Perennial Grass Species for Bioenergy Production: The State of the Art in Mechanical Harvesting
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Giant Reed
3.1.1. General Features of the Crop
3.1.2. Mechanical Harvesting
3.2. Miscanthus
3.2.1. General Features of the Crop
3.2.2. Mechanical Harvesting
3.3. Reed Canary Grass
3.3.1. General Features of the Crop
3.3.2. Mechanical Harvesting
3.4. Switchgrass
3.4.1. General Features of the Crop
3.4.2. Mechanical Harvesting
3.5. Summary Table
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eionet Share of Energy Consumption from Renewable Sources in Europe. Available online: https://www.eea.europa.eu/ims/share-of-energy-consumption-from#:~:text=Witha22.1%25shareof,accordingtodatafromEurostat (accessed on 12 December 2022).
- Eurostat Energy Statistics—An Overview. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview#Primary_energy_production (accessed on 10 November 2022).
- IAEA Nuclear Technology. In the New Crusaders; Routledge: London, UK, 2020; pp. 77–86. [Google Scholar]
- Buonomano, A.; Barone, G.; Forzano, C. Advanced Energy Technologies, Methods, and Policies to Support the Sustainable Development of Energy, Water and Environment Systems. Energy Rep. 2022, 8, 4844–4853. [Google Scholar] [CrossRef]
- Pari, L.; Latterini, F.; Stefanoni, W. Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art. Agriculture 2020, 10, 309. [Google Scholar] [CrossRef]
- Suardi, A.; Saia, S.; Stefanoni, W.; Gunnarsson, C.; Sundberg, M.; Pari, L. Admixing Chaff with Straw Increased the Residues Collected without Compromising Machinery Efficiencies. Energies 2020, 13, 1766. [Google Scholar] [CrossRef] [Green Version]
- Bergonzoli, S.; Suardi, A.; Rezaie, N.; Alfano, V.; Pari, L. An Innovative System for Maize Cob and Wheat Chaff Harvesting: Simultaneous Grain and Residues Collection. Energies 2020, 13, 1265. [Google Scholar] [CrossRef] [Green Version]
- Suardi, A.; Stefanoni, W.; Alfano, V.; Bergonzoli, S.; Pari, L. Equipping a Combine Harvester with Turbine Technology Increases the Recovery of Residual Biomass from Cereal Crops via the Collection of Chaff. Energies 2020, 13, 1572. [Google Scholar] [CrossRef] [Green Version]
- Latterini, F.; Stefanoni, W.; Sebastiano, S.; Baldi, G.M.; Pari, L. Evaluating the Suitability of a Combine Harvester Equipped with the Sunflower Header to Harvest Cardoon Seeds: A Case Study in Central Italy. Agronomy 2020, 10, 1981. [Google Scholar] [CrossRef]
- Stefanoni, W.; Latterini, F.; Malkogiannidis, V.; Salpiggidis, V.; Alexopoulou, E.; Pari, L. Mechanical Harvesting of Castor Bean (Ricinus Communis L.) with a Combine Harvester Equipped with Two Different Headers: A Comparison of Working Performance. Energies 2022, 15, 2999. [Google Scholar] [CrossRef]
- Latterini, F.; Stefanoni, W.; Cavalaris, C.; Karamoutis, C.; Pari, L.; Alexopoulou, E. Effectiveness of Three Terminating Products on Reducing the Residual Moisture in Dwarf Castor Plants: A Preliminary Study of Direct Mechanical Harvesting in Central Greece. Agronomy 2022, 12, 146. [Google Scholar] [CrossRef]
- Zahorec, A.; Reid, M.L.; Tiemann, L.K.; Landis, D.A. Perennial Grass Bioenergy Cropping Systems: Impacts on Soil Fauna and Implications for Soil Carbon Accrual. GCB Bioenergy 2022, 14, 4–23. [Google Scholar] [CrossRef]
- Kantola, I.B.; Masters, M.D.; Blanc-Betes, E.; Gomez-Casanovas, N.; DeLucia, E.H. Long-term Yields in Annual and Perennial Bioenergy Crops in the Midwestern United States. GCB Bioenergy 2022, 14, 694–706. [Google Scholar] [CrossRef]
- Sacristán, D.; Cifre, J.; Llompart, M.; Jaume, J.; Gulias, J. Lignocellulosic Biomass Production and Persistence of Perennial Grass Species Grown in Mediterranean Marginal Lands. Agronomy 2021, 11, 2060. [Google Scholar] [CrossRef]
- Scordia, D.; Papazoglou, E.G.; Kotoula, D.; Sanz, M.; Ciria, C.S.; Pérez, J.; Maliarenko, O.; Prysiazhniuk, O.; von Cossel, M.; Greiner, B.E.; et al. Towards Identifying Industrial Crop Types and Associated Agronomies to Improve Biomass Production from Marginal Lands in Europe. GCB Bioenergy 2022, 14, 710–734. [Google Scholar] [CrossRef]
- Robertson, G.P.; Hamilton, S.K.; Barham, B.L.; Dale, B.E.; Izaurralde, R.C.; Jackson, R.D.; Landis, D.A.; Swinton, S.M.; Thelen, K.D.; Tiedje, J.M. Cellulosic Biofuel Contributions to a Sustainable Energy Future: Choices and Outcomes. Science 2017, 356, eaal2324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landis, D.A.; Gratton, C.; Jackson, R.D.; Gross, K.L.; Duncan, D.S.; Liang, C.; Meehan, T.D.; Robertson, B.A.; Schmidt, T.M.; Stahlheber, K.A.; et al. Biomass and Biofuel Crop Effects on Biodiversity and Ecosystem Services in the North Central US. Biomass Bioenergy 2018, 114, 18–29. [Google Scholar] [CrossRef]
- McGowan, A.R.; Nicoloso, R.S.; Diop, H.E.; Roozeboom, K.L.; Rice, C.W. Soil Organic Carbon, Aggregation, and Microbial Community Structure in Annual and Perennial Biofuel Crops. Agron. J. 2019, 111, 128–142. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, J.; Schuler, J.; Hartley, D.; Volk, T.; Eisenbies, M. Optimization of Harvest and Logistics for Multiple Lignocellulosic Biomass Feedstocks in the Northeastern United States. Energy 2020, 197, 117260. [Google Scholar] [CrossRef]
- Pari, L.; Alfano, V.; Mattei, P.; Santangelo, E. Pappi of Cardoon (Cynara Cardunculus L.): The Use of Wetting during the Harvesting Aimed at Recovering for the Biorefinery. Ind. Crop. Prod. 2017, 108, 722–728. [Google Scholar] [CrossRef]
- Alfano, V.; Stefanoni, W.; Latterini, F.; Liuzzi, F.; De Bari, I.; Viola, E.; Ciancolini, A.; Pari, L. Inulin Content in Chipped Roots of Cardoon Stored at Different Initial Moisture Contents After Six-Month Storage. Front. Energy Res. 2022, 10, 448. [Google Scholar] [CrossRef]
- Pari, L.; Alfano, V.; Stefanoni, W.; Latterini, F.; Liuzzi, F.; De Bari, I.; Valerio, V.; Ciancolini, A. Inulin Content in Chipped and Whole Roots of Cardoon after Six Months Storage under Natural Conditions. Sustainability 2021, 13, 3902. [Google Scholar] [CrossRef]
- Fernando, A.L.; Barbosa, B.; Costa, J.; Papazoglou, E.G. Giant Reed (Arundo Donax L.). In Bioremediation and Bioeconomy; Prasad, M.N.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 77–95. ISBN 978-0-12-802830-8. [Google Scholar]
- Popp, J.; Harangi-Rákos, M.; Gabnai, Z.; Balogh, P.; Antal, G.; Bai, A. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications. Molecules 2016, 21, 285. [Google Scholar] [CrossRef] [Green Version]
- Prochnow, A.; Heiermann, M.; Plöchl, M.; Amon, T.; Hobbs, P.J. Bioenergy from Permanent Grassland—A Review: 2. Combustion. Bioresour. Technol. 2009, 100, 4945–4954. [Google Scholar] [CrossRef] [PubMed]
- Monti, A.; Zegada-Lizarazu, W.; Zanetti, F.; Casler, M. Nitrogen Fertilization Management of Switchgrass, Miscanthus and Giant Reed: A Review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 153, pp. 87–119. [Google Scholar]
- Piccitto, A.; Scordia, D.; Corinzia, S.A.; Cosentino, S.L.; Testa, G. Advanced Biomethane Production from Biologically Pretreated Giant Reed under Different Harvest Times. Agronomy 2022, 12, 712. [Google Scholar] [CrossRef]
- Lewandowski, I.; Scurlock, J.M.O.; Lindvall, E.; Christou, M. The Development and Current Status of Perennial Rhizomatous Grasses as Energy Crops in the US and Europe. Biomass Bioenergy 2003, 25, 335–361. [Google Scholar] [CrossRef]
- Angelini, L.G.; Ceccarini, L.; Nassi o Di Nasso, N.; Bonari, E. Comparison of Arundo Donax L. and Miscanthus x Giganteus in a Long-Term Field Experiment in Central Italy: Analysis of Productive Characteristics and Energy Balance. Biomass Bioenergy 2009, 33, 635–643. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Copani, V.; D’Agosta, G.M.; Sanzone, E.; Mantineo, M. First Results on Evaluation of Arundo Donax L. Clones Collected in Southern Italy. Ind. Crop. Prod. 2006, 23, 212–222. [Google Scholar] [CrossRef]
- Rabemanolontsoa, H.; Saka, S. Comparative Study on Chemical Composition of Various Biomass Species. RSC Adv. 2013, 3, 3946. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, G.; Cirelli, G.L.; Toscano, A.; Giudice, R.L.; Pavone, P. Heavy Metal Content in Ash of Energy Crops Growing in Sewage-Contaminated Natural Wetlands: Potential Applications in Agriculture and Forestry? Sci. Total Environ. 2013, 452–453, 349–354. [Google Scholar] [CrossRef]
- Pari, L.; Curt, M.D.; Sánchez, J.; Santangelo, E. Economic and Energy Analysis of Different Systems for Giant Reed (Arundo Donax L.) Harvesting in Italy and Spain. Ind. Crop. Prod. 2016, 84, 176–188. [Google Scholar] [CrossRef]
- Pari, L.; Suardi, A.; Scarfone, A.; Santangelo, E. Italian Experiences on Arundo Harvesting: Economic and Energy Appraisal. In Perennial Biomass Crops for a Resource-Constrained World; Barth, S., Murphy-Bokern, D., Kalinina, O., Taylor, G., Jones, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 77–86. ISBN 978-3-319-44530-4. [Google Scholar]
- Dragoni, F.; o Di Nasso, N.N.; Tozzini, C.; Bonari, E.; Ragaglini, G. Aboveground Yield and Biomass Quality of Giant Reed (Arundo Donax L.) as Affected by Harvest Time and Frequency. Bioenergy Res. 2015, 8, 1321–1331. [Google Scholar] [CrossRef] [Green Version]
- Pari, L.; Assirelli, A.; Acampora, A.; Del Giudice, A.; Santangelo, E. A New Prototype for Increasing the Particle Size Of Chopped Arundo Donax (L.). Biomass Bioenergy 2015, 74, 288–295. [Google Scholar] [CrossRef]
- Assirelli, A.; Civitarese, V.; Caracciolo, G.; Sannino, M.; Faugno, S. Mechanical Harvesting Line Setting of Giant Reeds. Appl. Sci. 2019, 9, 5425. [Google Scholar] [CrossRef] [Green Version]
- Bentini, M.; Martelli, R. Prototype for the Harvesting of Cultivated Herbaceous Energy Crops, an Economic and Technical Evaluation. Biomass Bioenergy 2013, 57, 229–237. [Google Scholar] [CrossRef]
- Faugno, S.; Quacquarelli, I.; Civitarese, V.; Crimaldi, M.; Sannino, M.; Ricciardiello, G.; Caracciolo, G.; Assirelli, A. Two Steps Arundo Donax L. Harvesting in South Italy. Chem. Eng. Trans. 2017, 58, 265–270. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.C.; Scurlock, J.M.O.; Huisman, W. Miscanthus: European Experience with a Novel Energy Crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Liang, K.; Peng, X.; Liu, F. Physiological Response of Miscanthus Genotypes to Salinity Stress under Elevated CO2. GCB Bioenergy 2022, 14, 858–874. [Google Scholar] [CrossRef]
- Robson, P.; Mos, M.; Clifton-Brown, J.; Donnison, I. Phenotypic Variation in Senescence in Miscanthus: Towards Optimising Biomass Quality and Quantity. Bioenergy Res. 2012, 5, 95–105. [Google Scholar] [CrossRef]
- Davis, L.C.; Pidlisnyuk, V.; Mamirova, A.; Shapoval, P.; Stefanovska, T. Miscanthus for Bioenergy Production: Crop Production, Phytotechnology with Biomass Production: Sustainable Management of Contaminated Sites_Chapter 5; Erickson, L.E., Pidlisnyuk, V., Eds.; CRC Press: Boca Raton, FL, USA, 2021; Volume 4, ISBN 9780367522803. [Google Scholar]
- Anderson, E.; Arundale, R.; Maughan, M.; Oladeinde, A.; Wycislo, A.; Voigt, T. Growth and Agronomy of Miscanthus × Giganteus for Biomass Production. Biofuels 2011, 2, 167–183. [Google Scholar] [CrossRef]
- Venturi, P.; Huisman, W.; Molenaar, J. Mechanization and Costs of Primary Production Chains For Miscanthus x Giganteus in The Netherlands. J. Agric. Eng. Res. 1998, 69, 209–215. [Google Scholar] [CrossRef]
- Mathanker, S.K.; Hansen, A.C. Impact of Miscanthus Yield on Harvesting Cost and Fuel Consumption. Biomass Bioenergy 2015, 81, 162–166. [Google Scholar] [CrossRef]
- Fasick, G.T.; Liu, J. Lab Scale Studies of Miscanthus Mechanical Conditioning and Bale Compression. Biosyst. Eng. 2020, 200, 366–376. [Google Scholar] [CrossRef]
- Bilandžija, N.; Fabijanić, G.; Sito, S.; Grubor, M.; Krononc, Z.; Čopec, K.; Kovačev, I. Harvest Systems of Miscanthus x Giganteus Biomass: A Review. J. Cent. Eur. Agric. 2020, 21, 159–167. [Google Scholar] [CrossRef]
- Gan, H.; Mathanker, S.; Momin, M.A.; Kuhns, B.; Stoffel, N.; Hansen, A.; Grift, T. Effects of Three Cutting Blade Designs on Energy Consumption during Mowing-Conditioning of Miscanthus Giganteus. Biomass Bioenergy 2018, 109, 166–171. [Google Scholar] [CrossRef]
- Maughan, M.; Bollero, G.; Lee, D.K.; Darmody, R.; Bonos, S.; Cortese, L.; Murphy, J.; Gaussoin, R.; Sousek, M.; Williams, D.; et al. Miscanthus × Giganteus Productivity: The Effects of Management in Different Environments. GCB Bioenergy 2012, 4, 253–265. [Google Scholar] [CrossRef]
- Kwaśniewski, D.; Płonka, A.; Mickiewicz, P. Harvesting Technologies and Costs of Biomass Production from Energy Crops Cultivated on Farms in the Małopolska Region. Energies 2022, 15, 131. [Google Scholar] [CrossRef]
- Meehan, P.G.; McDonnell, K.P.; Finnan, J.M. An Assessment of the Effect of Harvest Time and Harvest Method on Biomass Loss for Miscanthus × Giganteus. GCB Bioenergy 2013, 5, 400–407. [Google Scholar] [CrossRef]
- Becker, R.; Meyer, D.; Wagoner, P.; Saunders, R.M. Alternative Crops for Sustainable Agricultural Systems. Agric. Ecosyst. Environ. 1992, 40, 265–274. [Google Scholar] [CrossRef]
- Hadders, G.; Olsson, R. Harvest of Grass for Combustion in Late Summer and in Spring. Biomass Bioenergy 1997, 12, 171–175. [Google Scholar] [CrossRef]
- Nilsson, D.; Rosenqvist, H.; Bernesson, S. Profitability of the Production of Energy Grasses on Marginal Agricultural Land in Sweden. Biomass Bioenergy 2015, 83, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Lötjönen, T.; Paappanen, T. Bale Density of Reed Canary Grass Spring Harvest. Biomass Bioenergy 2013, 51, 53–59. [Google Scholar] [CrossRef]
- Shinners, K.J.; Boettcher, G.C.; Muck, R.E.; Weimer, P.J.; Casler, M.D. Harvest and Storage of Two Perennial Grasses as Biomass Feedstocks. Trans. ASABE 2010, 53, 359–370. [Google Scholar] [CrossRef]
- Douglas, J.; Lumonyon, J.; Wynia, R.; Salon, P. Planting and Managing Switchgrass as a Biomass Energy Crop. In Alternative Energy and Shale Gas Encyclopedia; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 663–674. [Google Scholar]
- Larnaudie, V.; Ferrari, M.D.; Lareo, C. Switchgrass as an Alternative Biomass for Ethanol Production in a Biorefinery: Perspectives on Technology, Economics and Environmental Sustainability. Renew. Sustain. Energy Rev. 2022, 158, 112115. [Google Scholar] [CrossRef]
- McLaughlin, S.B.; Samson, R.; Bransby, D.; Wiselogel, A. Evaluating Physical, Chemical, and Energetic Properties of Perennial Grasses as Biofuels. Fuel Energy Abstr. 1998, 39, 283. [Google Scholar] [CrossRef]
- Sladden, S.E.; Bransby, D.I.; Aiken, G.E. Biomass Yield, Composition and Production Costs for Eight Switchgrass Varieties in Alabama. Biomass Bioenergy 1991, 1, 119–122. [Google Scholar] [CrossRef]
- Mitchell, R.; Schmer, M. Switchgrass Harvest and Storage. In Switchgrass. Green Energy and Technology; Monti, A., Ed.; Springer: London, UK, 2012; Volume 94, ISBN 978-1-4471-2902-8. [Google Scholar]
- Sokhansanj, S.; Mani, S.; Turhollow, A.; Kumar, A.; Bransby, D.; Lynd, L.; Laser, M. Large-Scale Production, Harvest and Logistics of Switchgrass (Panicum Virgatum L.)—Current Technology and Envisioning a Mature Technology. Biofuels Bioprod. Biorefining 2009, 3, 124–141. [Google Scholar] [CrossRef]
- Manatt, R.K.; Hallam, A.; Schulte, L.A.; Heaton, E.A.; Gunther, T.; Hall, R.B.; Moore, K.J. Farm-Scale Costs and Returns for Second Generation Bioenergy Cropping Systems in the US Corn Belt. Environ. Res. Lett. 2013, 8, 035037. [Google Scholar] [CrossRef] [Green Version]
- Brownell, D.; Liu, J. Field Test and Cost Analysis of Four Harvesting Options for Herbaceous Biomass Handling. Int. J. Agric. Biol. Eng. 2011, 4, 58–68. [Google Scholar] [CrossRef]
- Womac, A.; Hart, W.E.; Bitra, V.S.P.; Kraus, T. Biomass Harvesting of High-Yield Low-Moisture Switchgrass: Equipment Performance and Moisture Relations. Appl. Eng. Agric. 2012, 28, 775–786. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Egg, R.P.; Wiselogel, A.E. Biomass Losses during Harvest and Storage of Switchgrass. Biomass Bioenergy 1997, 12, 107–114. [Google Scholar] [CrossRef]
- Brownell, D.K.; Liu, J.; Hilton, J.W.; Richard, T.L.; Cauffman, G.R.; MacAfee, B.R. Evaluation of Two Forage Harvesting Systems for Herbaceous Biomass Harvesting. Trans. ASABE 2012, 55, 1651–1658. [Google Scholar] [CrossRef]
- Griffel, L.M.; Vazhnik, V.; Hartley, D.S.; Hansen, J.K.; Roni, M. Agricultural Field Shape Descriptors as Predictors of Field Efficiency for Perennial Grass Harvesting: An Empirical Proof. Comput. Electron. Agric. 2020, 168, 105088. [Google Scholar] [CrossRef]
- Stefanoni, W.; Latterini, F.; Ruiz, J.; Bergonzoli, S.; Attolico, C.; Pari, L. Mechanical Harvesting of Camelina: Work Productivity, Costs and Seed Loss Evaluation. Energies 2020, 13, 5329. [Google Scholar] [CrossRef]
- Smeets, E.M.W.; Lewandowski, I.M.; Faaij, A.P.C. The Economical and Environmental Performance of Miscanthus and Switchgrass Production and Supply Chains in a European Setting. Renew. Sustain. Energy Rev. 2009, 13, 1230–1245. [Google Scholar] [CrossRef]
- Kimura, E.; Fransen, S.C.; Collins, H.P.; Stanton, B.J.; Himes, A.; Smith, J.; Guy, S.O.; Johnston, W.J. Effect of Intercropping Hybrid Poplar and Switchgrass on Biomass Yield, Forage Quality, and Land Use Efficiency for Bioenergy Production. Biomass Bioenergy 2018, 111, 31–38. [Google Scholar] [CrossRef]
- Barros, A.P.; de Carvalho Silva, A.; de Souza Abboud, A.C.; Ricalde, M.P.; Ataide, J.O. Effect of Cosmos, Crotalaria, Foeniculum, and Canavalia Species, Single-Cropped or Mixes, on the Community of Predatory Arthropods. Sci. Rep. 2022, 12, 16013. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.; Freckleton, R.P. Crop Diversification and Parasitic Weed Abundance: A Global Meta-Analysis. Sci. Rep. 2022, 12, 19413. [Google Scholar] [CrossRef] [PubMed]
Species | Harvesting Strategy | Machinery Performance | Harvesting Cost | Ref. | Notes |
---|---|---|---|---|---|
Giant Reed | Self-propelled forage harvester + tractor–trailer unit | 1.34 ha h−1 | EUR 537 ha−1 and EUR 17.9 Mg−1 DM | [33] | Row-independent attachment recommended after the first harvesting |
Mowing and shredding or shredding and baling | 0.46 ha h−1 | EUR 378.94 ha−1 and EUR 26.40 Mg−1 DM | [33] | A tractor with at least 200 kW is needed to power a shredder able to efficiently work on giant reed biomass | |
SPFH equipped with kemper header + baling | 0.23 ha h−1 | EUR 1032 ha−1 and EUR 34.4 Mg−1 DM | [33] | To allow for biomass drying, the header has to be modified so that it can leave the cut and windrowed plants on the ground prior to baling | |
Miscanthus | Self-propelled forage harvesters (single pass) | 1.05 ha h−1 | - | [46,51] | Row-independent attachment recommended after the first harvesting |
Haymaking machinery (multi-phase) | 0.79 ha h−1 | EUR 94.00 ha−1 | [46,51] | A higher angle of the blades of the mower is recommended. Farmers have to take into consideration possible higher maintenance costs when applying common mowers and balers on miscanthus biomass as a consequence of the higher hardness of the stems in comparison to typical haymaking grasses | |
Red canary grass | Haymaking machinery (multi-phase) | 0.57 ha h−1 | EUR 90 ha−1 | [55] | High harvesting losses (about 25%) have been experienced |
Switchgrass | Haymaking machinery (multi-phase) for round bales, square bales, or loaf production | EUR 89.1 ha−1 round bales, EUR 84.3 ha−1 square bales, EUR 49.1 ha−1 loafs | [63] [64] [63] | Considering the high biomass yield, large machinery such as self-propelled rotary mowers are recommended. Loafs should be preferred in the case of a greater transport distance to the biomass plant in order to lower the transport costs. | |
Single pass with biotriturator RM 280 BIO + baler | 0.61 ha h−1 | EUR 137.7 ha−1 | [38] | To feed a shredder suitable for switchgrass, the tractor should have a power of at least 150 kW | |
Multi-phase + self-loading forage-chopping wagon | 1.0 ha h−1 | EUR 49.1 ha−1 | [68] | Indicated for very short transport distance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanoni, W.; Latterini, F.; Pari, L. Perennial Grass Species for Bioenergy Production: The State of the Art in Mechanical Harvesting. Energies 2023, 16, 2303. https://doi.org/10.3390/en16052303
Stefanoni W, Latterini F, Pari L. Perennial Grass Species for Bioenergy Production: The State of the Art in Mechanical Harvesting. Energies. 2023; 16(5):2303. https://doi.org/10.3390/en16052303
Chicago/Turabian StyleStefanoni, Walter, Francesco Latterini, and Luigi Pari. 2023. "Perennial Grass Species for Bioenergy Production: The State of the Art in Mechanical Harvesting" Energies 16, no. 5: 2303. https://doi.org/10.3390/en16052303
APA StyleStefanoni, W., Latterini, F., & Pari, L. (2023). Perennial Grass Species for Bioenergy Production: The State of the Art in Mechanical Harvesting. Energies, 16(5), 2303. https://doi.org/10.3390/en16052303