 149. [Google Scholar] [CrossRef]
- Kavanagh, L.; Keohane, J.; Garcia Cabellos, G.; Lloyd, A.; Cleary, J. Global lithium sources—Industrial use and future in the electric vehicle industry: A review. Resources 2018, 7, 57. [Google Scholar] [CrossRef]
- Domingues, N. Lithium prospection in Portugal for e-mobility and solar PV expansion. Commodities 2022, 1, 98–114. [Google Scholar] [CrossRef]
- Ini, L. In Search of the Source. PV Magazine. Available online: https://www.pv-magazine.com/magazine-archive/in-search-of-the-source/ (accessed on 21 February 2023).
- Webb, M. Cinovec Lithium Project Declared Strategic. Mining Weekly. Available online: https://www.miningweekly.com/article/cinovec-lithium-project-declared-strategic-2023-01-30 (accessed on 9 February 2023).
- Moore, D. Race for US Lithium Hinges on Fight over Mine in Nevada. Bloomberg Law. Available online: https://news.bloomberglaw.com/environment-and-energy/race-for-us-lithium-hinges-on-fight-over-mine-in-nevada (accessed on 20 February 2023).
- Toba, A.-L.; Nguyen, R.T.; Cole, C.; Neupane, G.; Paranthaman, M.P. U.S. lithium resources from geothermal and extraction feasibility. Resour. Conserv. Recycl. 2021, 169, 105514. [Google Scholar] [CrossRef]
- Ventura, S.; Bhamidi, S.; Hornbostel, M.; Anoop, N.; Perea, E. Selective Recovery of Lithium from Geothermal Brines; Publication Number: CEC500-2020-020; California Energy Commission: Sacramento, CA, USA, 2020. [Google Scholar]
- EuGeLi Project Extracting European Lithium for Future Electric Vehicle Batteries. Available online: https://eitrawmaterials.eu/eugeli-project-extracting-european-lithium-for-future-electric-vehicle-batteries/ (accessed on 20 February 2023).
- Richter, A. Successful Production of Battery-Grade Geothermal Lithium Carbonate, France. Think GeoEnergy. Available online: https://www.thinkgeoenergy.com/successful-production-of-battery-grade-geothermal-lithium-carbonate-france/ (accessed on 20 February 2023).
- Vikström, H.; Davidsson, S.; Höök, M. Lithium availability and future production outlooks. Appl. Energy 2013, 110, 252–266. [Google Scholar] [CrossRef]
- Grosjean, C.; Miranda, P.H.; Perrin, M.; Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain. Energy Rev. 2012, 16, 1735–1744. [Google Scholar] [CrossRef]
- Stringfellow, W.T.; Dobson, P.F. Technology for the recovery of lithium from geothermal brines. Energies 2021, 14, 6805. [Google Scholar] [CrossRef]
- Sanjuan, B.; Gourcerol, B.; Millot, R.; Rettenmaier, D.; Jeandel, E.; Rombaut, A. Lithium-rich geothermal brines in Europe: An up-date about geochemical characteristics and implications for potential Li resources. Geothermics 2022, 101, 102385. [Google Scholar] [CrossRef]
- Kumar, A.; Fukuda, H.; Hatton, T.A.; Lienhard, J.H. Lithium recovery from oil and gas produced water: A need for a growing energy industry. ACS Energy Lett. 2019, 4, 1471–1474. [Google Scholar] [CrossRef]
- Garrett, D.E. Handbook of Lithium and Natural Calcium Chloride: Their Deposits, Processing, Uses and Properties, 1st ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Flexer, V.; Baspineiro, C.F.; Galli, C.I. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 2018, 639, 1188–1204. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.V.; Ho, Y.-C.; Myo Thant, M.M.; Han, D.S.; Lim, J.W. Lithium in a sustainable circular economy: A comprehensive review. Processes 2023, 11, 418. [Google Scholar] [CrossRef]
- Alley, B.; Beebe, A.; Rodgers, J.; Castle, J.W. Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources. Chemosphere 2011, 85, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Safari, S.; Lottermoser, B.G.; Alessi, D.S. Metal oxide sorbents for the sustainable recovery of lithium from unconventional resources. Appl. Mater. Today 2020, 19, 100638. [Google Scholar] [CrossRef]
- Reich, R.; Slunitschek, K.; Danisi, R.M.; Eiche, E.; Kolb, J. Lithium extraction techniques and the application potential of different sorbents for lithium recovery from brines. Min. Miner. Process. Extr. Met. Metall. Rev. 2022, 1–20. [Google Scholar] [CrossRef]
- Yu, H.; Naidu, G.; Zhang, C.; Wang, C.; Razmjou, A.; Han, D.S.; He, T.; Shon, H. Metal-based adsorbents for lithium recovery from aqueous resources. Desalination 2022, 539, 115951. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Lee, M.S. A review on the separation of lithium ion from leach liquors of primary and secondary resources by solvent extraction with commercial extractants. Processes 2018, 6, 55. [Google Scholar] [CrossRef]
- Waengwan, P.; Eksangsri, T. Recovery of lithium from simulated secondary resources (LiCO3) through solvent extraction. Sustainability 2020, 12, 7179. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, Y.; Sun, S.; Yu, J. Adsorption of lithium ions on lithium-aluminum hydroxides: Equilibrium and kinetics. Can. J. Chem. Eng. 2020, 98, 544–555. [Google Scholar] [CrossRef]
- Paranthaman, M.P.; Li, L.; Luo, J.; Hoke, T.; Ucar, H.; Moyer, B.A.; Harrison, S. Recovery of lithium from geothermal brine with lithium–aluminum layered double hydroxide chloride sorbents. Environ. Sci. Technol. 2017, 51, 13481–13486. [Google Scholar] [CrossRef]
- Díez, E.; Redondo, C.; Gómez, J.M.; Miranda, R.; Rodríguez, A. Zeolite adsorbents for selective removal of Co(II) and Li(I) from aqueous solutions. Water 2023, 15, 270. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Fijałkowska, G.; Ostolska, I.; Franus, W.; Nosal-Wiercińska, A.; Tomaszewska, B.; Goscianska, J.; Wójcik, G. Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly(acrylic acid). J. Clean. Prod. 2018, 195, 821–830. [Google Scholar] [CrossRef]
- Sun, D.; Zhu, Y.; Meng, M.; Qiao, Y.; Yan, Y.; Li, C. Fabrication of highly selective ion imprinted macroporous membranes with crown ether for targeted separation of lithium ion. Sep. Purif. Technol. 2017, 175, 19–26. [Google Scholar] [CrossRef]
- Ding, T.; Wu, Q.; Nie, Z.; Zheng, M.; Wang, Y.; Yang, D. Selective recovery of lithium resources in salt lakes by polyacrylonitrile/ion-imprinted polymer: Synthesis, testing, and computation. Polym. Test. 2022, 113, 107647. [Google Scholar] [CrossRef]
- Baudino, L.; Santos, C.; Pirri, C.F.; La Mantia, F.; Lamberti, A. Recent advances in the lithium recovery from water resources: From passive to electrochemical methods. Adv. Sci. 2022, 9, 2201380. [Google Scholar] [CrossRef] [PubMed]
- CompLithium. Complex Technology for Lithium and Potable Water Recovery from Produced Waters. Available online: https://complithium.agh.edu.pl/?page_id=52 (accessed on 24 February 2023).
- Arroyo, F.; Morillo, J.; Usero, J.; Rosado, D.; El Bakouri, H. Lithium recovery from desalination brines using specific ion-exchange resins. Desalination 2019, 468, 114073. [Google Scholar] [CrossRef]
- Fukuda, H. Lithium Extraction from Brine with Ion Exchange Resin and Ferric Phosphate. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2019. [Google Scholar] [CrossRef]
- Li, L.; Deshmane, V.G.; Paranthaman, M.P.; Bhave, R.R.; Moyer, B.A.; Harrison, S. Lithium recovery from aqueous resources and batteries: A brief review. Johns. Matthey Technol. Rev. 2018, 62, 161–176. [Google Scholar] [CrossRef]
- Chaban, M.A.; Rozhdestvenskaya, L.M.; Palchik, A.V.; Belyakov, V.N. Selectivity of new inorganic ion–exchangers based on oxides of titanium and manganese at sorption of lithium from aqueous media. J. Water Chem. Technol. 2016, 38, 8–13. [Google Scholar] [CrossRef]
- Xiao, J.; Nie, X.; Sun, S.; Song, X.; Li, P.; Yu, J. Lithium ion adsorption–desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model. Adv. Powder Technol. 2015, 26, 589–594. [Google Scholar] [CrossRef]
- Lee, Y.; Cha, J.-H.; Jung, D.-Y. Lithium separation by growth of lithium aluminum layered double hydroxides on aluminum metal substrates. Solid. State Sci. 2020, 110, 106488. [Google Scholar] [CrossRef]
- Lee, Y.; Jung, D.-Y. Lithium intercalation and deintercalation of thermally decomposed LiAl2-layered double hydroxides. Appl. Clay Sci. 2022, 228, 106631. [Google Scholar] [CrossRef]
- Belova, T.P.; Ratchina, T.I.; Ershova, L.S. Lithium recovery from separate of Pauzhetskaya geothermal station by sorbents on the basis of modified silicates and aluminosilicates of the deposits of Kamchatka krai. IOP Conf. Ser. Earth Environ. Sci. 2019, 249, 12032. [Google Scholar] [CrossRef]
- Zhang, C.-C.; Zhang, F.-S.; Zhu, N.; Yue, X.-H. A carbothermic hybrid synthesized using waste halogenated plastic in sub/supercritical CO2 and its application for lithium recovery. Environ. Res. 2023, 216, 114777. [Google Scholar] [CrossRef]
- Borgo, C.A.; Lazarin, A.M.; Kholin, Y.V.; Landers, R.; Gushikem, Y. The ion exchange properties and equilibrium constants of Li+, Na+ and K+ on zirconium phosphate highly dispersed on a cellulose acetate fibers surface. J. Braz. Chem. Soc. 2004, 15, 50–57. [Google Scholar] [CrossRef]
- Luo, J.; Ye, S.; Li, T.; Sarnello, E.; Li, H.; Liu, T. Distinctive trend of metal binding affinity via hydration shell breakage in nanoconfined cavity. J. Phys. Chem. C 2019, 123, 14825–14833. [Google Scholar] [CrossRef]
- Housecroft, C.E.; Jenkins, H.D.B. Absolute ion hydration enthalpies and the role of volume within hydration thermodynamics. RSC Adv. 2017, 7, 27881. [Google Scholar] [CrossRef]
- Petersková, M.; Valderrama, C.; Gibert, O.; Cortina, J.L. Extraction of valuable metal ions (Cs, Rb, Li, U) from reverse osmosis concentrate using selective sorbents. Desalination 2012, 286, 316–323. [Google Scholar] [CrossRef]
- Repsher, W.J.; Rapstein, K.T. Recovery of Lithium from Brine. U.S. Patent No. 4291001, 22 September 1981. [Google Scholar]
- Lee, J.M.; Bauman, W.C. Lithium Halide Brine Purification. U.S. Patent No. 4376100, 8 March 1983. [Google Scholar]
- Wang, Y.; Liu, H.; Fan, J.; Liu, X.; Hu, Y.; Hu, Y.; Zhou, Z.; Ren, Z. Recovery of lithium ions from salt lake brine with a high magnesium/lithium ratio using heteropolyacid ionic liquid. ACS Sustain. Chem. Eng. 2019, 7, 3062–3072. [Google Scholar] [CrossRef]
- Shi, C.; Duan, D.; Jia, Y.; Jing, Y. A highly efficient solvent system containing ionic liquid in tributyl phosphate for lithium ion extraction. J. Mol. Liq. 2014, 200, 191–195. [Google Scholar] [CrossRef]
- Borgo, C.A.; Gushikem, Y. Zirconium phosphate dispersed on a cellulose fiber surface: Preparation, characterization, and selective adsorption of Li+, Na+, and K+ from aqueous solution. J. Colloid. Interface Sci. 2002, 246, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, B.K.; Asif, M.B.; Roychand, R.; Shu, L.; Jegatheesan, V.; Bhuiyan, M.; Hai, F.I. Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration. Chemosphere 2020, 260, 127623. [Google Scholar] [CrossRef]
- Horwitz, E.P.; Alexandratos, D.S.; Gatrone, R.C.; Chiarizia, R. Phosphonic Acid Based ion Exchange Resins. U.S. Patent No. US5281631A, 25 January 1994. [Google Scholar]
- Zante, G.; Trébouet, D.; Boltoeva, M. Solvent extraction of lithium from simulated shale gas produced water with a bifunctional ionic liquid. Appl. Geochem. 2020, 123, 104783. [Google Scholar] [CrossRef]
- Hano, T.; Matsumoto, M.; Ohtake, T.; Egashir, N.; Hori, F. Recovery of lithium from geothermal water by solvent extraction technique. Solvent Extr. Ion. Exch. 1992, 10, 195–206. [Google Scholar] [CrossRef]
- Nishihama, S.; Onishi, K.; Yoshizuka, K. Selective recovery process of lithium from seawater using integrated ion exchange methods. Solvent Extr. Ion. Exch. 2011, 29, 421–431. [Google Scholar] [CrossRef]
- Miyai, Y.; Ooi, K.; Katoh, S. Recovery of lithium from seawater using a new type of ion-sieve adsorbent based on MgMn2O4. Sep. Sci. Technol. 1988, 23, 179–191. [Google Scholar] [CrossRef]
- An, J.W.; Kang, D.J.; Tran, K.T.; Kim, M.J.; Lim, T.; Tran, T. Recovery of lithium from Uyuni salar brine. Hydrometallurgy 2012, 117–118, 64–70. [Google Scholar] [CrossRef]
- Tran, K.T.; Van Luong, T.; An, J.-W.; Kang, D.-J.; Kim, M.-J.; Tran, T. Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate. Hydrometallurgy 2013, 138, 93–99. [Google Scholar] [CrossRef]
- Xu, P.; Hong, J.; Qian, X.; Xu, Z.; Xia, H.; Tao, X.; Xu, Z.; Ni, Q.-Q. Materials for lithium recovery from salt lake brine. J. Mater. Sci. 2021, 56, 16–63. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Wang, Y.; Yun, R.; Xiang, X. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep. Purif. Technol. 2021, 256, 117807. [Google Scholar] [CrossRef]
- Mceachern, P.M.; Wong, N.; Andric, M. Method and Apparatus for the Treatment of Water with the Recovery of Metals. U.S. Patent Appl. No. 16/624744, 24 September 2020. [Google Scholar]
Stage Number | Li+ [mg/kg] | Na+ [wt%] | Ca2+ [wt%] | Mg2+ [mg/kg] |
---|---|---|---|---|
1 | 300 | 0 | 0 | 0 |
2 | 300 | 0.10 | 0 | 0 |
3 | 297 | 1.00 | 0 | 0 |
4 | 240 | 7.86 | 0 | 0 |
5 | 240 | 7.86 | 0.1 | 0 |
6 | 220 | 7.21 | 3.0 | 0 |
7 | 220 | 7.21 | 3.0 | 300 |
8 | 220 | 7.21 | 3.0 | 1000 |
Sample Name | Kd1 (Kd1 pH 9) | Kd2 (Kd2 pH 9) | Kd3 (Kd3 pH 9) | Kd4 (Kd4 pH 9) | Kd5 (Kd5 pH 9) | Kd6 (Kd6 pH 9) | Kd7 (Kd7 pH 9) | Kd8 (Kd8 pH 9) |
---|---|---|---|---|---|---|---|---|
Commercially available resins | ||||||||
MAC3 | 2 (22) | 2 (176) | 1 (2) | X | X | X | X | X |
Lewatit MonoPlus SP112 | 42 | 26 | 6 | 1 (1) | X | X | X | X |
Purolite CT169 | 165 | 74 | 7 | 1 (2) | X | X | X | X |
Purolite C100 | 69 | 41 | 5 | 1 (1) | X | X | X | X |
Lewatit TP260 | 155 | 108 | 18 | 5 | 3 (4) | 1 (1) | X | X |
Puromet MTS9500 | 180 | 111 | 25 | 5 | 5 | 1 (1) | X | X |
HPR 1200H | 64 | 33 | 2 (2) | X | X | X | X | X |
IRC 120H | 72 | 40 | 2 (2) | X | X | X | X | X |
Commercially available organophosphate extractants | ||||||||
D2EHPA | 3 | 1 (3) | X | X | X | X | X | X |
TBP | 1 (2) | X | X | X | X | X | X | X |
TCP | 2 (3) | X | X | X | X | X | X | X |
PhPO(OH)2 | 2 (4) | 5 | 2 (2) | X | X | X | X | X |
mono- D2EHPA | 1 (4) | 5 | 1 (9) | X | X | X | X | X |
CYPHOSIL 104 | 6 | 5 | 2 (2) | X | X | X | X | X |
TOPO | 0 (2) | X | X | X | X | X | X | X |
Other commercially available extractants | ||||||||
BTA | 3 | 1 (3) | X | X | X | X | X | X |
Commercially available Carbon-based adsorbents | ||||||||
Norit SX2 R | 2 (2) | X | X | X | X | X | X | X |
RGO | 2 (2) | X | X | X | X | X | X | X |
Commercially available mineral (including zeolites) adsorbents | ||||||||
Silica 60 Å | 1 (2) | X | X | X | X | X | X | X |
γ-Al2O3 | 7 | 11 | 19 | 9 | 7 | 8 | 4 | 2 (8) |
Halloysite | 4 | 2 (4) | 2 (2) | X | X | X | X | X |
Kaolinite | 1 (3) | X | X | X | X | X | X | X |
SBA-15 | 5 | 4 | 2 (2) | X | X | X | X | X |
Zr(OH)4 | 0 (1) | X | X | X | X | X | X | X |
β-zeolite | 5 | 5 | 2 (2) | X | X | X | X | X |
ZSM-5 | 4 | 2 (3) | X | X | X | X | X | X |
Other commercially available adsorbents | ||||||||
CellPhos | 9 | 5 | 2 (2) | X | X | X | X | X |
SiO2-Et/Bu-PO(OH)2 | 11 | 15 | 3 (5) | 1 (2) | X | X | X | X |
Manganese oxide-based adsorbents (prepared) | ||||||||
LIS10 | 6 | 2 (>3000) | 1 (>3000) | 2 (>3000) | 2 (>3000) | 2 (>3000) | 2 (>3000) | 2 (>3000) |
LIS11 | 5 | 2 (>3000) | 1 (>3000) | 2 (>3000) | 2 (>3000) | 2 (>3000) | 2 (>3000) | 2 (136) |
LIS12 | 5 | 2 (>3000) | 5 | 2 (>3000) | 2 (>3000) | 2 (>3000) | 2 (>3000) | 2 (300) |
Zirconium phosphate and phosphonate-based adsorbents (prepared) | ||||||||
ZrTiP | 4 | 3 (4) | 2 (23) | 5 | <1 (1) | X | X | X |
ZrP1 | 5 | 1 (4) | 1 (13) | 2 (19) | <1 (3) | X | X | X |
ZrP2 | 5 | 3 (4) | 2 (19) | 2 (12) | <1 (3) | X | X | X |
ZrP3 | 6 | 4 | 2 (4) | 2 (4) | <1 (<1) | X | X | X |
ZrP4 | 1 (2) | X | X | X | X | X | X | X |
ZrP5 | 6 | 1 (76) | 1 (11) | 2 (4) | 1 (5) | <1 (2) | X | X |
ZrP6 | 5 | 3 (4) | 1 (36) | 4 | <1 (3) | X | X | X |
Zr-ATMP1 | 4 | 4 | 3 (2) | X | X | X | X | X |
Zr-ATMP2 | 10 | 9 | 3 (2) | X | X | X | X | X |
Zr-ATMP3 | 11 | 10 | 3 (5) | 2 (<1) | X | X | X | X |
Zr-ATMP4 | 11 | 10 | 3 (2) | X | X | X | X | X |
Zr-ATMP5 | 12 | 10 | 4 | 2 (<1) | X | X | X | X |
ZrTi-ATMP | 2 (2) | X | X | X | X | X | X | X |
Titanium oxide-based adsorbents (prepared) | ||||||||
LIS1 | 2 (10) | 1 (4) | 1 (4) | 1 (12) | 1 (2) | X | X | X |
LIS2 | 2 (5) | 1 (2) | X | X | X | X | X | X |
LIS3 | 3 (>3000) | 2 (>3000) | <1 (>3000) | 2 (>3000) | 2 (>3000) | 2 (>3000) | 2 (>3000) | 2 (>3000) |
LIS4 | 2 (>3000) | 5 | 1 (>3000) | 1 (>3000) | 1 (>3000) | 2 (>3000) | 2 (>3000) | 2 (>3000) |
LIS5 | 4 | 1 (1) | X | X | X | X | X | X |
Other adsorbents (prepared) | ||||||||
SiO2-APTES-CH2-PO(OH)2 | 9 | 5 | 4 | 2 (5) | <1 (2) | X | X | X |
Sample Name | qe [mg/g] | ||||
---|---|---|---|---|---|
Stage 4 pH 9 | Stage 5 pH 9 | Stage 6 pH 9 | Stage 7 pH 9 | Stage 8 pH 9 | |
γ-Al2O3 | 1.8 | 1.1 | 0.9 | 0.7 | 0.5 |
LIS10 | 17.0 | 16.6 | 16.2 | 16.0 | 15.5 |
LIS11 | 6.8 | 6.1 | 6.1 | 6.1 | 6.0 |
LIS12 | 5.2 | 4.3 | 4.3 | 3.7 | 3.4 |
LIS3 | 6.0 | 6.1 | 7.7 | 7.7 | 8.1 |
LIS4 | 6.1 | 6.0 | 4.9 | 3.5 | 2.6 |
Sample Name | βLi/Mg | |
---|---|---|
Stage 7 pH 9 | Stage 8 pH 9 | |
γ-Al2O3 | <0.05 | <0.05 |
LIS10 | >150 | >150 |
LIS11 | >150 | 3.1 |
LIS12 | >150 | 0.6 |
LIS3 | >150 | >150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knapik, E.; Rotko, G.; Marszałek, M.; Piotrowski, M. Comparative Study on Lithium Recovery with Ion-Selective Adsorbents and Extractants: Results of Multi-Stage Screening Test with the Use of Brine Simulated Solutions with Increasing Complexity. Energies 2023, 16, 3149. https://doi.org/10.3390/en16073149
Knapik E, Rotko G, Marszałek M, Piotrowski M. Comparative Study on Lithium Recovery with Ion-Selective Adsorbents and Extractants: Results of Multi-Stage Screening Test with the Use of Brine Simulated Solutions with Increasing Complexity. Energies. 2023; 16(7):3149. https://doi.org/10.3390/en16073149
Chicago/Turabian StyleKnapik, Ewa, Grzegorz Rotko, Marta Marszałek, and Marcin Piotrowski. 2023. "Comparative Study on Lithium Recovery with Ion-Selective Adsorbents and Extractants: Results of Multi-Stage Screening Test with the Use of Brine Simulated Solutions with Increasing Complexity" Energies 16, no. 7: 3149. https://doi.org/10.3390/en16073149
APA StyleKnapik, E., Rotko, G., Marszałek, M., & Piotrowski, M. (2023). Comparative Study on Lithium Recovery with Ion-Selective Adsorbents and Extractants: Results of Multi-Stage Screening Test with the Use of Brine Simulated Solutions with Increasing Complexity. Energies, 16(7), 3149. https://doi.org/10.3390/en16073149