Rapid and Effective Technology Development for 3D-Model-Based Solar Access Analysis and Comparative Study with Fish-Eye Camera
Abstract
1. Introduction
2. Methods
2.1. Study Area
2.2. 3D Modeling through Drone Image Analysis
2.3. Basic Principle of Solar Access Considering Viewshed and Sun Path
2.4. Development of 3D-Model-Based Solar Access Analysis Algorithm
2.5. Image Analysis Using Fish-Eye Camera and OpenCV
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Liu, X.; Zhang, S.; Bae, J. The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. J. Clean. Prod. 2017, 164, 1239–1247. [Google Scholar] [CrossRef]
- Bansal, N.; Srivastava, V.K.; Kheraluwala, J. Renewable energy in India: Policies to reduce greenhouse gas emissions. Greenh. Gas Emiss. Chall. Technol. Solut. 2019, 161–178. [Google Scholar] [CrossRef]
- Imran, A.; Jiang, J.; Eric, D.; Zahid, M.N.; Yousaf, M.; Ahmad, M.; Hassan, S.A. Efficiency enhancement through flat intermediate band in Quantum dot solar cell. Results Phys. 2018, 10, 241–247. [Google Scholar] [CrossRef]
- Naito, S.; Yoshida, K.; Miyashita, N.; Tamaki, R.; Hoshii, T.; Okada, Y. Effect of Si doping and sunlight concentration on the performance of InAs/GaAs quantum dot solar cells. J. Photonics Energy 2017, 7, 025505. [Google Scholar] [CrossRef]
- Weng, H.L.; Ueng, H.Y.; Lee, C.P. Efficiency of quantum dot solar cell enhanced by improving quantum dots performance. Phys. Status Solidi A 2015, 212, 369–375. [Google Scholar] [CrossRef]
- Lee, M.; Kim, H.; Paik, J. Correction of barrel distortion in fisheye lens images using image-based estimation of distortion parameters. IEEE Access 2019, 7, 45723–45733. [Google Scholar] [CrossRef]
- Mostafa, K.; Hegazy, T. Review of image-based analysis and applications in construction. Autom. Constr. 2021, 122, 103516. [Google Scholar] [CrossRef]
- Van Esch, M.M.E.; Looman, R.H.J.; de Bruin-Hordijk, G.J. The effects of urban and building design parameters on solar access to the urban canyon and the potential for direct passive solar heating strategies. Energy Build. 2012, 47, 189–200. [Google Scholar] [CrossRef]
- Baek, J.; Choi, Y. Comparative Study on Shading Database Construction for Urban Roads Using 3D Models and Fisheye Images for Efficient Operation of Solar-Powered Electric Vehicles. Energies 2022, 15, 8228. [Google Scholar] [CrossRef]
- Goswami, A.; Sadhu, P.; Goswami, U.; Sadhu, P.K. Floating solar power plant for sustainable development: A techno-economic analysis. Environ. Prog. Sustain. Energy 2019, 38, e13268. [Google Scholar] [CrossRef]
- Saiprakash, C.; Mohapatra, A.; Nayak, B.; Ghatak, S.R. Analysis of partial shading effect on energy output of different solar PV array configurations. Mater. Today Proc. 2021, 39, 1905–1909. [Google Scholar] [CrossRef]
- Bellia, L.; Marino, C.; Minichiello, F.; Pedace, A. An overview on solar shading systems for buildings. Energy Procedia 2014, 62, 309–317. [Google Scholar] [CrossRef]
- Oh, M.; Kim, S.M.; Park, H.D. Estimation of photovoltaic potential of solar bus in an urban area: Case study in Gwanak, Seoul, Korea. Renew. Energy 2020, 160, 1335–1348. [Google Scholar] [CrossRef]
- Tahri, M.; Hakdaoui, M.; Maanan, M. The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco. Renew. Sustain. Energy Rev. 2015, 51, 1354–1362. [Google Scholar] [CrossRef]
- Nicoletti, F.; Cucumo, M.A.; Arcuri, N. Building-integrated photovoltaics (BIPV): A mathematical approach to evaluate the electrical production of solar PV blinds. Energy 2023, 263, 126030. [Google Scholar] [CrossRef]
- Mao, W.Q. Study on the construction and application of 3D geographic information services for the smart city. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 41–44. [Google Scholar] [CrossRef]
- El-Hallaq, M.A.; Alastal, A.I.; Salha, R.A. Enhancing sustainable development through web based 3D smart city model using GIS and BIM. Case study: Sheikh hamad city. J. Geogr. Inf. Syst. 2019, 11, 321. [Google Scholar] [CrossRef]
- Kim, H.; Ku, J.; Kim, S.M.; Park, H.D. A new GIS-based algorithm to estimate photovoltaic potential of solar train: Case study in Gyeongbu line, Korea. Renew. Energy 2022, 190, 713–729. [Google Scholar] [CrossRef]
- Soergel, U.; Michaelsen, E.; Thiele, A.; Cadario, E.; Thoennessen, U. Stereo analysis of high-resolution SAR images for building height estimation in cases of orthogonal aspect directions. ISPRS J. Photogramm. Remote Sens. 2009, 64, 490–500. [Google Scholar] [CrossRef]
- Cheng, M.L.; Matsuoka, M. Extracting three-dimensional (3D) spatial information from sequential oblique unmanned aerial system (UAS) imagery for digital surface modeling. Int. J. Remote Sens. 2021, 42, 1643–1663. [Google Scholar] [CrossRef]
- Ong, R.H.; King, A.J.; Caley, M.J.; Mullins, B.J. Prediction of solar irradiance using ray-tracing techniques for coral macro-and micro-habitats. Mar. Environ. Res. 2018, 141, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Nan, L. Easy3D: A lightweight, easy-to-use, and efficient C++ library for processing and rendering 3D data. J. Open Source Softw. 2021, 6, 3255. [Google Scholar] [CrossRef]
- Stein, J.S.; Holmgren, W.F.; Forbess, J.; Hansen, C.W. PVLIB: Open source photovoltaic performance modeling functions for Matlab and Python. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 3425–3430. [Google Scholar]
- Holmgren, W.F.; Hansen, C.W.; Mikofski, M.A. Pvlib python: A python package for modeling solar energy systems. J. Open Source Softw. 2018, 3, 884. [Google Scholar] [CrossRef]
- Decherchi, S.; Rocchia, W. A general and robust ray-casting-based algorithm for triangulating surfaces at the nanoscale. PLoS ONE 2013, 8, e59744. [Google Scholar] [CrossRef] [PubMed]
- Open3D, Raycasting. 2021. Available online: http://www.open3d.org/docs/latest/tutorial/geometry/ray_casting.html (accessed on 15 January 2022).
- Singh, H.; Singh, H. Advanced image processing using opencv. In Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python; Springer: Berlin/Heidelberg, Germany, 2019; pp. 63–88. [Google Scholar]
- Zghaibeh, M.; Okonkwo, P.C.; Belgacem, I.B.; Beitelmal, W.H.; Mansir, I.B. Analytical model for a techno-economic assessment of green hydrogen production in photovoltaic power station case study Salalah city-Oman. Int. J. Hydrogen Energy 2022, 47, 14171–14179. [Google Scholar] [CrossRef]
- Renaudineau, H.; Llor, A.M.; Cortés, R.; Rojas, C.A.; Restrepo, C.; Kouro, S. Photovoltaic Green Hydrogen Challenges and Opportunities: A Power Electronics Perspective. IEEE Ind. Electron. Mag. 2021, 16, 31–41. [Google Scholar] [CrossRef]
- Mazzeo, D.; Herdem, M.S.; Matera, N.; Wen, J.Z. Green hydrogen production: Analysis for different single or combined large-scale photovoltaic and wind renewable systems. Renew. Energy 2022, 200, 360–378. [Google Scholar] [CrossRef]
Area | Point | Image Analysis Results | 3D Analysis Results | Deviation | ||
---|---|---|---|---|---|---|
Solar Access (%) | Average (%) | Solar Access (%) | Average (%) | |||
A | A1 | 88.3 | 71.6 | 89.5 | 76.5 | 1.2 |
A2 | 67.0 | 89.2 | 22.2 | |||
A3 | 79.2 | 82.8 | 3.6 | |||
A4 | 87.5 | 92.3 | 4.8 | |||
A5 | 55.6 | 64.6 | 9 | |||
A6 | 72.0 | 77.0 | 5 | |||
A7 | 65.1 | 67.0 | 1.9 | |||
A8 | 93.8 | 94.2 | 0.4 | |||
A9 | 73.1 | 75.1 | 2 | |||
A10 | 65.2 | 68.4 | 3.2 | |||
A11 | 32.2 | 34.2 | 2 | |||
A12 | 80.9 | 83.7 | 2.8 | |||
B | B1 | 93.2 | 69.6 | 95.0 | 71.1 | 1.8 |
B2 | 70.3 | 72.2 | 1.9 | |||
B3 | 49.8 | 51.2 | 1.4 | |||
B4 | 51.2 | 51.9 | 0.7 | |||
B5 | 83.8 | 85.3 | 1.5 | |||
C | C1 | 70.5 | 77.1 | 81.7 | 79.9 | 11.2 |
C2 | 68.7 | 69.6 | 0.9 | |||
C3 | 86.5 | 87.2 | 0.7 | |||
C4 | 79.1 | 79.4 | 0.3 | |||
C5 | 55.3 | 57.7 | 2.4 | |||
C6 | 88.2 | 89.6 | 1.4 | |||
C7 | 93.4 | 96.0 | 2.6 | |||
C8 | 63.2 | 68.6 | 5.4 | |||
C9 | 89.5 | 90.0 | 0.5 | |||
D | D1 | 76.3 | 67.6 | 78.6 | 69.0 | 2.3 |
D2 | 73.8 | 75.3 | 1.5 | |||
D3 | 72.2 | 72.9 | 0.7 | |||
D4 | 48.3 | 49.2 | 0.9 | |||
Average | 72.4 | 75.6 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-H.; Lee, W.-H.; Choi, Y.; Suh, J.; Kim, S.-M. Rapid and Effective Technology Development for 3D-Model-Based Solar Access Analysis and Comparative Study with Fish-Eye Camera. Energies 2023, 16, 3135. https://doi.org/10.3390/en16073135
Lee C-H, Lee W-H, Choi Y, Suh J, Kim S-M. Rapid and Effective Technology Development for 3D-Model-Based Solar Access Analysis and Comparative Study with Fish-Eye Camera. Energies. 2023; 16(7):3135. https://doi.org/10.3390/en16073135
Chicago/Turabian StyleLee, Chung-Hyun, Woo-Hyuk Lee, Yosoon Choi, Jangwon Suh, and Sung-Min Kim. 2023. "Rapid and Effective Technology Development for 3D-Model-Based Solar Access Analysis and Comparative Study with Fish-Eye Camera" Energies 16, no. 7: 3135. https://doi.org/10.3390/en16073135
APA StyleLee, C.-H., Lee, W.-H., Choi, Y., Suh, J., & Kim, S.-M. (2023). Rapid and Effective Technology Development for 3D-Model-Based Solar Access Analysis and Comparative Study with Fish-Eye Camera. Energies, 16(7), 3135. https://doi.org/10.3390/en16073135