Solar PV and Wind Power as the Core of the Energy Transition: Joint Integration and Hybridization with Energy Storage Systems
Acknowledgments
Conflicts of Interest
References
- Hannan, M.; Wali, S.; Ker, P.; Abd Rahman, M.; Mansor, M.; Ramachandaramurthy, V.; Muttaqi, K.; Mahlia, T.; Dong, Z. Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues. J. Energy Storage 2021, 42, 103023. [Google Scholar] [CrossRef]
- Schrotenboer, A.H.; Veenstra, A.A.; uit het Broek, M.A.; Ursavas, E. A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy. Renew. Sustain. Energy Rev. 2022, 168, 112744. [Google Scholar] [CrossRef]
- Xu, X.; Niu, D.; Peng, L.; Zheng, S.; Qiu, J. Hierarchical multi-objective optimal planning model of active distribution network considering distributed generation and demand-side response. Sustain. Energy Technol. Assessments 2022, 53, 102438. [Google Scholar] [CrossRef]
- Marinescu, B.; Gomis-Bellmunt, O.; Dörfler, F.; Schulte, H.; Sigrist, L. Dynamic virtual power plant: A new concept for grid integration of renewable energy sources. IEEE Access 2022, 10, 104980–104995. [Google Scholar] [CrossRef]
- International Energy Agency. Renewable Energy Market Update—Outlook for 2022 and 2023; Technical Report; International Energy Agency (IEA): Paris, France, 2022. [Google Scholar]
- Global Wind Energy Council. Global Wind Report 2022; Technical Report; Global Wind Energy Council (GWEC): Brussels, Belgium, 2022. [Google Scholar]
- International Energy Agency—Photovoltaic Power Systems Programme. Snapshot of Global PV Markets 2022; Technical Report; International Energy Agency (IEA): Paris, France, 2022. [Google Scholar]
- European Network of Transmission System Operators for Electricity. Ten-Year Network Development Plan (TYNDP) 2022—Scenario Report; Technical Report; European Network of Transmission System Operators for Electricity (ENTSO-E): Brussels, Belgium, 2022. [Google Scholar]
- Aluko, A.O.; Dorrell, D.G.; Pillay Carpanen, R.; Ojo, E.E. Heuristic optimization of virtual inertia control in grid-connected wind energy conversion systems for frequency support in a restructured environment. Energies 2020, 13, 564. [Google Scholar] [CrossRef] [Green Version]
- Mohamed Hariri, M.H.; Mat Desa, M.K.; Masri, S.; Mohd Zainuri, M.A.A. grid-connected PV generation system—Components and challenges: A review. Energies 2020, 13, 4279. [Google Scholar] [CrossRef]
- Ali Khan, M.Y.; Liu, H.; Yang, Z.; Yuan, X. A comprehensive review on grid connected photovoltaic inverters, their modulation techniques, and control strategies. Energies 2020, 13, 4185. [Google Scholar] [CrossRef]
- Gul, S.; Ul Haq, A.; Jalal, M.; Anjum, A.; Khalil, I.U. A unified approach for analysis of faults in different configurations of PV arrays and its impact on power grid. Energies 2019, 13, 156. [Google Scholar] [CrossRef] [Green Version]
- Al-Quraan, A.; Al-Qaisi, M. Modelling, design and control of a standalone hybrid PV-wind micro-grid system. Energies 2021, 14, 4849. [Google Scholar] [CrossRef]
- Yang, Y.; Li, R. Techno-economic optimization of an off-grid solar/wind/battery hybrid system with a novel multi-objective differential evolution algorithm. Energies 2020, 13, 1585. [Google Scholar] [CrossRef] [Green Version]
- Antonio Barrozo Budes, F.; Valencia Ochoa, G.; Obregon, L.G.; Arango-Manrique, A.; Ricardo Núñez Álvarez, J. Energy, economic, and environmental evaluation of a proposed solar-wind power on-grid system using HOMER Pro®: A case study in Colombia. Energies 2020, 13, 1662. [Google Scholar] [CrossRef]
- Ciocia, A.; Amato, A.; Di Leo, P.; Fichera, S.; Malgaroli, G.; Spertino, F.; Tzanova, S. Self-Consumption and self-sufficiency in photovoltaic systems: Effect of grid limitation and storage installation. Energies 2021, 14, 1591. [Google Scholar] [CrossRef]
- Żelazna, A.; Gołębiowska, J.; Zdyb, A.; Pawłowski, A. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 2020, 13, 3978. [Google Scholar] [CrossRef]
- Subramaniam, U.; Vavilapalli, S.; Padmanaban, S.; Blaabjerg, F.; Holm-Nielsen, J.B.; Almakhles, D. A hybrid PV–battery system for ON-grid and OFF-grid applications—Controller-in-loop simulation validation. Energies 2020, 13, 755. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Guillamón, A.; Gómez-Lázaro, E.; Muljadi, E.; Molina-Garcia, Á. A review of virtual inertia techniques for renewable energy-based generators. In Renewable Energy—Technologies and Applications; IntechOpen: London, UK, 2021. [Google Scholar]
- Artigao, E.; Ballester-Arce, J.M.; Bueso, M.C.; Molina-García, A.; Escribano, A.H.; Lázaro, E.G. Fault evolution monitoring of an in-service wind turbine DFIG using windowed scalogram difference. IEEE Access 2021, 9, 90118–90125. [Google Scholar] [CrossRef]
- Lorenzo-Bonache, A.; Honrubia-Escribano, A.; Fortmann, J.; Artigao, E.; Gómez-Lázaro, E. Fault transient response of generic Type 3 wind turbine models: Limitations and extension of the validation methodology. Int. J. Electr. Power Energy Syst. 2020, 121, 106001. [Google Scholar] [CrossRef]
- Villena-Ruiz, R.; Honrubia-Escribano, A.; Jiménez-Buendía, F.; Sosa-Avendaño, J.; Frahm, S.; Gartmann, P.; Fortmann, J.; Sørensen, P.; Gómez-Lázaro, E. Extensive model validation for generic IEC 61400-27-1 wind turbine models. Int. J. Electr. Power Energy Syst. 2022, 134, 107331. [Google Scholar] [CrossRef]
- Pillai, D.S.; Rajasekar, N. A comprehensive review on protection challenges and fault diagnosis in PV systems. Renew. Sustain. Energy Rev. 2018, 91, 18–40. [Google Scholar] [CrossRef]
- European Environment Agency. Energy prosumers in Europe—Citizen participation in the Energy Transition; Technical Report; European Environment Agency (EEA): Luxembourg, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villena-Ruiz, R.; Honrubia-Escribano, A.; Gómez-Lázaro, E. Solar PV and Wind Power as the Core of the Energy Transition: Joint Integration and Hybridization with Energy Storage Systems. Energies 2023, 16, 2917. https://doi.org/10.3390/en16062917
Villena-Ruiz R, Honrubia-Escribano A, Gómez-Lázaro E. Solar PV and Wind Power as the Core of the Energy Transition: Joint Integration and Hybridization with Energy Storage Systems. Energies. 2023; 16(6):2917. https://doi.org/10.3390/en16062917
Chicago/Turabian StyleVillena-Ruiz, Raquel, Andrés Honrubia-Escribano, and Emilio Gómez-Lázaro. 2023. "Solar PV and Wind Power as the Core of the Energy Transition: Joint Integration and Hybridization with Energy Storage Systems" Energies 16, no. 6: 2917. https://doi.org/10.3390/en16062917
APA StyleVillena-Ruiz, R., Honrubia-Escribano, A., & Gómez-Lázaro, E. (2023). Solar PV and Wind Power as the Core of the Energy Transition: Joint Integration and Hybridization with Energy Storage Systems. Energies, 16(6), 2917. https://doi.org/10.3390/en16062917