Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication Procedure
2.2. Outdoor Apparatus
2.3. Indoor Apparatus
3. Results and Discussion
3.1. Performance Degradation
3.2. Diurnal Performance
3.3. Performance Recovery Overnight
3.4. Dark Lock-in-Thermography (DLIT) Measurements
3.5. Raman Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aranda, C.A.; Caliò, L.; Salado, M. Toward commercialization of stable devices: An overview on encapsulation of hybrid organic-inorganic perovskite solar cells. Crystals 2021, 11, 519. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, S.; Bae, S.; Cho, K.; Chung, T.; Mundt, L.E.; Lee, S.; Park, S.; Park, H.; Schubert, M.C.; et al. Degradation and Recovery of Perovskite Solar Cells. Sci. Rep. 2016, 6, 38150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Qiao, X.; Shen, Y.; Wang, M. Effect of temperature on the efficiency of organometallic perovskite solar cells. J. Energy Chem. 2015, 24, 729–735. [Google Scholar] [CrossRef]
- Senocrate, A.; Acartürk, T.; Kim, G.Y.; Merkle, R.; Starke, U.; Grätzel, M.; Maier, J. Interaction of oxygen with halide perovskites. J. Mater. Chem. A 2018, 6, 10847–10855. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Shukla, R.K. Effect of humidity in the perovskite solar cell. Mater. Today Proc. 2019, 29, 836–838. [Google Scholar] [CrossRef]
- Xiang, W.; Liu, S.; Tress, W. A review on the stability of inorganic metal halide perovskites: Challenges and opportunities for stable solar cells. Energy Environ. Sci. 2021, 14, 2090–2113. [Google Scholar] [CrossRef]
- Deng, Y.; Xu, S.; Chen, S.; Xiao, X.; Zhao, J.; Huang, J. Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostabilityitle. Nat. Energy 2021, 6, 633–641. [Google Scholar] [CrossRef]
- Khadka, D.B.; Shirai, Y.; Yanagida, M.; Miyano, K. Insights into Accelerated Degradation of Perovskite Solar Cells under Continuous Illumination Driven by Thermal Stress and Interfacial Junction. ACS Appl. Energy Mater. 2021, 4, 11121–11132. [Google Scholar] [CrossRef]
- Domanski, K.; Alharbi, E.A.; Hagfeldt, A. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 2018, 3, 61–67. [Google Scholar] [CrossRef]
- Tress, W.; Domanski, K.; Carlsen, B. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat. Energy 2019, 4, 568–574. [Google Scholar] [CrossRef]
- Abdi-Jalebi, M.; Dar, M.I.; Sadhanala, A.; Senanayak, S.P.; Franckevičius, M.; Arora, N.; Hu, Y.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Grätzel, M.; et al. Impact of monovalent cation halide additives on the structural and optoelectronic properties of CH3NH3PbI3 perovskite. Adv. Energy Mater. 2016, 6, 1502472. [Google Scholar] [CrossRef] [Green Version]
- Kosmatos, K.O.; Theofylaktos, L.; Giannakaki, E.; Deligiannis, D.; Stergiopoulos, T. Μethylammonium Chloride: A Key Additive for Highly Efficient, Stable, and Up-Scalable Perovskite Solar Cells. Energy Environ. Mater. 2019, 2, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Zhang, X.; Lammar, S.; Qiu, W.; Kuang, Y.; Ruttens, B.; D’Haen, J.; Vaesen, I.; Conard, T.; Abdulraheem, Y.; et al. Critical Role of Perovskite Film Stoichiometry in Determining Solar Cell Operational Stability: A Study on the Effects of Volatile A—Cation Additives. ACS Appl. Mater. Interfaces 2022, 14, 27922–27931. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, M.M.; Yadav, P.; Prochowicz, D.; Sponseller, M.; Osherov, A.; Bulović, V.; Kong, J. Controllable Perovskite Crystallization via Antisolvent Technique Using Chloride Additives for Highly Efficient Planar Perovskite Solar Cells. Adv. Energy Mater. 2019, 9, 1803587. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, M.; Xia, Y.; Wei, Q.; Wang, Z.; Cheng, Y.; Chen, Y.; Huang, W. Synergistic effect of anions and cations in additives for highly efficient and stable perovskite solar cells. J. Mater. Chem. A 2018, 6, 9264–9270. [Google Scholar] [CrossRef]
- Velilla, E.; Ramirez, D.; Uribe, J.I.; Montoya, J.F.; Jaramillo, F. Outdoor performance of perovskite solar technology: Silicon comparison and competitive advantages at different irradiances. Sol. Energy Mater. Sol. Cells 2019, 191, 15–20. [Google Scholar] [CrossRef]
- Jošt, M.; Lipovšek, B.; Glažar, B.; Al-Ashouri, A.; Brecl, K.; Matič, G.; Magomedov, A.; Getautis, V.; Topič, M.; Albrecht, S. Perovskite Solar Cells go Outdoors: Field Testing and Temperature Effects on Energy Yield. Adv. Energy Mater. 2020, 10, 2000454. [Google Scholar] [CrossRef]
- Rakocevic, L.; Mundt, L.E.; Gehlhaar, R.; Merckx, T.; Aernouts, T.; Schubert, M.C.; Glunz, S.W.; Poortmans, J. Loss Analysis in Perovskite Photovoltaic Modules. Sol. RRL 2019, 3, 1900338. [Google Scholar] [CrossRef]
- Misra, R.K.; Ciammaruchi, L.; Aharon, S.; Mogilyansky, D.; Etgar, L. Effect of Halide Composition on the Photochemical Stability of Perovskite Photovoltaic Materials. ChemSusChem 2016, 9, 2572–2577. [Google Scholar] [CrossRef] [Green Version]
- Paraskeva, V.; Norton, M.; Hadjipanayi, M.; Hadipour, A.; Aguirre, A.; Ebner, R.; Georghiou, E.G. Outdoor monitoring and assessment of perovskite mini-modules. In Proceedings of the 38th European Photovoltaic Solar Energy Conference (EU PVSEC), Online, 6–10 September 2021; pp. 441–444. [Google Scholar]
- Domanski, K.; Roose, B.; Matsui, T.; Saliba, M.; Turren-Cruz, S.H.; Correa-Baena, J.P.; Carmona, C.R.; Richardson, G.; Foster, J.M.; De Angelis, F.; et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 2017, 10, 604–613. [Google Scholar] [CrossRef] [Green Version]
- Lammar, S.; Escalante, R.; Riquelme, A.J.; Jenatsch, S.; Ruhstaller, B.; Oskam, G.; Aernouts, T.; Anta, J.A. Impact of non-stoichiometry on ion migration and photovoltaic performance of formamidinium-based perovskite solar cells. J. Mater. Chem. A 2020, 10, 18782–18791. [Google Scholar] [CrossRef]
- Cai, B.; Yang, X.; Yu, Z.; Liang, Y.; Shan, Y.; Hagfeldt, A.; Sun, L. Unveiling the light soaking effects of the CsPbI3 perovskite solar cells. J. Power Sources 2020, 472, 228506. [Google Scholar] [CrossRef]
- Herterich, J.; Unmüssig, M.; Loukeris, G.; Kohlstädt, M.; Würfel, U. Ion Movement Explains Huge Voc Increase despite Almost Unchanged Internal Quasi-Fermi-Level Splitting in Planar Perovskite Solar Cells. Energy Technol. 2021, 9, 2001104. [Google Scholar] [CrossRef]
- Nie, W.; Blancon, J.C.; Neukirch, A.J.; Appavoo, K.; Tsai, H.; Chhowalla, M.; Alam, M.A.; Sfeir, M.Y.; Katan, C.; Even, J.; et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 2016, 7, 11574. [Google Scholar] [CrossRef] [Green Version]
- Tress, W.; Yavari, M.; Domanski, K.; Yadav, P.; Niesen, B. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 2018, 11, 151–165. [Google Scholar] [CrossRef]
- Mateker, W.R.; McGehee, M.D. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics. Adv. Mater. 2017, 29, 1603940. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paraskeva, V.; Hadjipanayi, M.; Norton, M.; Aguirre, A.; Hadipour, A.; Song, W.; Fontanot, T.; Christiansen, S.; Ebner, R.; Georghiou, G.E. Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives. Energies 2023, 16, 2608. https://doi.org/10.3390/en16062608
Paraskeva V, Hadjipanayi M, Norton M, Aguirre A, Hadipour A, Song W, Fontanot T, Christiansen S, Ebner R, Georghiou GE. Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives. Energies. 2023; 16(6):2608. https://doi.org/10.3390/en16062608
Chicago/Turabian StyleParaskeva, Vasiliki, Maria Hadjipanayi, Matthew Norton, Aranzazu Aguirre, Afshin Hadipour, Wenya Song, Tommaso Fontanot, Silke Christiansen, Rita Ebner, and George E. Georghiou. 2023. "Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives" Energies 16, no. 6: 2608. https://doi.org/10.3390/en16062608
APA StyleParaskeva, V., Hadjipanayi, M., Norton, M., Aguirre, A., Hadipour, A., Song, W., Fontanot, T., Christiansen, S., Ebner, R., & Georghiou, G. E. (2023). Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives. Energies, 16(6), 2608. https://doi.org/10.3390/en16062608