Tritium Extraction from Lithium–Lead Eutectic Alloy: Experimental Characterization of a Permeator against Vacuum Mock-Up at 450 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Facility and Test Section Description
2.2. Commissioning
2.3. Experimental Procedure
- Partial pressure measurement with HPSs at the inlet and the outlet of PAV mock-up;
- Permeated flux with the LD;
- Pressure increase in the PAV mock-up vessel.
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Del Nevo, A.; Arena, P.; Caruso, G.; Chiovaro, P.; Di Maio, P.; Eboli, M.; Edemetti, F.; Forgione, N.; Forte, R.; Froio, A.; et al. Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project. Fusion Eng. Des. 2019, 146, 1805–1809. [Google Scholar] [CrossRef] [Green Version]
- Demange, D.; Antunes, R.; Borisevich, O.; Frances, L.; Rapisarda, D.; Santucci, A.; Utili, M. Tritium extraction technologies and DEMO requirements. Fusion Eng. Des. 2016, 109–111, 912–916. [Google Scholar] [CrossRef]
- Sherman, R.; Birnbaum, H.K. Hydrogen permeation and diffusion in niobium. Met. Mater. Trans. A 1983, 14, 203–210. [Google Scholar] [CrossRef]
- Yamawaki, M.; Namba, T.; Kiyoshi, T.; Kanno, M. Surface effects on hydrogen permeation through niobium. J. Nucl. Mater. 1984, 123, 1573–1578. [Google Scholar] [CrossRef]
- D’Auria, V.; Dulla, S.; Ravetto, P.; Savoldi, L.; Utili, M.; Zanino, R. Design of a Permeator-Against-Vacuum mock-Up for the tritium extraction from PbLi at low speed. Fusion Eng. Des. 2017, 121, 198–203. [Google Scholar] [CrossRef]
- Tahara, A.; Hayashi, Y. Measurements of Permeation of Hydrogen Isotopes through α-Iron by Pressure Modulation and Ion Bombarding. Trans. Jpn. Inst. Met. 1985, 26, 869–875. [Google Scholar] [CrossRef] [Green Version]
- Garcinuño, B.; Rapisarda, D.; Fernández-Berceruelo, I.; Jiménez-Rey, D.; Sanz, J.; Moreno, C.; Palermo, I.; Ibarra, Á. Design and fabrication of a Permeator Against Vacuum prototype for small scale testing at Lead-Lithium facility. Fusion Eng. Des. 2017, 124, 871–875. [Google Scholar] [CrossRef]
- Papa, F.; Utili, M.; Venturini, A.; Caruso, G.; Savoldi, L.; Bonifetto, R.; Valerio, D.; Allio, A.; Collaku, A.; Tarantino, M. Engineering design of a Permeator Against Vacuum mock-up with niobium membrane. Fusion Eng. Des. 2021, 166, 112313. [Google Scholar] [CrossRef]
- Fuerst, T.F.; Taylor, C.N.; Humrickhouse, P.W. The Source Permeator System and Tritium Transport in the TEX PbLi Loop. Fusion Sci. Technol. 2022, 79, 77–94. [Google Scholar] [CrossRef]
- Utili, M.; Alberghi, C.; Candido, L.; Papa, F.; Tarantino, M.; Venturini, A. TRIEX-II: An experimental facility for the characterization of the tritium extraction unit of the WCLL blanket of ITER and DEMO fusion reactors. Nucl. Fusion 2022, 62, 066036. [Google Scholar] [CrossRef]
- Papa, F.; Venturini, A.; Caruso, G.; Utili, M.; Denti, A. Manufacturing, installation and preliminary testing of PAV-ONE, a Permeator Against Vacuum mock-up with niobium membrane. Energies 2023, submitted.
- Candido, L.; Utili, M.; Zucchetti, M.; Ciampichetti, A.; Calderoni, P. Development of advanced hydrogen permeation sensors to measure Q 2 concentration in lead-lithium eutectic alloy. Fusion Eng. Des. 2017, 124, 735–739. [Google Scholar] [CrossRef]
- Alberghi, C.; Candido, L.; Utili, M.; Zucchetti, M. Development of new analytical tools for tritium transport modelling. Fusion Eng. Des. 2022, 177, 113083. [Google Scholar] [CrossRef]
Test | Measurement | pin [Pa] | T [°C] | [kg/s] |
---|---|---|---|---|
1 | 1 | 170 ± 0.52 | 453 ± 2.56 | 1.19 ± 0.10 |
2 | 170 ± 0.39 | 458 ± 2.24 | 1.19 ± 0.10 | |
2 | 1 | 241 ± 0.83 | 458 ± 2.26 | 1.19 ± 0.10 |
2 | 239 ± 0.60 | 443 ± 2.21 | 1.19 ± 0.10 | |
3 | 241 ± 0.82 | 444 ± 2.25 | 1.18 ± 0.10 | |
4 | 244 ± 0.53 | 446 ± 2.21 | 1.18 ± 0.10 | |
3 | 1 | 359 ± 0.86 | 446 ± 2.22 | 1.20 ± 0.10 |
2 | 366 ± 1.33 | 445 ± 2.22 | 1.20 ± 0.10 | |
3 | 366 ± 0.90 | 446 ± 2.21 | 1.20 ± 0.10 |
Test | Measure | pin [Pa] | Pout [Pa] |
---|---|---|---|
1 | 1 | 170 ± 0.52 | 158 ± 0.58 |
2 | 170 ± 0.39 | 159 ± 0.52 | |
2 | 1 | 241 ± 0.83 | 192 ± 0.51 |
2 | 239 ± 0.60 | 192 ± 0.46 | |
3 | 241 ± 0.82 | 194 ± 0.90 | |
4 | 244 ± 0.53 | 198 ± 0.48 | |
3 | 1 | 359 ± 0.86 | 249 ± 0.79 |
2 | 366 ± 1.33 | 256 ± 0.92 | |
3 | 366 ± 0.90 | 255 ± 0.74 |
Test | Measurement | Permeation Rate [mbar∙L/s] | Permeated Flux [mol/s] | Flux Press. [mol/s] |
---|---|---|---|---|
1 | 1 | 1.10∙10−3 ± 5.71∙10−5 | 4.58∙10−8 ± 2.75∙10−9 | 4.42∙10−8 ± 1.59∙10−8 |
2 | 1.20∙10−3 ± 5.25∙10−5 | 4.67∙10−8 ± 2.58∙10−9 | ||
2 | 1 | 1.28∙10−3 ± 6.30∙10−5 | 3.00∙10−8 ± 1.67∙10−9 | 3.31∙10−8 ± 1.18∙10−8 |
2 | 1.12∙10−3 ± 4.18∙10−5 | 2.56∙10−8 ± 1.18∙10−9 | ||
3 | 6.17∙10−4 ± 8.79∙10−5 | 1.73∙10−8 ± 1.51∙10−9 | ||
4 | 4.81∙10−4 ± 2.19∙10−5 | 1.15∙10−8 ± 5.90∙10−9 | ||
3 | 1 | 1.41∙10−3 ± 9.93∙10−6 | 3.08∙10−8 ± 6.84∙10−10 | 6.93∙10−8 ± 2.47∙10−8 |
2 | 1.71∙10−3 ± 6.77∙10−5 | 3.75∙10−8 ± 1.88∙10−9 | ||
3 | 1.80∙10−3 ± 1.10∙10−4 | 3.95∙10−8 ± 2.80∙10−9 |
Test # | Meas. Number | Flux per Unit Area [mol/(s∙m2)] |
---|---|---|
1 | 1 | 1.08∙10−7 ± 6.47∙10−9 |
2 | 1.10∙10−7 ± 6.07∙10−9 | |
2 | 1 | 7.06∙10−8 ± 3.93∙10−9 |
2 | 6.03∙10−8 ± 2.77∙10−9 | |
3 | 4.08∙10−8 ± 3.55∙10−9 | |
4 | 2.70∙10−8 ± 1.39∙10−9 | |
3 | 1 | 7.26∙10−8 ± 1.61∙10−9 |
2 | 8.82∙10−8 ± 4.42∙10−9 | |
3 | 9.30∙10−8 ± 6.58∙10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papa, F.; Venturini, A.; Martelli, D.; Utili, M. Tritium Extraction from Lithium–Lead Eutectic Alloy: Experimental Characterization of a Permeator against Vacuum Mock-Up at 450 °C. Energies 2023, 16, 3022. https://doi.org/10.3390/en16073022
Papa F, Venturini A, Martelli D, Utili M. Tritium Extraction from Lithium–Lead Eutectic Alloy: Experimental Characterization of a Permeator against Vacuum Mock-Up at 450 °C. Energies. 2023; 16(7):3022. https://doi.org/10.3390/en16073022
Chicago/Turabian StylePapa, Francesca, Alessandro Venturini, Daniele Martelli, and Marco Utili. 2023. "Tritium Extraction from Lithium–Lead Eutectic Alloy: Experimental Characterization of a Permeator against Vacuum Mock-Up at 450 °C" Energies 16, no. 7: 3022. https://doi.org/10.3390/en16073022
APA StylePapa, F., Venturini, A., Martelli, D., & Utili, M. (2023). Tritium Extraction from Lithium–Lead Eutectic Alloy: Experimental Characterization of a Permeator against Vacuum Mock-Up at 450 °C. Energies, 16(7), 3022. https://doi.org/10.3390/en16073022