Prospect Evaluation of the Cretaceous Yageliemu Clastic Reservoir Based on Geophysical Log Data: A Case Study from the Yakela Gas Condensate Field, Tarim Basin, China
Abstract
:1. Introduction
2. Geology of the Study Area
3. Materials and Methods
3.1. Petrophysical Parameters
3.1.1. Shale Volume
3.1.2. Porosities
3.1.3. Permeability
3.1.4. Water Saturation
3.1.5. Water Resistivity (Rw)
3.1.6. Gas Saturation
3.2. Cross-Plot-Based Lithological and Mineralogical Analysis
3.3. Facies Evaluation
3.4. Reservoir Rock Typing
3.4.1. Nearest Neighbor Approach
3.4.2. Furthest Neighbor Approach
3.4.3. Average Approach
4. Results and Discussion
4.1. Lithological and Mineralogical Evaluation
4.1.1. Cross-Plot-Based Lithological Evaluation
4.1.2. SOM-Based Lithofacies Evaluation
4.1.3. M-N-Based Mineralogical Evaluation
4.2. Spatial Variations of Petrophysical Parameters
4.3. Well Correlation
4.4. Pickett Plot
4.5. Irreducible Water Saturation (Swir)
4.6. Shale Structure
4.7. Reservoir Rock Typing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
YKL | Yakela (gas field name) |
YK16 | Yakela16 (well name) |
YK17 | Yakela17 (well name) |
YK18 | Yakela18 (well name) |
YK19 | Yakela19 (well name) |
YK20 | Yakela20 (well name) |
References
- Pigott, J.D.; Williams, M.T.; Abdel-Fattah, M.; Pigott, K.L. The Messinian Mediterranean Crisis: A Model for the Permian Delaware Basin? In Proceedings of the AAPG international conference and exhibition, Istanbul, Turkey, 14–17 September 2014. [Google Scholar]
- Ali, M.; Khan, M.J.; Ali, M.; Iftikhar, S. Petrophysical analysis of well logs for reservoir evaluation: A case study of “Kadanwari” gas field, middle Indus basin, Pakistan. Arab. J. Geosci. 2019, 12, 215. [Google Scholar]
- Ali, M.; Ma, H.; Pan, H.; Ashraf, U.; Jiang, R. Building a rock physics model for the formation evaluation of the Lower Goru sand reservoir of the Southern Indus Basin in Pakistan. J. Pet. Sci. Eng. 2020, 194, 107461. [Google Scholar] [CrossRef]
- Ali, N.; Chen, J.; Fu, X.; Hussain, W.; Ali, M.; Iqbal, S.M.; Anees, A.; Hussain, M.; Rashid, M.; Thanh, H.V. Classification of reservoir quality using unsupervised machine learning and cluster analysis: Example from Kadanwari gas field, SE Pakistan. Geosyst. Geoenviron. 2022, 2, 100123. [Google Scholar]
- Hussain, W.; Ali, N.; Sadaf, R.; Hu, C.; Nykilla, E.E.; Ullah, A.; Iqbal, S.M.; Hussain, A.; Hussain, S. Petrophysical analysis and hydrocarbon potential of the Lower Cretaceous Yageliemu Formation in Yakela gas condensate field, Tarim Basin, China. Geosyst. Geoenviron. 2022, 1, 100106. [Google Scholar]
- Abdel-Fattah, M.I.; Metwalli, F.I.; El Sayed, I.M. Static reservoir modeling of the Bahariya reservoirs for the oilfields development in South Umbarka area, Western Desert, Egypt. J. African Earth Sci. 2018, 138, 1–13. [Google Scholar] [CrossRef]
- Chongwain, G.M.; Osinowo, O.O.; Ntamak-Nida, M.J.; Nkoa, E.N. Seismic Attribute Analysis for Reservoir Description and Characterization of M-Field, Douala Sub-Basin, Cameroon. Adv. Pet. Explor. Dev. 2017, 15, 1–10. [Google Scholar]
- Ellis, D.V.; Singer, J.M. Well Logging for Earth Scientists; Springer: Berlin/Heidelberg, Germany, 2007; Volume 692. [Google Scholar]
- Naeem, M.; Jafri, M.K.; Moustafa, S.S.R.; AL-Arifi, N.S.; Asim, S.; Khan, F.; Ahmed, N. Seismic and well log driven structural and petrophysical analysis of the Lower Goru Formation in the Lower Indus Basin, Pakistan. Geosci. J. 2016, 20, 57–75. [Google Scholar] [CrossRef]
- Qiao, Y.; An, H. Study of petrophysical parameter sensitivity from well log data. Appl. Geophys. 2007, 4, 282–287. [Google Scholar] [CrossRef]
- Rashid, M.; Luo, M.; Ashraf, U.; Hussain, W.; Ali, N.; Rahman, N.; Hussain, S.; Aleksandrovich Martyushev, D.; Vo Thanh, H.; Anees, A. Reservoir quality prediction of gas-bearing carbonate sediments in the Qadirpur Field: Insights from advanced machine learning approaches of SOM and cluster analysis. Minerals 2023, 13, 29. [Google Scholar] [CrossRef]
- Bachrach, R.; Beller, M.; Liu, C.C.; Perdomo, J.; Shelander, D.; Dutta, N.; Benabentos, M. Combining rock physics analysis, full waveform prestack inversion and high-resolution seismic interpretation to map lithology units in deep water: A Gulf of Mexico case study. Lead. Edge 2004, 23, 378–383. [Google Scholar] [CrossRef]
- Gommesen, L.; Hansen, H.P.; Pedersen, J.M.; Marsden, G.; Schiott, C.R. Rock physics templates and seismic modelling of chalk reservoirs in the South Arne Field of the Danish North Sea. In Proceedings of the Extended Abstract G019 Presented at 66th EAGE Technical Conference & Exhibition, Paris, France, 7–10 June 2004. [Google Scholar]
- Ajisafe, Y.C.; Ako, B.D. 3-D seismic attributes for reservoir characterization of “Y” field Niger Delta, Nigeria. IOSR J. Appl. Geol. Geophys. 2013, 1, 23–31. [Google Scholar]
- Nabawy, B.S.; El Sharawy, M.S. Reservoir assessment and quality discrimination of Kareem Formation using integrated petrophysical data, Southern Gulf of Suez, Egypt. Mar. Pet. Geol. 2018, 93, 230–246. [Google Scholar] [CrossRef]
- Fawad, N.; Liu, T.; Fan, D.; Ahmad, Q.A. Sedimentary Facies Analysis of the Third Eocene Member of Shahejie Formation in the Bonan Sag of Bohai Bay Basin (China): Implications for Facies Heterogeneities in Sandstone Reservoirs. Energies 2022, 15, 6168. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.I. Impact of depositional environment on petrophysical reservoir characteristics in Obaiyed Field, Western Desert, Egypt. Arab. J. Geosci. 2015, 8, 9301–9314. [Google Scholar] [CrossRef]
- Nabawy, B.S.; Géraud, Y. Impacts of pore-and petro-fabrics, mineral composition and diagenetic history on the bulk thermal conductivity of sandstones. J. Afr. Earth Sci. 2016, 115, 48–62. [Google Scholar] [CrossRef]
- Ahmad, Q.A.; Ehsan, M.I.; Khan, N.; Majeed, A.; Zeeshan, A.; Ahmad, R.; Noori, F.M. Numerical simulation and modeling of a poroelastic media for detection and discrimination of geo-fluids using finite difference method. Alex. Eng. J. 2022, 61, 3447–3462. [Google Scholar] [CrossRef]
- Orji, C.S.; Uko, E.D.; Tamunobereton-ari, I. Permeability-Porosity Trends In Cawc Reservoir Sands In The Niger Delta Nigeria, Using Well-Log Data. Malays. J. Geosci. 2019, 3, 33–42. [Google Scholar] [CrossRef]
- Liu, T.; Fawad, N.; Li, C.; Li, H.; He, R.; Xu, J.; Ahmad, Q.A. Physical simulation of remaining oil distribution in the 3rd-order architecture unit in beach sand reservoir. Front. Earth Sci. 2023, 10, 1108525. [Google Scholar] [CrossRef]
- Tang, J.; Yin, H.; Wang, G.; Chen, Y. Methane microseepage from different sectors of the Yakela condensed gas field in Tarim Basin, Xinjiang, China. Appl. Geochem. 2010, 25, 1257–1264. [Google Scholar] [CrossRef]
- Junhong, T.; Zhengyu, B.; Xiang, W.; Qinghong, G. Geological emission of methane from the Yakela condensed oil/gas field in Talimu Basin, Xinjiang, China. J. Environ. Sci. 2008, 20, 1055–1062. [Google Scholar]
- Geng, Y.; Li, J.; He, D. Trap types, distribution and the law of spatial combination in the west Tabei uplift, Tarim Basin. ACTA Sci. Nat. Pekin. 2008, 44, 193. [Google Scholar]
- Xiuxiang, L.; Jianjiao, L.; Fengyun, Z.; Ning, Y.; Qiucha, Z. North-south Differentiation of the Hydrocarbon Accumulation Pattern of Carbonate Reservoirs in the Yingmaili Low Uplift, Tarim Basin, Northwest China. Acta Geol. Sin. Ed. 2008, 82, 499–508. [Google Scholar] [CrossRef]
- Luo, X.L.; Tang, L.J.; Xie, D.Q.; Qiu, H.J.; Jiang, H.S.; Yang, Y.; Chen, X.Y.; Zhang, Y.H. Strike-slip movement and its genetic mechanism in Yakela faulted salient, the Tarim Basin. Oil Gas Geol. 2013, 34, 257–263. [Google Scholar]
- Li, M.; Wang, T.-G.; Li, H.; Fang, R.; Yang, L.; Shi, S.; Kuang, J. Occurrence and geochemical significance of phenylnaphthalenes and terphenyls in oils and condensates from the Yakela Faulted Uplift, Tarim Basin, Northwest China. Energy Fuels 2016, 30, 4457–4466. [Google Scholar] [CrossRef]
- Song, D.; Wang, T.-G.; Li, H. Geochemical characteristics and origin of the crude oils and condensates from Yakela Faulted-Uplift, Tarim Basin. J. Pet. Sci. Eng. 2015, 133, 602–611. [Google Scholar] [CrossRef]
- Huiling, Y. Analysis of structural patterns and evolution characteristics in south Tianshan area. Geophys. Prospect. Pet. 2008, 15, 277–284. [Google Scholar]
- Luo, X.L.; Tang, L.J.; Xie, D.Q.; Qiu, H.J.; Jiang, H.S.; Yang, Y.; Chen, X.Y.; Zhang, Y.H. Structural styles and hydrocarbon accumulation in Yakela fault-convex, Tarim Basin. Pet. Geol. Recov. Effic. 2012, 19, 38–41. [Google Scholar]
- Ren-bing, G. Characteristics of Stratigraphic Pressure in the Middle Yakela Fault Block. West China Pet. Geosci. 2005, 1, 77–84. [Google Scholar]
- Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.; LeCun, Y. What is the best multi-stage architecture for object recognition? In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2146–2153. [Google Scholar]
- Yang, C.L.; Wu, Q.Z.; Xia, Y.P. The origin of Mesozoic–Cenozoic extension-tensional fault system in the North Positive Element in the Tarim Basin, and its role in accumulating oil and gas. Oil Geophys. Prospect. 2000, 35, 461–468. [Google Scholar]
- Wei, G. Tectonic characteristics and petroleum accumulation in extensional-shear fault system in Mesozoic-Cenozoic formations in the northern area of Tabei Uplift, Tarim. Acta Pet. Sin. 2001, 22, 19–24. [Google Scholar]
- Zhou, X.; Sun, B.; Xu, H. Tectonic Deformation of Yakerla-Luntai Region in North Tarim Basin and Its Control on Oil/Gas Accumulation. J. Geomech. 2001, 7, 33–40. [Google Scholar]
- Xu, K.; Tian, J.; Yang, H.; Zhang, H.; Ju, W.; Liu, X.; Wang, Z.; Fang, L. Effects and practical applications of present-day in-situ stress on reservoir quality in ultra-deep layers of Kuqa Depression, Tarim Basin, China. J. Nat. Gas Geosci. 2022, 7, 85–94. [Google Scholar] [CrossRef]
- Huang, C.; Yang, B.; Zhao, X.-S. Log interpretation of reservoir parameters and reservoir evaluation for yageliemuzu formation in yakela gasfield. Xinjiang Oil Gas 2010, 4, 9-14, 26+117. [Google Scholar]
- Qiang, Y. Reservoir comprehensive classification and evaluation research of Yageliemu formation in YK gas reservoir. Pet. Geol. Eng. 2012, 26, 71–74+8. [Google Scholar]
- Rider, M.H.; Kennedy, M. The Geological Interpretation of Well Logs, 2nd ed.; Rider-French Consulting: Southerland, UK, 2002; 280p. [Google Scholar]
- Clavier, C.; Hoyle, W.; Meunier, D. Quantitative interpretation of thermal neutron decay time logs: Part I. Fundamentals and techniques. J. Pet. Technol. 1971, 23, 743–755. [Google Scholar] [CrossRef]
- Azeem, T.; Chun, W.Y.; Khalid, P.; Qing, L.X.; Ehsan, M.I.; Munawar, M.J.; Wei, X. An integrated petrophysical and rock physics analysis to improve reservoir characterization of Cretaceous sand intervals in Middle Indus Basin, Pakistan. J. Geophys. Eng. 2017, 14, 212–225. [Google Scholar] [CrossRef]
- Atlas, W. Introduction to Wireline Log Analysis; West Atlas Int Inc.: Houston, TX, USA, 1995. [Google Scholar]
- Kadhim, F.S.; Samsuri, A.; Idris, A.K. Using well logging data to predict permeability of a complex formation. Int. J. Pet. Eng. 2017, 3, 1–13. [Google Scholar] [CrossRef]
- Mjili, A.S. Petrophysical analysis of reservoir rocks at mlinzi mbali–1 well in block 7 offshore, Tanzania. Open J. Geol. 2018, 8, 764–780. [Google Scholar] [CrossRef] [Green Version]
- Mennan, A. Well Log Interpretation and 3D Reservoir Property Modeling of Maui-B Field, Taranaki Basin, New Zealand. Master’s Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2017. [Google Scholar]
- Farag, M.I.A.-F.I. Geophysical Reservoir Evaluation of Obaiyed Field, Western Desert, Egypt. Ph.D. Thesis, University of Sharjah, Sharjah, United Arab Emirates, 2010. [Google Scholar]
- Alao, P.A.; Ata, A.I.; Nwoke, C.E. Subsurface and Petrophysical Studies of Shaly-Sand Reservoir Targets in Apete Field, Niger Delta. Int. Sch. Res. Not. 2013, 2013, 102450. [Google Scholar] [CrossRef] [Green Version]
- Widarsono, B. Choice of water saturation model in log analysis and its implication to water saturation estimates—A further investigation. Sci. Contrib. Oil Gas 2012, 35. [Google Scholar] [CrossRef]
- AlMuhaidib, A.M.; Sen, M.K.; Toksöz, M.N. Integration of geology, rock physics, logs, and prestack seismic data for reservoir porosity estimation. Am. Assoc. Pet. Geol. Bull. 2012, 96, 1235–1251. [Google Scholar] [CrossRef]
- Burke, J.A.; Campbell, R.L., Jr.; Schmidt, A.W. The litho-porosity cross plot a method of determining rock characteristics for computation of log data. In Proceedings of the SPE Illinois Basin Regional Meeting, Evansville, Indiana, 30–31 October 1969; Society of Petroleum Engineers: Richardson, TX, USA, 1969. [Google Scholar]
- Serra, O. Advanced Interpretation of Wireline Logs; Schlumberger: Houston, TX, USA, 1987. [Google Scholar]
- Gibson, C.R. Basic Well Log Analysis for Geologists; American Association of Petroleum Geologists: Tulsa, OK, USA, 1982. [Google Scholar]
- Ashraf, U.; Zhu, P.; Yasin, Q.; Anees, A.; Imraz, M.; Mangi, H.N.; Shakeel, S. Classification of reservoir facies using well log and 3D seismic attributes for prospect evaluation and field development: A case study of Sawan gas field, Pakistan. J. Pet. Sci. Eng. 2019, 175, 338–351. [Google Scholar] [CrossRef]
- Kohonen, T.; Schroeder, M.R.; Huang, T.S. Self-Organizing Maps; Springer-Verlag New York Inc.: New York, NY, USA, 2001; p. 43. [Google Scholar]
- Amanipoor, H. Providing a subsurface reservoir quality maps in oil fields by geostatistical methods. Geod. Cartogr. 2013, 39, 145–148. [Google Scholar] [CrossRef]
- Abdideh, M.; Ameri, A. Cluster analysis of petrophysical and geological parameters for separating the electrofacies of a gas carbonate reservoir sequence. Nat. Resour. Res. 2019, 29, 1843–1856. [Google Scholar] [CrossRef]
- Cornish, R. Statistics: Cluster analysis. Math. Learn. Support Cent. 2007, 3, 1–5. [Google Scholar]
- Hussain, M.; Ahmed, N.; Chun, W.Y.; Khalid, P.; Mahmood, A.; Ahmad, S.R.; Rasool, U. Reservoir characterization of basal sand zone of lower Goru Formation by petrophysical studies of geophysical logs. J. Geol. Soc. India 2017, 89, 331–338. [Google Scholar] [CrossRef]
- Chang, H.-C.; Kopaska-Merkel, D.C.; Chen, H.-C. Identification of lithofacies using Kohonen self-organizing maps. Comput. Geosci. 2002, 28, 223–229. [Google Scholar] [CrossRef]
- El-Din, E.S.; Mesbah, M.A.; Kassab, M.A.; Mohamed, I.F.; Cheadle, B.A.; Teama, M.A. Assessment of petrophysical parameters of clastics using well logs: The Upper Miocene in El-Wastani gas field, onshore Nile Delta, Egypt. Pet. Explor. Dev. 2013, 40, 488–494. [Google Scholar] [CrossRef]
- Hakimi, M.H.; Al Qadasi, B.A.; Al Sharrabi, Y.; Al Sorore, O.T.; Al Samet, N.G. Petrophysical properties of Cretaceous clastic rocks (Qishn Formation) in the Sharyoof oilfield, onshore Masila Basin, Yemen. Egypt. J. Pet. 2017, 26, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Qadri, S.M.T.; Islam, M.A.; Shalaby, M.R. Application of well log analysis to estimate the petrophysical parameters and evaluate the reservoir quality of the Lower Goru Formation, Lower Indus Basin, Pakistan. Geomech. Geophys. Geo-Energy Geo-Resour. 2019, 5, 271–288. [Google Scholar] [CrossRef]
- Siripitayananon, P.; Chen, H.-C.; Hart, B.S. A New Technique for Lithofacies Prediction: Back-Propagation Neural Network. In Proceedings of the ACMSE: The 39th Association of Computing and Machinery South Eastern Conference, Citeseer, Atlanta, GA, USA, 16–17 March 2001; pp. 31–38. [Google Scholar]
- Chikhi, S.; Batouche, M. Probabilistic neural method combined with radial-bias functions applied to reservoir characterization in the Algerian Triassic province. J. Geophys. Eng. 2004, 1, 134–142. [Google Scholar] [CrossRef]
- Ali, M.; Jiang, R.; Ma, H.; Pan, H.; Abbas, K.; Ashraf, U.; Ullah, J. Machine learning-A novel approach of well logs similarity based on synchronization measures to predict shear sonic logs. J. Pet. Sci. Eng. 2021, 203, 108602. [Google Scholar] [CrossRef]
- Stundner, M.; Oberwinkler, C. Self-Organizing Maps for Lithofacies Identification and Permeability Prediction. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004; Society of Petroleum Engineers: Richardson, TX, USA, 2004. [Google Scholar]
- Hussain, M.; Liu, S.; Ashraf, U.; Ali, M.; Hussain, W.; Ali, N.; Anees, A. Application of Machine Learning for Lithofacies Prediction and Cluster Analysis Approach to Identify Rock Type. Energies 2022, 15, 4501. [Google Scholar] [CrossRef]
- Hussain, W.; Pan, L.; Wang, X.; Saqlain, M.; Ali, M.; Sadaf, R. Evaluation of unconventional hydrocarbon reserves using petrophysical analysis to characterize the Yageliemu Formation in the Yakela gas condensate field, Tarim Basin, China. Arab. J. Geosci. 2022, 15, 1635. [Google Scholar] [CrossRef]
- Ali, J.; Ashraf, U.; Anees, A.; Peng, S.; Umar, M.U.; Thanh, H.V.; Khan, U.; Abioui, M.; Mangi, H.N.; Ali, M.; et al. Hydrocarbon Potential Assessment of Carbonate-Bearing Sediments in a Meyal Oil Field, Pakistan: Insights from Logging Data Using Machine Learning and Quanti Elan Modeling. ACS Omega 2022, 7, 39375–39395. [Google Scholar] [CrossRef]
- Asquith, G.B.; Krygowski, D.; Gibson, C.R. Basic Well Log Analysis (Volume 16); The American Association of Petroleum Geologists: Tulsa, OK, USA, 2004. [Google Scholar]
- Ravanshad, M.S.; Soleimani, B.; Larkee, E.; Soleimani, M. Petrophysical evaluation and reservoir quality of ilam formation (late cretaceous), ahvaz oil field, dezful embayment, SW Iran. Pet. Coal 2017, 59, 135–145. [Google Scholar]
- Hong-bo, L.I.; Meijun, W.T.L.I. Tracing study on oil-gas filling pathways of Yakela gas condensate field in Tabei uplift. Acta Pet. Sin. 2013, 34, 219–224. [Google Scholar]
- Abdel-Fattah, M.I. Petrophysical characteristics of the messinian abu madi formation in the baltim east and north fields, offshore Nile delta, Egypt. J. Pet. Geol. 2014, 37, 183–195. [Google Scholar] [CrossRef]
- Anyiam, O.A.; Andrew, P.J.; Okwara, I.C. Assessment of the heterogeneity and petrophysical evaluation of reservoirs in the “Akbar Field”, Niger Delta, Nigeria. J. Pet. Explor. Prod. Technol. 2017, 7, 1035–1050. [Google Scholar] [CrossRef] [Green Version]
- Mbaga, D.E.; Mwendenusu, G. Effect of Shale Volume on the Porosity of Clastic Reservoirs. Case-Study from Mkuki-1 Reservoir, Offshore Tanzania. In Proceedings of the Fifth International Conference on Fault and Top Seals, Palermo, Italy, 8–12 September 2019; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2019; Volume 2019, pp. 1–5. [Google Scholar]
- Paul, W.J. Petrophysics. Geology Department of Geology and Petroleum Geology University of Aberdeen. 2012. Available online: https://www.academia.edu/40407518/Contents_Copyright_Petrophysics_MSc_Course_Notes (accessed on 24 January 2023).
- Pirson, S.J. Geologic Well Log Analysis, 3rd ed.; Gulf Pub. Co.: Houston, TX, USA, 1983; p. 424. [Google Scholar]
- Moradi, S.; Moeini, M.; Al-Askari, M.K.G.; Mahvelati, E.H. Determination of Shale Volume and Distribution Patterns and Effective Porosity from Well Log Data Based On Cross-Plot Approach for A Shaly Carbonate Gas Reservoir. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bandung, Indonesia, 28 March–2 April 2016; IOP Publishing: Bristol, UK, 2016; Volume 44, p. 42002. [Google Scholar]
- Hamada, G.M. An integrated approach to determine shale volume and hydrocarbon potential in shaly sand. In Proceedings of the SCA International Symposium, 1996; pp. 2093–2107. Available online: http://www.jgmaas.com/SCA/1996/SCA1996-41.pdf (accessed on 24 January 2023).
- Clavaud, J.-B.; Nelson, R.; Guru, U.K. Field Example of Enhanced Hydrocarbon Estimation in Thinly Laminated Formation with a Triaxial Array Induction Tool: A Laminated Sand-Shale Analysis with Anisotropic Shale. In Proceedings of the SPWLA 46th Annual Logging Symposium, New Orleans, LA, USA, 26–29 June 2005; Society of Petrophysicists and Well-Log Analysts: Houston, TX, USA, 2005. [Google Scholar]
- Sams, M.S.; Andrea, M. The effect of clay distribution on the elastic properties of sandstones. Geophys. Prospect. 2001, 49, 128–150. [Google Scholar] [CrossRef]
- Thomas, E.C.; Stieber, S.J. The distribution of shale in sandstones and its effect upon porosity. In Proceedings of the SPWLA 16th Annual Logging Symposium, New Orleans, LA, USA, 4–7 June 1975; Society of Petrophysicists and Well-Log Analysts: Houston, TX, USA, 1975. [Google Scholar]
- Kurniawan, F. Shaly Sand Interpretation Using CEC-Dependent Petrophysical Parameters. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2005. [Google Scholar]
- Al-Jawad, S.N.; Saleh, A.H. Flow units and rock type for reservoir characterization in carbonate reservoir: Case study, south of Iraq. J. Pet. Explor. Prod. Technol. 2020, 10, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Gunter, G.W.; Finneran, J.M.; Hartmann, D.J.; Miller, J.D. Early determination of reservoir flow units using an integrated petrophysical method. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 5–8 October 1997; Society of Petroleum Engineers: Richardson, TX, USA, 1997. [Google Scholar]
- Salman, S.M.; Bellah, S. Rock typing: An integrated reservoir characterization tool to construct a robust geological model in Abu Dhabi carbonate oil field. In Proceedings of the SPE/EAGE Reservoir Characterization & Simulation Conference, Abu Dhabi, United Arab Emirates, 19–21 October 2009; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2009; p. cp-170. [Google Scholar]
- Nabawy, B.S.; Barakat, M.K. Formation evaluation using conventional and special core analyses: Belayim Formation as a case study, Gulf of Suez, Egypt. Arab. J. Geosci. 2017, 10, 25. [Google Scholar] [CrossRef]
- Manzoor, U.; Ehsan, M.; Radwan, A.E.; Hussain, M.; Iftikhar, M.K.; Arshad, F. Seismic driven reservoir classification using advanced machine learning algorithms: A case study from the lower Ranikot/Khadro sandstone gas reservoir, Kirthar fold belt, lower Indus Basin, Pakistan. Geoenergy Sci. Eng. 2023, 211451. [Google Scholar] [CrossRef]
- Tounkara, F.; Ehsan, M.; Nasar Iqbal, M.; Al-Ansari, N.; Hajana, M.I.; Shafi, A.; Elbeltagi, A. Analyzing the seismic attributes, structural and petrophysical analyses of the Lower Goru Formation: A case study from Middle Indus Basin Pakistan. Front. Earth Sci. 2023, 10. [Google Scholar] [CrossRef]
- Munir, M.N.; Zafar, M.; Ehsan, M. Comparative and Statistical Analysis of Core-Calibrated Porosity with Log-Derived Porosity for Reservoir Parameters Estimation of the Zamzama GAS Field, Southern Indus Basin, Pakistan. Arab. J. Sci. Eng. 2022. [Google Scholar] [CrossRef]
(μsec/ft) | (v/v) | (g/cc) |
---|---|---|
Δtf | Φnf | Ρf |
189 | 1.0 | 1.0 |
S.No | Proposed Zone | Φeff | k | Vsh | Sw | Swir | Sg | ||
---|---|---|---|---|---|---|---|---|---|
Well | Top | Bottom | Thickness(m) | % | mD | % | % | % | % |
YK-16 | 5305 | 5350 | 45 | 9.2 | 7 | 16 | 48 | 43 | 52 |
YK-17 | 5305 | 5348 | 43 | 8 | 6 | 17 | 39 | 36 | 61 |
YK-18 | 5310 | 5347 | 37 | 7.8 | 5.8 | 20 | 42 | 38 | 58 |
YK-19 | 5310 | 5354 | 44 | 7.5 | 5.3 | 21 | 43 | 40 | 57 |
YK-20 | 5311 | 5347 | 36 | 7 | 3.7 | 23 | 55 | 48 | 45 |
Well ID | a | m | n | Rw |
---|---|---|---|---|
YK-16 | 0.65 | 1.80 | 2 | 0.035 |
YK-17 | 0.65 | 1.90 | 2 | 0.030 |
YK-18 | 0.65 | 1.80 | 2 | 0.034 |
YK-19 | 0.65 | 1.80 | 2 | 0.035 |
YK-20 | 0.65 | 1.80 | 2 | 0.035 |
K-Mean Clustering Results | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Facies | Points | Rock Typing | GR Mean/Std Dev | Φeff Mean/Std Dev | Perm Mean/Std Dev | Sw Mean/Std Dev | ||||
1 | 342 | Excellent | 63 | 11 | 0.13 | 0.016 | 13 | 8 | 0.33 | 0.06 |
2 | 934 | Good | 84 | 22 | 0.09 | 0.015 | 3 | 3.53 | 0.52 | 0.10 |
3 | 383 | Moderate | 108 | 55 | 0.035 | 0.025 | 0.037 | 0.09 | 0.93 | 0.091 |
4 | 48 | Poor | 124 | 136 | 0.02 | 0.018 | 0.004 | 0.011 | 0.99 | 0.024 |
Facies. No | Rock Typing | GR | Φeff | Perm | Sw |
---|---|---|---|---|---|
Facies–01 | Excellent quality rock type | Very low | Good to excellent | Good to excellent | Very low |
Facies–02 | Good quality rock type | Low | Good | Good | Low |
Facies–03 | Moderate quality rock type | Medium | Fair to good | Fair to good | Medium |
Facies–04 | Poor quality rock type | High | Low | Low | Very high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, W.; Ehsan, M.; Pan, L.; Wang, X.; Ali, M.; Din, S.U.; Hussain, H.; Jawad, A.; Chen, S.; Liang, H.; et al. Prospect Evaluation of the Cretaceous Yageliemu Clastic Reservoir Based on Geophysical Log Data: A Case Study from the Yakela Gas Condensate Field, Tarim Basin, China. Energies 2023, 16, 2721. https://doi.org/10.3390/en16062721
Hussain W, Ehsan M, Pan L, Wang X, Ali M, Din SU, Hussain H, Jawad A, Chen S, Liang H, et al. Prospect Evaluation of the Cretaceous Yageliemu Clastic Reservoir Based on Geophysical Log Data: A Case Study from the Yakela Gas Condensate Field, Tarim Basin, China. Energies. 2023; 16(6):2721. https://doi.org/10.3390/en16062721
Chicago/Turabian StyleHussain, Wakeel, Muhsan Ehsan, Lin Pan, Xiao Wang, Muhammad Ali, Shahab Ud Din, Hadi Hussain, Ali Jawad, Shuyang Chen, Honggang Liang, and et al. 2023. "Prospect Evaluation of the Cretaceous Yageliemu Clastic Reservoir Based on Geophysical Log Data: A Case Study from the Yakela Gas Condensate Field, Tarim Basin, China" Energies 16, no. 6: 2721. https://doi.org/10.3390/en16062721
APA StyleHussain, W., Ehsan, M., Pan, L., Wang, X., Ali, M., Din, S. U., Hussain, H., Jawad, A., Chen, S., Liang, H., & Liang, L. (2023). Prospect Evaluation of the Cretaceous Yageliemu Clastic Reservoir Based on Geophysical Log Data: A Case Study from the Yakela Gas Condensate Field, Tarim Basin, China. Energies, 16(6), 2721. https://doi.org/10.3390/en16062721