Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis
Abstract
:1. Introduction
- Engineers can simplify the manufacturing process through simulation;
- Reduced costs as the errors are limited;
- Faster production time;
- Real-time monitoring of the whole process;
- Enhanced quality of the end product;
- Logistics processes are improved.
- No operation status of the engine at traffic lights contrary to an ICE;
- Imminent acceleration at low speeds so full throttle is not required;
- Additional energy harvesting through braking;
- No need for transmission, so less weight.
- High purchase price;
- Charging speed, type and time required;
- Limited range;
- High space and weight required for energy storage.
2. Motor Technologies and Transmission
2.1. Motor Types
- DC brushed motor;
- DC brushless motor (BLDC);
- Induction motor (IM);
- Synchronous reluctance motor (SynRM);
- Switched reluctance motor (SRM);
- Permanent magnet motor (PMSM);
- Flux reversal motors.
2.2. Multiple Rotors and Transmission
2.3. Protection and Cooling
2.4. Motors Utilized by Manufacturers
3. Comparison Based on Selected Criteria
- ○
- Major thermal stress by fast charging and peak loads;
- ○
- Inability to fully capitalize on regenerative braking;
- ○
- Aging due to limited range of safe charging and life cycles;
- ○
- Lithium deposition on the cathode.
- Battery exchange;
- Conductive charging;
- Wireless power transfer (WPT).
- Torque ripple;
- Noise level;
- Efficiency;
- Cost;
- Size;
- Reliability;
- Fault tolerance;
- Overload capacity;
- Power density;
- Wide speed range;
- Control simplicity.
- Very low grading corresponds to score equal to 1;
- Low grading equals to score 2;
- Moderate scoring accounts to score 3;
- High classification matches to score 4 and finally;
- Very high or ultimate evaluation to score 5.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BEV | Battery Electric Vehicles |
BLDC | DC Brushless Motor |
CVT | Constant Variable Transmission |
EDLC | Electric Double Layer Capacitors |
EVs | Electric Vehicles |
EST | Energy Storage Technologies |
HESS | Hybrid Energy Storage System |
ICE | Internal Combustion Engines |
IM | Induction Motor |
PMSM | Permanent Magnet Motor |
SRM | Switched Reluctance Motor |
SynRM | Synchronous Reluctance Motor |
References
- Boglou, V.; Karavas, C.; Karlis, A.; Arvanitis, K. An intelligent decentralized energy management strategy for the optimal electric vehicles’ charging in low-voltage islanded microgrids. Int. J. Energy Res. 2021, 46, 2988–3016. [Google Scholar] [CrossRef]
- IEA. Available online: https://www.iea.org/topics/transport (accessed on 20 November 2022).
- Tiseo, I. Breakdown of CO2 Emissions in the Transportation Sector Worldwide 2020, by Subsector. Available online: https://www.statista.com/statistics/1185535/transport-carbon-dioxide-emissions-breakdown/ (accessed on 2 May 2022).
- Rievaj, V.; Gaňa, J.; Synák, F. Comparison of emissions depending on the type of vehicle engine. Logist. Sustain. Transp. 2019, 10, 45–74. [Google Scholar] [CrossRef] [Green Version]
- Synák, F.; Kučera, M.; Skrúcaný, T. Accessing the Energy Efficiency of an Electric Car. Komunikacie 2020, 23, 1–13. [Google Scholar]
- Tsaramirsis, G.; Kantaros, A.; Al-Darraji, I.; Piromalis, D.; Apostolopoulos, C.; Pavlopoulou, A.; Alrammal, M.; Ismail, Z.; Buhari, S.M.; Stojmenovic, M.; et al. A Modern Approach towards an Industry 4.0 Model: From Driving Technologies to Management. J. Sensors 2022, 2022, 5023011. [Google Scholar] [CrossRef]
- Ibrahim, M.; Rassõlkin, A.; Vaimann, T.; Kallaste, A. Overview on Digital Twin for Autonomous Electrical Vehicles Propulsion Drive System. Sustainability 2022, 14, 601. [Google Scholar] [CrossRef]
- Piromalis, D.; Kantaros, A. Digital Twins in the Automotive Industry: The Road toward Physical-Digital Convergence. Appl. Syst. Innov. 2022, 5, 65. [Google Scholar] [CrossRef]
- Sun, X.; Li, Z.; Wang, X.; Li, C. Technology Development of Electric Vehicles: A Review. Energies 2020, 13, 90. [Google Scholar] [CrossRef] [Green Version]
- Heydari, S.; Fajri, P.; Sabzehgar, R.; Asrari, A. Optimal Brake Allocation in Electric Vehicles for Maximizing Energy Harvesting During Braking. IEEE Trans. Energy Convers. 2020, 35, 1806–1814. [Google Scholar] [CrossRef]
- Sreejith, R.; Rajagopal, K.R. An insight into motor and battery selections for Three-Wheeler electric vehicle. In Proceedings of the 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016. [Google Scholar] [CrossRef]
- Indu, K.; Aswatha Kumar, M. Electric Vehicle Control and Driving Safety Systems: A Review. IETE J. Res. 2020, 69, 482–498. [Google Scholar] [CrossRef]
- Feng, S.; Magee, C.L. Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees. Appl. Energy 2020, 260, 114264. [Google Scholar] [CrossRef]
- Hannan, M.A.; Hoque, M.M.; Mohamed, A.; Ayob, A. Review of energy storage systems for electric vehicle applications: Issues and challenges. Renew. Sustain. Energy Rev. 2017, 69, 771–789. [Google Scholar] [CrossRef]
- Dorrell, D.G. A Review of the Methods for Improving the Efficiency of Drive Motors to Meet IE4 Efficiency Standards. J. Power Electron. 2014, 14, 842–851. [Google Scholar] [CrossRef] [Green Version]
- Sorlei, I.-S.; Bizon, N.; Thounthong, P.; Varlam, M.; Carcadea, E.; Culcer, M.; Iliescu, M.; Raceanu, M. Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies. Energies 2021, 14, 252. [Google Scholar] [CrossRef]
- Kumar, M.S.; Revankar, S.T. Development scheme and key technology of an electric vehicle: An overview. Renew. Sustain. Energy Rev. 2017, 70, 1266. [Google Scholar] [CrossRef]
- Tie, S.F.; Tan, C.W. A review of energy sources and energy management system in electric vehicles. Renew. Sustain. Energy Rev. 2013, 20, 82–102. [Google Scholar] [CrossRef]
- Catenacci, M.; Verdolini, E.; Bosetti, V.; Fiorese, G. Fuel Cell Electric Vehicles—Going electric: Expert survey on the future of battery technologies for electric vehicles. Energy Policy 2013, 61, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Ma, G.; Cong, N. Review of electrical energy storage system for vehicular applications. Renew. Sustain. Energy Rev. 2015, 41, 225–236. [Google Scholar] [CrossRef]
- Hasan, M.K.; Mahmud, M.; Habib, A.K.M.; Motakabber, S.M.A.; Islam, S. Review of electric vehicle energy storage and management system: Standards, issues, and challenges. J. Energy Storage 2021, 41, 102940. [Google Scholar] [CrossRef]
- Rashid, M. Power Electronics Handbook, 3rd ed.; Butterworth-Heinemann Publications: Oxford, UK, 2011. [Google Scholar]
- García-Plaza, M.; Serrano-Jiménez, D.; Eloy-García Carrasco, J.; Alonso-Martínez, J. A Ni–Cd battery model considering state of charge and hysteresis effects. J. Power Sources 2015, 275, 595–604. [Google Scholar] [CrossRef]
- Zhang, G.; Wen, Z.; Wu, X.; Zhang, J.; Ma, G.; Jin, J. Sol-gel synthesis of Mg2+ stabilized Na-β″/β-Al2O3 solid electrolyte for sodium anode battery. J. Alloy. Compd. 2014, 613, 80–86. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- De Klerk, M.L.; Saha, A.K. A Comprehensive Review of Advanced Traction Motor Control Techniques Suitable for Electric Vehicle Applications. IEEE Access 2021, 9, 125080–125108. [Google Scholar] [CrossRef]
- Liao, P.; Tang, T.-Q.; Liu, R.; Huang, H.-J. An eco-driving strategy for electric vehicle based on the powertrain. Appl. Energy 2021, 302, 117583. [Google Scholar] [CrossRef]
- Singh, R.; Chauhan, R. Topologies of Electric Vehicle: A Review. IJRAMT 2022, 3, 85–89. [Google Scholar]
- Kumar, D.; Nema, R.K.; Gupta, S. A comparative review on power conversion topologies and energy storage system for electric vehicles. Int. J. Energy Res. 2020, 44, 7863–7885. [Google Scholar] [CrossRef]
- Arif, S.M.; Lie, T.T.; Seet, B.C.; Ayyadi, S.; Jensen, K. Review of Electric Vehicle Technologies, Charging Methods, Standards and Optimization Techniques. Electronics 2021, 10, 1910. [Google Scholar] [CrossRef]
- Habib, S.; Khan, M.M.; Abbas, F.; Sang, L.; Shahid, M.U.; Tang, H. A Comprehensive Study of Implemented International Standards, Technical Challenges, Impacts and Prospects for Electric Vehicles. IEEE Access 2018, 6, 13866–13890. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Y.; Zhao, Z.; Dong, H.; Wang, S.; Liu, J.; Guan, J.; Duan, X. Microsimulation of electric vehicle energy consumption and driving range. Appl. Energy 2020, 267, 115081. [Google Scholar] [CrossRef]
- Mruzek, M.; Gajdáč, I.; Kučera, Ľ.; Barta, D. Analysis of Parameters Influencing Electric Vehicle Range. Procedia Eng. 2016, 134, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.Q.; Chu, W.Q.; Guan, Y. Quantitative comparison of electromagnetic performance of electrical machines for HEVs/EVs. CES Trans. Electr. Mach. Syst. 2017, 1, 37–47. [Google Scholar] [CrossRef]
- Thakar, D.U.; Patel, R.A. Comparison of Advance and Conventional Motors for Electric Vehicle Application. In Proceedings of the 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, 10–11 October 2019. [Google Scholar] [CrossRef]
- Huang, C.; Lei, F.; Han, X.; Zhang, Z. Determination of modeling parameters for a brushless DC motor that satisfies the power performance of an electric vehicle. Meas. Control. 2019, 52, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Xuan, J.; Wang, X.; Lu, D.; Wang, L. Research on the safety assessment of the brushless DC motor based on the gray model. Adv. Mech. Eng. 2017, 9, 1687814017695438. [Google Scholar] [CrossRef] [Green Version]
- Aliasand, A.E.; Josh, F.T. Selection of Motor foran Electric Vehicle: A Review. Mater. Today Proc. 2020, 24, 1804–1815. [Google Scholar] [CrossRef]
- Cao, W.; Bukhari, A.A.S.; Aarniovuori, L. Review of Electrical Motor Drives for Electric Vehicle Applications. Mehran Univ. Res. J. Eng. Technol. 2019, 38, 525–540. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Bhaskar, D.V.; Muduli, U.R.; Beig, A.R.; Behera, R.K. Iron-Loss Modeling with Sensorless Predictive Control of PMBLDC Motor Drive for Electric Vehicle Application. IEEE Trans. Transp. Electrif. 2020, 7, 1506–1515. [Google Scholar] [CrossRef]
- Guneser, M.T.; Dalcali, A.; Ozturk, T.; Ocak, C.; Cernat, M. An induction motor design for urban use electric vehicle. In Proceedings of the IEEE International Power Electronics and Motion Control Conference PEMC, Varna, Bulgaria, 25–28 September 2016. [Google Scholar]
- Chun, Y.-D.; Park, B.-G.; Kim, D.-J.; Choi, J.-H.; Han, P.-W.; Um, S. Development and Performance Investigation on a 60kW Induction Motor for EV Propulsion. J. Electr. Eng. Technol. 2016, 11, 639–643. [Google Scholar] [CrossRef] [Green Version]
- Sieklucki, G. Optimization of Powertrain in EV. Energies 2021, 14, 725. [Google Scholar] [CrossRef]
- Abd Ali Alzuabidi, O.H.; Hussein, M.W. Fault detection of electric vehicle motor based on flux performance using FEM. Period. Eng. Nat. Sci. 2021, 9, 5–11. [Google Scholar] [CrossRef]
- Su, J.; Gao, R.; Husain, I. Model Predictive Control Based Field-Weakening Strategy for Traction EV Used Induction Motor. IEEE Trans. Ind. Appl. 2017, 54, 2295–2305. [Google Scholar] [CrossRef]
- Men’shenin, A.S.; Grigor’ev, M.A. Improving the Specific Mass and Dimensions of Synchronous Reluctance Electric Drives. Russ. Electr. Eng. 2018, 89, 228–233. [Google Scholar] [CrossRef]
- Donaghy-Spargo, C. Synchronous reluctance motor technology: Industrial opportunities, challenges and future direction. Eng. Technol. Ref. 2016, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Kumar, G.V.; Chuang, C.-H.; Lu, M.-Z.; Liaw, C.-M. Development of an Electric Vehicle Synchronous Reluctance Motor Drive. IEEE Trans. Veh. Technol. 2020, 69, 5012–5024. [Google Scholar] [CrossRef]
- Lopez-Torres, C.; García Espinosa, A.; Riba, J.-R.; Romeral, L. Design and Optimization for Vehicle Driving Cycle of Rare-Earth-Free SynRM Based on Coupled Lumped Thermal and Magnetic Networks. IEEE Trans. Veh. Technol. 2018, 67, 196–205. [Google Scholar] [CrossRef]
- Padmanaban, L.A.; Saravanan, P. Design, analysis and comparison of switched reluctance motors for electric vehicle application. Automatika 2022, 64, 239–247. [Google Scholar] [CrossRef]
- Lan, Y.; Benomar, Y.; Deepak, K.; Aksoz, A.; Baghdadi, M.; Bostanci, E.; Hegazy, O. Switched Reluctance Motors and Drive Systems for Electric Vehicle Powertrains: State of the Art Analysis and Future Trends. Energies 2021, 14, 2079. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, S. A New Slot-PM Vernier Reluctance Machine with Enhanced Zero-Sequence Current Excitation for Electric Vehicle Propulsion. IEEE Trans. Ind. Electron. 2020, 67, 3528–3539. [Google Scholar] [CrossRef]
- Sun, M.; Chen, H.; Yan, W.; Cheng, H.; Liu, Z. Design and Optimization of Switched Reluctance Motor for Propulsion System of Small Electric Vehicle. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Hangzhou, China, 17–20 October 2016. [Google Scholar] [CrossRef]
- Wei, D.; He, H.; Cao, J. Hybrid electric vehicle electric motors for optimum energy efficiency: A computationally efficient design. Energy 2020, 203, 117779. [Google Scholar] [CrossRef]
- Krasopoulos, C.T.; Beniakar, M.E.; Kladas, A.G. Multicriteria PM Motor Design Based on ANFIS Evaluation of EV Driving Cycle Efficiency. IEEE Trans. Transp. Electrif. 2018, 4, 525–535. [Google Scholar] [CrossRef]
- Du Plessis, F.; Pastellides, S.; Wang, R.-J. Design and Comparison of Three Surface-Mounted PM Motors for a Light Electric Vehicle. In Proceedings of the 2021 Southern African Universities Power Engineering Conference, Potchefstroom, South Africa, 27–29 January 2021. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, X.; Niu, S. A Novel Dual-Structure Parallel Hybrid Excitation Machine for Electric Vehicle Propulsion. Energies 2019, 12, 338. [Google Scholar] [CrossRef] [Green Version]
- Du, G.; Li, N.; Zhou, Q.; Gao, W.; Wang, L.; Pu, T. Multi-Physics Comparison of Surface-Mounted and Interior Permanent Magnet Synchronous Motor for High-Speed Applications. Machines 2022, 10, 700. [Google Scholar] [CrossRef]
- Deng, W.; Zuo, S. Electromagnetic Vibration and Noise of the Permanent-Magnet Synchronous Motors for Electric Vehicles: An Overview. IEEE Trans. Transp. Electrif. 2019, 5, 59–70. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, S.; Fu, W. Design of a Novel Parallel-Hybrid-Excited Dual-PM Machine Based on Armature Harmonics Diversity for Electric Vehicle Propulsion. IEEE Trans. Ind. Electron. 2018, 66, 4209–4219. [Google Scholar] [CrossRef]
- Venkatesan, S.; Manickavasagam, K.; Tengenkai, N.; Vijayalakshmi, N. Health monitoring and prognosis of electric vehicle motor using intelligent-digital twin. IET Electr. Power Appl. 2019, 13, 1328–1335. [Google Scholar] [CrossRef]
- Momen, F.; Rahman, K.; Son, Y.C. Electrical Propulsion System Design of Chevrolet Bolt Battery Electric Vehicle. IEEE Trans. Ind. Appl. 2019, 55, 376–384. [Google Scholar] [CrossRef]
- Zheng, S.; Zhu, X.; Xiang, Z.; Xu, L.; Zhang, L.; Lee, C.H.T. Technology trends, challenges, and opportunities of reduced-rare-earth PM motor for modern electric vehicles. Green Energy Intell. Transp. 2022, 1, 100012. [Google Scholar] [CrossRef]
- Jing, L.; Yang, K.; Gao, Y.; Kui, Z.; Min, Z. Analysis and Optimization of a Novel Flux Reversal Machine with Auxiliary Teeth. Energies 2022, 15, 8906. [Google Scholar] [CrossRef]
- Gao, Y.; Li, D.; Qu, R.; Fan, X.; Li, J.; Ding, H. A Novel Hybrid Excitation Flux Reversal Machine for Electric Vehicle Propulsion. IEEE Trans. Veh. Technol. 2018, 67, 171–182. [Google Scholar] [CrossRef]
- Rimpas, D.; Chalkiadakis, P. Electric vehicle transmission types and setups: A general review. Int. J. Electr. Hybrid Veh. 2021, 13, 38. [Google Scholar] [CrossRef]
- Farrokhifar, M.; Aghdam, F.H.; Alahyari, A.; Monavari, A.; Safari, A. Optimal energy management and sizing of renewable energy and battery systems in residential sectors via a stochastic MILP model. Electr. Power Syst. Res. 2020, 187, 106483. [Google Scholar] [CrossRef]
- De Carlo, M.; Mantriota, G. Electric vehicles with two motors combined via planetary gear train. Mech. Mach. Theory 2020, 148, 103789. [Google Scholar] [CrossRef]
- Wu, J.; Liang, J.; Ruan, J.; Zhang, N.; Walker, P.D. Efficiency comparison of electric vehicles powertrains with dual motor and single motor input. Mech. Mach. Theory 2018, 128, 569–585. [Google Scholar] [CrossRef]
- Tang, Q.; Yang, Y.; Luo, C.; Yang, Z.; Fu, C. A novel electro-hydraulic compound braking system coordinated control strategy for a four-wheel-drive pure electric vehicle driven by dual motors. Energy 2022, 241, 122750. [Google Scholar] [CrossRef]
- Belousov, E.V.; Grigor’ev, M.A.; Gryzlov, A.A. An electric traction drive for electric vehicles. Russ. Electr. Eng. 2017, 88, 185–188. [Google Scholar] [CrossRef]
- Urbina Coronado, P.D.; Castañón, P.O.; Ahuett-Garza, H. Optimization of gear ratio and power distribution for a multimotor powertrain of an electric vehicle. Eng. Optim. 2017, 50, 293–309. [Google Scholar] [CrossRef]
- Kwon, K.; Seo, M.; Min, S. Efficient multi-objective optimization of gear ratios and motor torque distribution for electric vehicles with two-motor and two-speed powertrain system. Appl. Energy 2019, 259, 114190. [Google Scholar] [CrossRef]
- Dong, Q.; Qi, H.; Liu, X.; Wang, Y. Calibration and optimization of an electric vehicle powertrain system. J. Chin. Inst. Eng. 2018, 41, 539–546. [Google Scholar] [CrossRef]
- Ruan, J.; Walker, P.; Zhang, N. Comparison of Power Consumption Efficiency of CVT and Multi-Speed Transmissions for Electric Vehicle. Int. J. Automot. Eng. 2018, 9, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Do, H.-J.; Oh, S.-H. CVT for a Small Electric Vehicle Using Centrifugal Belt Pulley. Energies 2022, 15, 8800. [Google Scholar] [CrossRef]
- Verbruggen, F.; Salazar, M.; Pavone, M.; Hofman, T. Joint Design and Control of Electric Vehicle Propulsion Systems. In Proceedings of the 2020 European Control Conference (ECC), St. Petersburg, Russia, 12–15 May 2020. [Google Scholar] [CrossRef]
- Kim, C.-H.; Jun, S.-B.; Yoon, H.-J.; Kim, N.-H.; Jung, H.-C.; Kim, R.-E.; Jung, S.-Y. Calculation of Parasitic Capacitance to Analyze Shaft Voltage of Electric Motor with Direct-Oil-Cooling System. Processes 2022, 10, 1541. [Google Scholar] [CrossRef]
- Isaev, A.V.; Nefed’ev, A.I.; Isaeva, L.A. Automated System for Diagnostics of Emergency Operation Modes of Electric Motor. In Proceedings of the 2019 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 25–29 March 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Huynh, T.A.; Hsieh, M.-F. Performance Analysis of Permanent Magnet Motors for Electric Vehicles (EV) Traction Considering Driving Cycles. Energies 2018, 11, 1385. [Google Scholar] [CrossRef] [Green Version]
- Previati, G.; Mastinu, G.; Gobbi, M. Thermal Management of Electrified Vehicles—A Review. Energies 2022, 15, 1326. [Google Scholar] [CrossRef]
- Ha, T.; Han, N.G.; Kim, M.S.; Rho, K.H.; Kim, D.K. Experimental Study on Behavior of Coolants, Particularly the Oil-Cooling Method, in Electric Vehicle Motors Using Hairpin Winding. Energies 2021, 14, 956. [Google Scholar] [CrossRef]
- Tikadar, A.; Johnston, D.; Kumar, N.; Joshi, Y.; Kumar, S. Comparison of electro-thermal performance of advanced cooling techniques for electric vehicle motors. Appl. Therm. Eng. 2021, 183, 116182. [Google Scholar] [CrossRef]
- Gai, Y.; Kimiabeigi, M.; Chong, Y.C.; Widmer, J.D.; Deng, X.; Popescu, M.; Goss, J.; Staton, D.A.; Steven, A. Cooling of Automotive Traction Motors: Schemes, Examples, and Computation Methods. IEEE Trans. Ind. Electron. 2019, 66, 1681–1692. [Google Scholar] [CrossRef] [Green Version]
- Alammal, F. A Review of Battery Electric Vehicle Powertrain System Requirements and Limitation. Bachelor’s Thesis, University of Twente, Enschede, The Netherlands, 2021. [Google Scholar]
- Madichetty, S.; Mishra, S.; Basu, M. New trends in electric motors and selection for electric vehicle propulsion systems. IET Electr. Syst. Transp. 2021, 11, 186–199. [Google Scholar] [CrossRef]
- Agamloh, E.; Von Jouanne, A.; Yokochi, A. An Overview of Electric Machine Trends in Modern Electric Vehicles. Machines 2020, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ching, T.W.; Huang, S.; Wang, H.; Xu, T. Challenges Faced by Electric Vehicle Motors and Their Solutions. IEEE Access 2021, 9, 5228–5249. [Google Scholar] [CrossRef]
- Ahsan, M.B.F.; Mekhilef, S.; Soon, T.K.; Mubin, M.B.; Shrivastava, P.; Seyedmahmoudian, M. Lithium-ion battery and supercapacitor-based hybrid energy storage system for electric vehicle applications: A review. Int. J. Energy Res. 2022, 46, 19826–19854. [Google Scholar] [CrossRef]
- Rimpas, D.; Kaminaris, S.D.; Aldarraji, I.; Piromalis, D.; Vokas, G.; Papageorgas, P.G.; Tsaramirsis, G. Energy management and storage systems on electric vehicles: A comprehensive review. Mater. Today Proc. 2021, 61, 813–819. [Google Scholar] [CrossRef]
- Spitthoff, L.; Shearing, P.R.; Burheim, O.S. Temperature, Ageing and Thermal Management of Lithium-Ion Batteries. Energies 2021, 14, 1248. [Google Scholar] [CrossRef]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, R.G.; Howey, D.A. Degradation diagnostics for lithium ion cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Andrenacci, N.; Vellucci, F.; Sglavo, V. The Battery Life Estimation of a Battery under Different Stress Conditions. Batteries 2021, 7, 88. [Google Scholar] [CrossRef]
- Subasinghage, K.; Gunawardane, K.; Padmawansa, N.; Kularatna, N.; Moradian, M. Modern Supercapacitors Technologies and Their Applicability in Mature Electrical Engineering Applications. Energies 2022, 15, 7752. [Google Scholar] [CrossRef]
- Burke, A.F.; Zhao, J. Development, Performance, and Vehicle Applications of High Energy Density Electrochemical Capacitors. Appl. Sci. 2022, 12, 1726. [Google Scholar] [CrossRef]
- Li, J.; Zou, W.; Yang, Q.; Yi, F.; Bai, Y.; Wei, Z.; He, H. Size optimization and power allocation of a hybrid energy storage system for frequency service. Int. J. Electr. Power Energy Syst. 2022, 141, 108165. [Google Scholar] [CrossRef]
- Lee, N.; Nee, C.H.; Yap, S.S.; Tham, K.K.; You, A.H.; Yap, S.L.; Mohd Arof, A.K.B. Capacity Sizing of Embedded Control Battery–Supercapacitor Hybrid Energy Storage System. Energies 2022, 15, 3783. [Google Scholar] [CrossRef]
- Un-Noor, F.; Padmanaban, S.; Mihet-Popa, L.; Mollah, M.N.; Hossain, E. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies 2017, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.-S.; Lu, F.; Zhu, C.; Cheng, C.-Y.; Chen, S.-L.; Ren, T.-J.; Mi, C.C. Hybrid Energy Storage System of an Electric Scooter Based on Wireless Power Transfer. IEEE Trans. Ind. Inform. 2018, 14, 4169–4178. [Google Scholar] [CrossRef]
- Ali, N.; Liu, Z.; Armghan, H.; Ahmad, I.; Hou, Y. LCC-S-Based Integral Terminal Sliding Mode Controller for a Hybrid Energy Storage System Using a Wireless Power System. Energies 2021, 14, 1693. [Google Scholar] [CrossRef]
- Ehsani, M.; Singh, K.V.; Bansal, H.O.; Mehrjardi, R.T. State of the Art and Trends in Electric and Hybrid Electric Vehicles. Proc. IEEE 2021, 109, 967–984. [Google Scholar] [CrossRef]
- Bolvashenkov, I.; Kammermann, J.; Herzog, H.-G. Methodology for selecting electric traction motors and its application to vehicle propulsion systems. In Proceedings of the 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Capri, Italy, 22–24 June 2016; pp. 1214–1219. [Google Scholar] [CrossRef]
- Karki, A.; Phuyal, S.; Tuladhar, D.; Basnet, S.; Shrestha, B.P. Status of Pure Electric Vehicle Power Train Technology and Future Prospects. Appl. Syst. Innov. 2020, 3, 35. [Google Scholar] [CrossRef]
- López, I.; Ibarra, E.; Matallana, A.; Andreu, J.; Kortabarria, I. Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges. Renew. Sustain. Energy Rev. 2019, 114, 109336. [Google Scholar] [CrossRef]
- Roshandel, E.; Mahmoudi, A.; Kahourzade, S.; Tahir, A.; Fernando, N. Propulsion System of Electric Vehicles: Review. In Proceedings of the 31st Australasian Universities Power Engineering Conference (AUPEC), Perth, Australia, 26–30 September 2021. [Google Scholar]
- Cai, W.; Wu, X.; Zhou, M.; Liang, Y.; Wang, Y. Review and Development of Electric Motor Systems and Electric Powertrains for New Energy Vehicles. Automot. Innov. 2021, 4, 3–22. [Google Scholar] [CrossRef]
- Yang, Z.; Shang, F.; Brown, I.P.; Krishnamurthy, M. Comparative Study of Interior Permanent Magnet, Induction, and Switched Reluctance Motor Drives for EV and HEV Applications. IEEE Trans. Transp. Electrif. 2015, 1, 245–254. [Google Scholar] [CrossRef]
- El Hadraoui, H.; Zegrari, M.; Chebak, A.; Laayati, O.; Guennouni, N. A Multi-Criteria Analysis and Trends of Electric Motors for Electric Vehicles. World Electr. Veh. J. 2022, 13, 65. [Google Scholar] [CrossRef]
- Mohammad, K.S.; Jaber, A.S. Comparison of electric motors used in electric vehicle propulsion system. Indones. J. Electr. Eng. Comput. Sci. 2022, 27, 11–19. [Google Scholar] [CrossRef]
- Gundogdu, T.; Zhu, Z.-Q.; Chan, C.C. Comparative Study of Permanent Magnet, Conventional, and Advanced Induction Machines for Traction Applications. World Electr. Veh. J. 2022, 13, 137. [Google Scholar] [CrossRef]
EV | System Voltage (V) | Fuel Cell (kWh) | Ultracapacitors (kWh) | Electrochemical Batteries (kWh) |
---|---|---|---|---|
Micro-hybrid | 12–42 | - | 0.03 | 0.02–0.05 |
Mild-hybrid | 150–200 | - | 0.1–0.15 | 0.1–1.3 |
Full-hybrid | 200–250 | - | 0.1–0.2 | 1.4–4 |
Plug in hybrid | 250–500 | - | 0.1–0.2 | 5–20 |
All EVs | 300–500 | 150–200 | 0.3 | 20–40 |
Battery Type | Energy * (Wh/kg) | Energy Density * (Wh/L) | Specific Power ** (W/kg) | Efficiency (%) | No. of Cycles | Operating Temperature (°C) |
---|---|---|---|---|---|---|
Lead–acid | 30–50 | 60–100 | 200–400 | 70–90 | 2000–4500 | −15–50 |
Nickel-metal hydride | 30–70 | 60–170 | 25–350 | 50–90 | 500–3000 | −40–60 |
Lithium-ion | 120–180 | 200–400 | 200–400 | 70–85 | 1500–4500 | −60–70 |
Factor | Solution | Gains |
---|---|---|
Purchase price | Diversities, massive production | Up to 50% savings |
Slow charging | Rapid charging | 75% less time required |
Moderate range | Regenerative braking | Up to 25% |
Weight | Smaller batteries | 10% * |
Improvements | 2-Speed | 3-Speed | 4-Speed | CVT |
---|---|---|---|---|
Battery aging Capacity needed for 200 km range | 16.2% | 16.3% | 17.1% | 18% |
18% | 18% | 19% | 23% | |
Consumed electricity improvement * Energy rate | 15% | 15% | 22% | 31% |
9.6% | 9.0% | 16% | 24% | |
Battery cost ** Total cost (€) | 16% | 16% | 17% | 32% |
5100 € | 5300 € | 5150 € | 11,000 € |
Model | Motor Specs | Cooling |
---|---|---|
Toyota Prius 2010 | I-PMSM | Jacket |
Toyota Sonata 2011 | PMSM | Jacket |
Tesla Roadster 2012 | IM | Forced Air |
Nissan Leaf 2012 | I-PMSM | Jacket |
Tesla S60 | IM | Jacket + Shaft |
BMW i3 | I-PMSM | Jacket |
Model Name | Year | Motor Type |
---|---|---|
BMW iX | 2022 | PMSM |
Tesla Model X | 2021 | SynRM |
Tesla Model Y | 2021 | SynRM |
Tesla Model 3 | 2021 | SynRM |
Volvo XC40 | 2021 | PMSM |
Tesla Model S | 2020 | SynRM |
Renault Zoe | 2020 | PMSM |
Porsche Taycan | 2020 | PMSM |
Hyundai Kona E | 2020 | PMSM |
Mercedes Benz EQ | 2020 | IM |
Skoda Citigo-e IV | 2020 | PMSM |
Mini Cooper SE | 2020 | PMSM |
Kia e-Niro | 2020 | PMSM |
Nio EC6 | 2020 | PMSM |
Nissan Leaf | 2019 | PMSM |
Jaguat i-Pace | 2019 | PMSM |
Volkswagen E-Up | 2019 | PMSM |
Audi E-Tron Q | 2019 | IM |
Xpeng G3 | 2019 | PMSM |
Chevrolet Bolt | 2017 | PMSM |
Toyota Prius Hybrid | 2017 | SynRM |
Mahindra Everito | 2016 | IM |
Tesla Model X | 2015 | IM |
Land Rover 110 Defender | 2013 | SRM |
Ford Focus Electric | 2011 | IM |
Tata EV | 2011 | PMSM |
Reva NXR | 2011 | IM |
Fiat Doblo | 2011 | IM |
Toyota Camry | 2006 | PMSM |
Peugeot Partner | 1999 | BLDC |
Honda EV plus | 1997 | BLDC |
Nissan Altra | 1997 | PMSM |
Ford Ecostar | 1992 | IM |
City EI | 1987 | BDC |
Citicar | 1974 | BDC |
Enfield 8000 | 1969 | BDC |
Characteristic | EDLC | Lithium Battery |
---|---|---|
Nominal cycles | 50 k to 1.1 mil | 3000 |
Nominal voltage (V) | 2.7–3 | 3.7 |
Charge time (s) * | <60 | 3600–18,000 |
Discharge time (s) | <1800 | <10,800 |
Energy density (Wh/kg) | 4–10 | Up to 250 |
Power density (W/kg) | 800–2000 | <3000 |
Operating temperature (°C) | 40–70 | 20–60 |
Lifetime expectancy (Years) | >25 | 5–20 |
Series equivalent resistance range | milliOhms | Ohms |
Endurance at heavy conditions | High | Low |
Criteria | BLDC | IM | SynRm | SRM | PMSM |
---|---|---|---|---|---|
Torque ripple | 5 | 5 | 4 | 2 | 4 |
Noise level | 4 | 4 | 4 | 2 | 5 |
Efficiency | 3 | 3 | 4 | 4 | 5 |
Cost | 4 | 5 | 3 | 4 | 3 |
Size | 3 | 4 | 3 | 2 | 5 |
Reliability | 3 | 5 | 5 | 5 | 4 |
Fault tolerance | 2 | 3 | 5 | 5 | 4 |
Overload capacity | 3 | 4 | 3 | 2 | 3 |
Power density | 2 | 3 | 4 | 3 | 5 |
Speed range | 2 | 3 | 4 | 5 | 3 |
Control simplicity | 5 | 5 | 3 | 3 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimpas, D.; Kaminaris, S.D.; Piromalis, D.D.; Vokas, G.; Arvanitis, K.G.; Karavas, C.-S. Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis. Energies 2023, 16, 2555. https://doi.org/10.3390/en16062555
Rimpas D, Kaminaris SD, Piromalis DD, Vokas G, Arvanitis KG, Karavas C-S. Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis. Energies. 2023; 16(6):2555. https://doi.org/10.3390/en16062555
Chicago/Turabian StyleRimpas, Dimitrios, Stavrοs D. Kaminaris, Dimitrios D. Piromalis, George Vokas, Konstantinos G. Arvanitis, and Christos-Spyridon Karavas. 2023. "Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis" Energies 16, no. 6: 2555. https://doi.org/10.3390/en16062555
APA StyleRimpas, D., Kaminaris, S. D., Piromalis, D. D., Vokas, G., Arvanitis, K. G., & Karavas, C. -S. (2023). Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis. Energies, 16(6), 2555. https://doi.org/10.3390/en16062555