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Abstract: Techno-economic optimization of a standalone solar/wind/battery hybrid system located in
Xining, China, is the focus of this paper, and reliable and economic indicators are simultaneously
employed to address the problem. To obtain a more precise Pareto set, a novel multi-objective
differential evolution algorithm is proposed, where differential evolution with a parameter-adaptive
mechanism is applied in the decomposition framework. The algorithm effectiveness is verified
by performance comparisons on the benchmark test problems with two reference algorithms:
a non-dominated sorting genetic algorithm and a multi-objective evolution algorithm based on
decomposition. The applicability of the proposed algorithm for the capacity-optimization problem is
also validated by comparisons with the same reference algorithms above, where the true Pareto set
of the problem is approximated by combining of the three algorithms through the non-dominant
relationship. The results show the proposed algorithm has the lowest inverted generational distance
indicator and provides 85% of the true Pareto set. Analyses of the Pareto frontier show that it can
produce significant economic benefits by reducing reliability requirements appropriately when loss
of power supply probability is less than 0.5%. Furthermore, sensitivity analyses of the initial capital
of wind turbine, photovoltaic panel and battery system are performed, and the results show that
photovoltaic panel’s initial capital has the greatest impact on levelized cost of electricity, while the
initial capital of wind turbine has the least impact.

Keywords: hybrid energy system; techno-economic optimization; decomposition; parameter adaptive
mechanism; differential evolution

1. Introduction

To address the energy crisis and environmental pollution caused by the growth of the economy and
society, hybrid renewable energy systems (HRES) have become popular and wise choices, especially for
remote or island areas, where renewable energy is abundant, and where power electricity construction
cost is high [1,2]. With their complementary characteristics and matured technologies, HRES consisting
of photovoltaics (PV), wind turbines (WT) and battery systems (BS) have become one of the most
popular power generation modes [3]. The optimal capacity of HRES is a key and complicated issue [4]
because it always contains multiple optimization objectives and is influenced by many factors, such as
characteristics of the energy source, technical specifications and environmental conditions [5].

Many researchers have been keen to address the capacity optimization problem. Scholars have
applied mathematical programming to solve capacity optimization problems. Linear programming
was utilized for capacity optimization of a standalone PV/WT HRES in [6], mixed-integer linear
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programming was applied for the design for an isolated PV/WT/BS/DG (diesel generator) HRES
in [7] and dynamic programming was utilized for storage capacity optimization of PV/WT/BS HRES
in [8]. There are also scholars solving the problem by iteration. An iterative algorithm [9] and an
enumeration-based iterative algorithm [10] were implemented for component capacity optimization
of micro-grids. However, the methods above have the drawbacks that they can only handle single
objective optimization and are susceptible to falling into local optimum solutions [11].

Many other researchers utilized software tools to solve this problem. HOMER [12,13] is one of the
most popular tools. It was used for capacity optimization, techno-economic and sensitivity analyses
of a PV/BS HRES in [14] and a PV/DG/BS HRES in [15]. In [16], the techno-economic feasibility of
replacing a completely DG power supply by a standalone PV/WT/BS/DG was analyzed by HOMER.
In [17], the performance of a WT/BS/DG HRES impacted by different battery technologies was analyzed
by HOMER. It was applied for the investigation of possible renewable power generation systems
for Gadeokdo Island in South Korea in [18]. In [19], component capacities of PV/BS/DG HRES was
optimized under different load profiles. In [20], the optimal sizing of fuel cell/PV HRES was performed
by HOMER with the components cost calculated by fuzzy logic program. Homer is good software
for scenario investigation, but some scenarios need to be re-calculated individually for the specific
situation because this tool can only handle single-object optimization [21], the flexibility is limited, and
is easy to fall into local optimum solutions [22].

Intelligent optimization algorithms, having the superiority of global optimization and the capacity
to handle multi-objective problems easily, have been intensively studied in the optimal capacity
problem [11]. In [23], an artificial bee colony algorithm was used for finding the optimal capacities of
a PV-biomass HRES with the minimum levelized cost of electricity (LCOE), and the results proved
it outperformed HOMER. The discrete bat search algorithm [24] and grasshopper optimization
algorithm [25] were used for PV/WT/DS/BS HRES. Many researchers have considered multiple
objective functions in capacity optimization, and have applied multi-objective intelligent optimization
algorithms to obtain solutions. In [26], a multi-objective differential evolution algorithm was applied
for the capacity optimization of a PV/WT/DG/BS HRES in Yanbu, where the objective functions were
minimizing LCOE and loss of power supply probability (LPSP) simultaneously. A non-dominated
sorting genetic algorithm (NSGA-II) was applied for optimal sizing of an off-grid PV/WT/BS HRES
where economic and reliability indicators were simultaneously considered in [27]. Many scholars
considered additional indicators, except for economic and reliability indicators; for example, an
environmental indicator was involved in the optimal sizing of a PV/WT/fuel cell HRES in [28] and a
PV/WT/BS HRES in [29].

With the rapid development of HRES, intelligent optimization algorithms with better performance
are urgently needed [11]. Multi-objective evolution algorithms based on decomposition (MOEA/D) [30]
provide a new approach to multi-objective optimization [31] and have received growing attention
as they can incorporate the techniques used in single-objective optimization algorithms well. In this
paper, a novel multi-objective optimization algorithm, namely MOEA/DADE, is proposed for better
optimization performance. In this algorithm, a differential evolution mechanism with parameter
self-adaptation is integrated in decomposition framework and its effectiveness is verified by algorithm
contrasts with NSGA-II and MOEA/D on benchmark problems. Then, the algorithm is applied for
techno-economic optimization of a standalone PV/WT/BS HRES located in Xining, China and its
applicability for this problem is also validated by comparisons with NSGA-II and MOEA/D. Lastly,
techno-economic and sensitivity analyses of the initial capital of wind turbines, photovoltaics and
battery systems are performed.

The paper is organized as follows: component models of the HRES and energy management
strategy (EMS) are introduced in Section 2, MOEA/DADE algorithm and algorithm comparisons
with MOEA/D and NSGA-II on benchmark problems are presented in Section 3, techno-economic
optimization and sensitivity analyses of PV/WT/BS HRES are performed in Section 4; finally, conclusions
are drawn in Section 5.
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2. Component Models and Energy Management Strategy

The HRES is consisted of five major components: PV systems, WT systems, a converter, BS and
grid loads. Its structure diagram is shown in Figure 1.
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Figure 1. Structure diagram of photovoltaic/wind turbine/battery system hybrid renewable energy
system (PV/WT/BS HRES).

2.1. Wind turbine

The relationship between a WT’s output power (PWT) and wind speed can be described by a
piecewise function as Equation (1) [13]:

PWT(t) =


0 v ≤ vcut−in or v ≥ vcut−out

Pr(
v3
−v3

cut−in
v3

r−v3
cut−in

) vcut−in ≤ v ≤ vr

Pr vr ≤ v ≤ vcut−out

(1)

where Pr (kW) represents the WT’s rated output power, v (m/s) represents wind speed at the turbine
hub height, vcut−in (m/s) is the cut-in speed, vr (m/s) is the rated speed, and vcut−out (m/s) is the cut-out
speed. vcut−in, vr and vcut−out are assumed to be 2 (m/s), 9 (m/s) and 24 (m/s) respectively.

As the anemometer is not at the same altitude as the turbine hub, v can be obtained by Equation (2):

v = vref ×

(
h

href

)γ
(2)

where h(m), href (m) are the installation altitude of the turbine hub and the anemometer respectively,
vref (m/s) is the wind speed measured by anemometer, γ is a constant number between 0.1 and 0.25 [13].
In this paper, the anemometer height is 10 m, the hub height is 25 m and γ is assumed 0.25.

2.2. PV Panel

Ignoring the temperature effects, the PV’s output power (PPV) can be calculated by Equation (3) [13],

PPV(t) = YPV fPV

(
Gt

GSTC

)
(3)
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where YPV (kW) and GSTC (1 kW/m2) represent the power output and solar radiation under standard
test conditions, Gt (kW/m2) represents the actual solar incident radiation on the PV array in time t, and
fPV(%) is the PV derating factor.

2.3. Battery System

The electric power stored into the BS in time t is described as Equation (4):

PB(t) = PWT(t) + PPV(t) − PL(t)/ηinv (4)

where PL (kW) represents the electrical load, ηinv represents the converter efficiency.
If PB(t) is greater than 0, the BS will be charged to store the surplus power energy, otherwise, it

will be discharged to make up for the electricity shortage. The BS’s state of charge (SOC) for t period is
shown as Equation (5):

SOCB(t) = (1− σ) · SOCB(t− 1) + α(t)PB(t)∆t (5)

where SOCB (kW·h) is the BS’s SOC, t represents time index, and σ is the dissipation coefficient. Assume
that the charge efficiency (ηc) and discharge efficiency (ηd) remain unchanged, α(t) can be obtained by
Equation (6).

α(t) =
 ηc PB(t) > 0

1
ηd

PB(t) < 0 (6)

Moreover, the BS’s SOC should satisfy the constraint described as Equation (7):

(1−DOD) · Ebmax ≤ SOC(t) ≤ Ebmax (7)

where Ebmax (kW·h) means the maximum allowable amounts of energy that can be stored by the BS,
DOD (%) is the BS’s allowable depth of discharge.

2.4. Load Profile

To make the inherently statistical power load more realistic, the load in each time step is obtained
by multiplying its annual average value with a perturbation factor kcv [32] shown as Equation (8):

kcv = 1 + αd + αt (8)

where αd~N(0, δ2
d) denotes the daily variation percent, αt~N(0, δ2

t ) denotes the hourly variation percent.

2.5. Economic Model

The life cycle cost (LCC) of the k-th component of the HRES is described as Equation (9). It
includes initial capital cost (ICk), maintenance and operation cost (O&Mk), replacement cost (Rpk) and
salvage value (RVk).

LCCk = ICk + O&Mk + Rpk −RVk (9)

ICk, O&Mk, Rpk, RVk can be calculated according to Equations (10)–(15), where Ck (kW for WT,
PV and converter, and kW·h for BS) means the component capacity, γk, θk and πk mean initial capital
cost, maintenance and operation cost, replacement cost per unit respectively and their units are $/kW
for WT, PV and converter and $/kW·h for BS, N (year) and Nk (year) mean the system life time of the
system and the k-th component respectively, Nrem

k (year) means the surplus life of the k-th component
when the system ends, Rrp

k (year) means the last replaced time of the k-th component, INT(.) is a
function that returns the smallest integer that is greater than or equal to the input number, and the
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relationship of the real discount rate ir (%), nominal discount rate r (%) and expected inflation rate u
(%) is shown as Equation (16):

ICk = γkCk (10)

O&Mk = θkCk

N∑
j=1

(
1

1 + ir
) j (11)

Rpk = πkCk

INT[ N
Nk

]−1∑
m=1

(
1

1 + ir
)m×Nk (12)

RVk = πkCk
Nrem

k
Nk

(
1

1 + ir
)

N
(13)

Nrem
k = Nk − (N −Rrp

k ) (14)

Rrp

k = Nk · INT(
N
Nk

) (15)

ir =
r− u
r + u

(16)

Capital recovery factor (CRF) shown as Equation (17) is applied to convert LCC into the annualized
cost of the HRES. Assuming that the amount of electricity generated by the HRES per year stays the
same over the project’s lifetime, LCOE is shown as Equation (18) [24]:

CRF(ir, N) =
ir(1 + ir)

N

(1 + ir)
N
− 1

(17)

LCOE =CRF(ir, N) ·

∑NC
k=1 LCCk

Eload
(18)

where NC is the number of components in the HRES and Eload (kW·h) is the annual power output.

2.6. Rule-Based Energy Management Strategy

EMS is one main criterion for HRES [25]. To coordinate various components’ output power, a
rule-based EMS is designed and its flow chart is shown as Figure 2.

Firstly, a binary variable (Sp) is defined to represent whether the electric power generated is
sufficient, and a binary variable (Sc) is defined to represent whether the converter capacity is sufficient.
Their definitions are shown as Equations (19) and (20).

Sp = PPV(t) + PWT(t) − PL(t)/ηinv (19)

Sc = Cinv − PL(t)/ηinv (20)

Secondly, according to the combination values of Sp and Sc, the rule-based EMS is designed with
four case scenarios as follows: Case 1,the electric power generated and the converter capacity are both
sufficient (Sp > 0 and Sc > 0); Case 2, the electric power generated is sufficient while the converter
capacity is insufficient (Sp > 0 and Sc < 0); Case 3, the electric power generated is insufficient while
the converter capacity is sufficient (Sp < 0 and Sc > 0); and, Case 4, the electric power generated and
the converter capacity are both insufficient (Sp < 0 and Sc < 0).

Finally, update the BS’s SOC and calculate the loss of power supply (LPS) for different cases
according to the follow rules:

Case 1: the load will be completely satisfied (LPS = 0), and the extra power used for charging the
battery is calculated by Equation (4) and a new temporary SOC of the BS (soc_new) can be obtained by
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Equation (5), if soc_new < Ebmax, set soc(t + 1) = soc_new, otherwise, set soc(t + 1) = Ebmax and the
extra energy will be discarded.

Case 2: the power output of the HRES will be ηinv ·Cinv, LPS and the power used for charging the
BS (PB) can be calculated by Equations (21) and (22) respectively.

LPS(t) = PL(t) −Cinv · ηinv (21)

PB(t) = PPV(t) + PWT(t) −Cinv (22)

then, update the BS’s SOC as Case 1.
Case 3: the battery will be discharged to supply as much electricity as possible and whether the

load can be satisfied with the BS’s support is calculated according to Equation (23).

Sbp = PPV(t) + PWT(t) + soc(t) − Ebmin − PL (23)
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If Sbc > 0, the load will be completely satisfied (LPS = 0), and the charge power of BS (PB) and
BS’s SOC are calculated by Equations (4) and (5) respectively, otherwise, set soc(t + 1) = Ebmin and
calculate LPS by Equation (24).

LPS(t) = PL(t) − (PPV(t) + PWT(t) + soc(t) − Ebmin) · ηinv (24)

Case 4: the load will not be completely satisfied and the battery will be discharged. Firstly,
whether the power output can reach to converter capacity with the BS’s support is calculated according
to Equation (25).

Sbc = PPV(t) + PWT(t) + soc(t) − Ebmin −Cinv (25)

If Sbc > 0, the power output of the HRES will be ηinv ·Cinv, LPS is calculated by Equation (21), the
charge power of BS (PB) and BS’s SOC can be calculated by Equation (22) and Equation (5) respectively,
otherwise, set soc(t + 1) = Ebmin and calculate LPS by Equation (24).

2.7. Objective Function and Constraints

The objective functions described as Equation (26) are to maximize system reliability (represented
by minimizing LPSP) and economy (represented by minimizing LCOE) simultaneously,

f = min
{
LCOE(Cpv, Cwt, Eb, Cinv),
LPSP(Cpv, Cwt, Eb, Cinv)

}
0 ≤ Cpv ≤ Cmax

pv
0 ≤ Cwt ≤ Cmax

wt
0 ≤ Eb ≤ Emax

b
0 ≤ Cinv ≤ Cmax

inv

(26)

where Cpv, Cwt, Cinv, and Eb are decision variables that mean the capacity of PV, WT, converter and BS
respectively, Cmax

pv , Cmax
inv and Emax

b are their upper bounds, and LPSP is calculated as Equation (27),

LPSP =

∑T
t=1 LPS(t)∑T
t=1 PL(t)

(27)

where t is a time period index, T (8760 h) represents the total hours of a year.

3. Optimization Algorithm

3.1. MOEA/DADE

MOEA/D whose detailed information can be found in [30] provides a new approach for
multi-objective optimization. It has an advantage in that it can incorporate the techniques in
single-objective optimization algorithms well, while its performance is greatly impacted by the new
solution generation mechanism. For better optimization performance, an adaptive differential evolution
mechanism is implemented in MOEA/D and a new algorithm, namely MOEA/DADE, is proposed in
this paper.

3.1.1. Differential Evolution Mechanism

The differential evolution mechanism is applied for new individual’s generation as Equation (28),

yk =

{
xi(t) + Fi · (xr1(t) − xr2(t)) rand ≤ Cri or j = k
xi, j(t) otherwise

(28)
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where Fi and Cri, in the range of [0,1], represent the scale factor and crossover rate respectively, r1 and
r2 are randomly selected from set P. The definition of P is shown as Equation (29),

P =

{
Bi if rand<δ
{1, . . . , N} otherwise

(29)

where Bi represents the neighbor set of the individual i and {1, . . . , N} represents the collection of the
all individuals, and δ ∈ (0, 1). Equation (29) means the individuals used for differential information
generation can be selected from the whole individuals according to a tiny probability (1− δ) and this is
helpful for maintaining individual diversity.

3.1.2. Parameter Adaptive Mechanism

In differential evolution mechanism, the control parameters (Fi and Cri) have great impact on the
quality of new individuals, and their values should be different for different stages of the evolution
process. Thus, a parameter adaptive mechanism is applied to the algorithm [33].

Firstly, at each generation, the control parameters (Fi and Cri) of each individual are independently
generated according to Equations (30) and (31), respectively,

Cri = randni(µCr, 0.1) (30)

Fi = randci(µF, 0.1) (31)

where randni(µCr, 0.1) means a standard normal distribution with mean and variance of µCr and
0.1, randci(µF, 0.1) means a Cauchy distribution with mean and variance of µF and 0.1. The control
parameters will be reinitialized until they are in range of [0,1].

Secondly, record the control parameters that generate better individuals by set SCr and SF.

Lastly, update µCr and µF at the end of each generation according to Equations (32) and (33),

µCr= (1 − c) · µCr + c ·meanA(SCr) (32)

µF= (1 − c) · µF + c ·meanL(SF) (33)

where c is a weighting factor, meanA(SCr) means the average value of the elements in set SCr and
meanL(SF) is calculated by Equation (34).

meanL(SF) =

∑
F∈SF

F2∑
F∈SF

F
(34)

3.2. Algorithm Contrast

To verify the effectiveness of MOEA/DADE, algorithm contrasts with MOEA/D and NSGA-II are
performed on PlatEMO v2.1 [34]. In the contrast test, the benchmark problems are ZDT1~ZDT4 and
ZDT6 as proposed in [35], their dimensions (D) are 30 and objective function numbers are 2. Parameters
for each algorithm are represented as Table 1, the maximum evaluation number for each algorithm are
10,000 and all three algorithms run 30 times. A comprehensive indicator IGD [36] defined as Equation
(35), which can reflect both the diversity and convergency of the Pareto set (PS), is chosen to evaluate
the algorithm performance.

IGD(P∗, P) =
∑

x∗∈P∗ minx∈Pd(x∗, x)
|P∗|

(35)

where P* represents sampling points from the true Pareto frontier (PF), P represents the PF obtained by
the optimization algorithm, d(x∗, x) represents the Euler distance between any two elements in P* and
P, and |P∗| denotes the number of elements of P*.
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Table 1. Parameters of NSGA-II, MOEA/D and MOEA/DADE.

Algorithm Parameters

NSGA-II Pc = 0.9, Pm = 1/D, ηc = 20, ηm = 20
MOEA/D T = 10, Pc = 0.9, Pm = 1/D, ηc = 20, ηm = 20

MOEA/DADE T = 10, µCr = 0.8, µF = 0.5, δ = 0.9

The test results are presented in Table 2. From the table, we can see that MOEA/DADE outperforms
MOEA/DADE and NSGA-II on all the functions except for ZDT4. It indicates MOEA/DADE is a
cost-effective multi-objective optimization algorithm for most of the considered test problems, but
not for all considered functions. This behavior is not an exception but actually verifies the statement
of No Free Lunch theorem. The reasons for superior performance may be concluded as two aspects:
(1) the algorithm is implemented in the decomposition framework where evolution is achieved
through the cooperation of neighboring individuals, and this mechanism is different from NSGA-II;
(2) a differential evolution mechanism with parameter self-adaptation is applied whose effectiveness
has been demonstrated in single-objective optimization.

Table 2. Test results of NSGA-II, MOEA/D and MOEA/DADE with D = 30 for each function.

Function NSGA-II Mean (std) MOEA/D Mean (std) MOEA/DADE Mean (std)

ZDT1 1.7218 × 10−1 (1.10 × 10−1) − 1.6737 × 10−1 (5.91 × 10−2) − 4.7928 × 10−2 (1.62 × 10−2)
ZDT 2 5.5298 × 10−1 (1.01 × 10−1) − 3.2507 × 10−1 (1.88 × 10−1) − 1.2261 × 10−1 (1.63 × 10−1)
ZDT 3 1.3700 × 10−1 (8.06 × 10−2) − 2.1748 × 10−1 (1.12 × 10−1) − 6.6407 × 10−2 (3.45 × 10−2)
ZDT 4 1.4230 × 101 (4.08 × 100) + 1.4189 × 101 (4.79 × 100) + 3.8489 × 101 (9.88 × 100)
ZDT 6 3.8877 × 100 (3.78 × 10−1) − 2.3380 × 100 (4.81 × 10−1) − 1.8724 × 100 (3.83 × 10−1)

+/-/= 1/4/0 1/4/0

4. Case Study

4.1. Data

The HRES studied in this paper is located in Xining (47◦29′N, 104◦17′E), China. Its nameplate life
is 25 years. The technical and economical parameters are presented as Table 3 [37]. A year’s data of
solar radiation and wind speed were obtained from HOMER Pro [13] and their annual average values
are 4.67 (kW·h/m2/day) and 6.63 (m/s) respectively. The load profile is obtained by Equation (8) where
δd and δt are assumed 10% and 20% respectively. The data profile of load, solar radiation and wind
speed of each hour are shown as Figure 3.

Table 3. Technical and economical parameters of the HRES.

Factor Value Factor Value

Project Lifetime (year) 25 Battery Lifetime (year) 10
Discount rate (%) 6 Initial capital ($/kW·h) 160
Inflation rate (%) 2 Replacement ($/kW·h) 128

PV Lifetime (year) 25 O&M ($/year/kW·h) 1
Initial capital ($/kW) 1857 Round trip efficiency (%) 80
Replacement ($/kW) 1486 Converter Lifetime (year) 15

O&M ($/year/kW) 18 Initial capital ($/kW) 890
Wind Turbine Lifetime (year) 20 Replacement ($/kW) 800

Initial capital ($/kW) 1610 O&M ($/year/kW) 10
Replacement ($/kW) 1288 Efficiency (%) 95

O&M ($/year/kW) 32
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The decision variables’ ranges are presented as Cpv ∈ [0 500], Cinv ∈ [0, 500], Eb ∈ [0, 3600]. For this
problem, its true PS and PF are unknown. To evaluate algorithm performance, a method combining of
MOEA/DADE, MOEA/D and NSGA-IIis proposed to approximate the true PS and PF. Firstly, all the
three algorithms are run 20 times respectively to obtain their corresponding PSs; secondly, a temporary
set is created by merging all the PSs; finally, the true PS and PF are obtained from the temporary set
according to the non-dominant relationship.

The PFs obtained by each algorithm and the approximate true PF are represented as Figure 5.
From it, we can see the PF obtained by MOEA/DADE almost coincides with the approximate true PF.
There are 81 groups of unduplicated solutions in the approximately true PS, among them MOEA/DADE
provides 67 groups (82.72%), NSGA-II provides 13 groups (16.05%) and MOEA/D provides 1 group
(1.23%).
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IGD indicators calculated based on the approximate true PS are shown as Table 4. From it, we can
see MOEA/DADE has the minimal IGD. From analysis of Figure 5 and Table 4, it can be concluded that
MOEA/DADE is more suitable for this capacity optimization problem than NSGA-II and MOEA/D.

Table 4. IGD indicators for NSGA-II, MOEA/D and MOEA/DADE.

Algorithm NSGA-II MOEA/D MOEA/DADE

IGD 4.7809 × 10−4 1.3926 × 10−3 7.5655 × 10−5

To analyze the relationship of the reliability (LPSP) and economy (LCOE), the slope of LCOE is
calculated according to Equation (36).

slope =
∆LCOE
∆LPSP

(36)

The slope of LCOE varying with LPSP is presented as Figure 6. From it, we can see LCOE and
LPSP are negatively related, and the absolute value of the slope decreases gradually with the increase
of LPSP when LPSP is less than 2%, and almost stays at a small value when LPSP is in the range of
2% to 5%. The absolute value of the slope decreases rapidly and falls from 0.1231 ($/kW·h) to 0.0033
($/kW·h) when LPSP is less than 0.5%, slows down and stays in the range of [0.0110,0.0335] ($/kW·h)
when LPSP is in the range of [0.5%,2%], and is almost unchanged when LPSP is larger than 2% with a
small average value 0.0081 ($/kW·h). From Figure 6, it can be concluded that the economic benefits are
significant by reducing reliability requirements when LPSP is less than 0.5%, and not obvious when
LPSP is larger than 0.5%. For example, the system’s LCOE can fall from 0.2348 ($/kW·h) to 0.2225
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($/kW·h), falling by 0.0123 ($/kW·h) as LPSP increases by 0.1% when LPSP is 0; however, it can only fall
from 0.2041 ($/kW·h) to 0.2008 ($/kW·h), falling by 0.0033 ($/kW·h) as LPSP increases by 0.1% when
LPSP is 0.5%.
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Figure 6. The slope of minimum levelized cost of electricity (LCOE) varying with loss of power supply
probability (LPSP).

4.3. Sensitivity Analysis

Sensitivity analysis was performed to investigate the impact of initial capital of WT, PV and BS on
the LCOE. The sensitivity analysis for any component is carried out by the following steps: (1) let its
initial capital be 80%, 90%, 110% and 120% of its initial value respectively while keeping the other
parameters unchanged; (2) solve the capacity optimization problem of the HRES by MOEA/DADE; (3)
choose the solution with LPSP equal to 0.5% from Pareto set. The effects of components’ initial capital
on LCOE when LPSP is 0.5% are presented as Figure 7. In Figure 7, the influence on LCOE can be
reflected by the slope of the fold line, and the higher slope means a greater impact. From Figure 7, we
can see that the PV’s line slope is higher than the others, while WT’s is lower than the others—that is to
say, PV’s initial capital has the greatest effect while WT’s initial capital has the least effect on LCOE.
When the initial capital of PV, BS and WT falls to 80% of its initial value, the LCOE with LPSP equals to
0.5% falls from 0.2348 ($/kW·h) to 0.2255 ($/kW·h) for the PV case (falling by 3.97%), to 0.2297 ($/kW·h)
for the BS case (falling by 2.19%) and to 0.2299 ($/kW·h) for the WT case (falling by 2.07%). When
components’ initial capital increases to 120% of its initial value, the LCOE can reach to 0.2490 ($/kW·h)
for the PV case (increasing by 6.05%), to 0.2460 ($/kW·h) for the BS case (increasing by 4.77%) and to
0.2407 ($/kW·h) for the WT case (increasing by 2.50%).
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5. Conclusions

In this paper, we focused on the techno-economic optimization of a standalone PV/WT/BS
HRES in Xining, China. To find out the optimal LCOE under different LPSP, a novel multi-objective
optimization algorithm, namely MOEA/DADE, is proposed. In this algorithm, a differential evolution
mechanism with parameter self-adaptation is implemented in the decomposition framework. Algorithm
comparisons with NSGA-II and MOEA/D on benchmark problems verify that MOEA/DADE is superior
to NSGA-II and MOEA/D. The applicability of MOEA/DADE on the capacity optimization problem
was also validated by comparisons. Then, MOEA/DADE was applied for techno-economic and
sensitivity analyses of the HRES. Techno-economic analyses from the PF shows the economic benefits
are significant by reducing reliability requirements when LPSP is less than 0.5%, and are not obvious
when LPSP is larger than 0.5%. The system’s LCOE can fall from 0.2348 ($/kW·h) to 0.2225 ($/kW·h),
falling by 0.0123 ($/kW·h) as LPSP increases by 0.1% when LPSP is 0, however, it can only fall from
0.2041 ($/kW·h) to 0.2008 ($/kW·h), falling by 0.0033 ($/kW·h) as LPSP increases by 0.1% when LPSP is
0.5%. Sensitivity analyses for the components’ initial capital show PV’s initial capital has the greatest
impact while WT’s initial capital has the least impact on LCOE. When the components’ initial capital
falls to 80% of its initial value, the LCOE can fall by 3.97% for the PV case, 2.19% for the BS case and
2.07% for the WT case, and when components’ initial capital increases to 120% of its initial value, the
LCOE can increase by 6.05% for the PV case, 4.77% for the BS case and 2.50% for the WT case. The
results indicate that reducing the PV’s initial capital produces more obvious economic benefits.
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Nomenclature

DOD BS’s allowable depth of discharge
fPV PV derating factor (%)
Gt solar incident radiation on the PV (kW/m2)
GSTC solar radiation under standard test conditions (GSTC = 1 kW/m2)
h turbine hub altitude (m)
href anemometer altitude (m)
IC initial capital cost ($/kW)
ir real discount rate (%)
kcv perturbation factor of load
O&M maintenance and operation cost ($/kW)
PL electrical load (kW)
PPV output power of PV (kW)
Pr rated output power of WT (kW)
PWT output power of WT (kW)
r nominal discount rate (%)
Rp replacement cost ($/kW)
RV salvage value($/kW)
Sc a binary variable denoting whether the converter capacity is sufficient
Sp a binary variable denoting whether the electric power generated is sufficient
SOCB SOC BS’s state of charge
u expected inflation rate (%)
v wind speed at the turbine hub altitude (m/s)
vcut−in cut-in speed (m/s)
vcut−out cut-out speed (m/s)
vr nominal speed (m/s)
vref wind speed measured by anemometer (m/s)
αd daily variation percent of load
αt hourly variation percent of load
ηc charge efficiency of BS
ηd discharge efficiency of BS
ηinv converter efficiency

Abbreviation

BS battery system
CRF capital recovery factor
DG diesel system
EMS energy management strategy
HRES hybrid renewable energy systems
LCC life cycle cost
LCOE levelized cost of electricity
LPSP loss of power supply probability
WT wind turbine
PF Pareto frontier
PS Pareto set
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