A Novel Data-Driven Tool Based on Non-Linear Optimization for Offshore Wind Farm Siting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Statement
2.2. Optimization Method
Algorithm 1: The developed algorithm |
At iteration step , proposed locations , , are sampled with uniform distribution over the selected area. Monte Carlo resampling: For each iteration step
For each cluster
|
3. Simulation Results
3.1. Data and factors
3.2. Software Tools
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Disclaimer
Notation and Acronyms
Notation | Explanation |
Factor’s contribution to total weight | |
m | Factor index |
Iteration step index | |
Cluster index | |
Proposed location | |
Factor weight | |
Total weight | |
Two-dimensional location vector | |
Noise vector | |
Cartesian coordinates | |
AHP | Analytical Hierarchy Process |
ELECTRE | Elimination and Choice Translating Reality |
GIS | Geographical Information System |
MCDA | Multi-Criteria Decision Analysis |
OWF | Offshore Wind Farm |
PROMETHEE | Performance Ranking Organization Method for Enrichment of Evaluations |
TOPSIS | Technique for Order Preference by Similarity to Ideal Solutions |
VIKOR | Vlšekriteri-jumsko KOmpromisno Rangiranje |
WPM | Weighted Product Method |
WSM | Weighted Sum Method |
Appendix A
Library Used | Documentation |
---|---|
Folium | Folium—Folium 0.14.0 documentation (python-visualization.github.io) |
Random | random—Generate pseudo-random numbers—Python 3.11.2 documentation |
Pandas | pandas documentation—pandas 1.5.3 documentation (pydata.org, accessed on 12 December 2022) |
GeoPandas | Documentation—GeoPandas 0.12.2+0.gefcb367.dirty documentation |
NumPy | NumPy Documentation |
Matplotlib | Matplotlib documentation—Matplotlib 3.7.0 documentation |
Seaborn | seaborn: statistical data visualization—seaborn 0.12.2 documentation (pydata.org, accessed on 12 December 2022) |
Scikit-learn | scikit-learn: machine learning in Python—scikit-learn 1.2.1 documentation |
SciPy | SciPy documentation—SciPy v1.10.0 Manual |
References
- Soukissian, T.H.; Denaxa, D.; Karathanasi, F.; Prospathopoulos, A.; Sarantakos, K.; Iona, A.; Georgantas, K.; Mavrakos, S. Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives. Energies 2017, 10, 1512. [Google Scholar] [CrossRef] [Green Version]
- Wind Europe, Wind Energy in Europe: 2021 Statistics and the Outlook for 2022–2026, Report. 2022, p. 40. Available online: https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2021-statistics-and-the-outlook-for-2022-2026/ (accessed on 12 December 2022).
- Taranto Offshore Wind Farm. Available online: https://www.4coffshore.com/windfarms/italy/taranto-italy-it31.html (accessed on 11 January 2023).
- Boero, F.; Foglini, F.; Fraschetti, S.; Goriup, P.; Macpherson, E.; Planes, S.; Soukissian, T.; CoCoNet Consortium 2016. CoCoNet: Towards coast to coast networks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential. Sci. Res. Inf. Technol. (Ric. Sci. E Tecnol. Dell’Inf.) 2016, 6, 1–95. [Google Scholar]
- Tsakalerou, M.; Efthymiadis, D.; Abilez, A. An intelligent methodology for the use of multi-criteria decision analysis in impact assessment: The case of real-world offshore construction. Sci. Rep. 2022, 12, 15137. [Google Scholar] [CrossRef]
- Fishburn, F.C. Letter to the Editor—Additive Utilities with Incomplete Product Sets: Application to Priorities and Assignments. Oper. Res. 1967, 15, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Axiomatic Foundation of the Analytic Hierarchy Process. Manag. Sci. 1986, 32, 841–855. [Google Scholar] [CrossRef]
- Hwang, C.; Yoon, K. Methods for multiple attribute decision making. In Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Roy, B. Classement et choix en présence de points de vue multiples. Rev. Fr. D’inf. Rech. Opér. 1968, 2, 57–75. [Google Scholar] [CrossRef]
- Brans, J.; Vincke, P.; Mareschal, B. How to select and how to rank projects: The Promethee method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Antunes, C.H.; Henriques, C.O. Multi-Objective Optimization and Multi-Criteria Analysis Models and Methods for Problems in the Energy Sector. In Multiple Criteria Decision Analysis. International Series in Operations Research & Management Science; Greco, S., Ehrgott, M., Figueira, J., Eds.; Springer: New York, NY, USA, 2016; Volume 233, pp. 1067–1165. [Google Scholar]
- Polatidis, H.; Haralambopoulos, D.A.; Munda, G.; Vreeker, R. Selecting an Appropriate Multi-Criteria Decision Analysis Technique for Renewable Energy Planning. Energy Sources 2006, 1, 181–193. [Google Scholar] [CrossRef]
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F.; Zhao, J.H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Sahabuddin, M.; Khan, I. Multi-criteria decision analysis methods for energy sector’s sustainability assessment: Robustness analysis through criteria weight change. Sustain. Energy Technol. Assess. 2021, 47, 101380. [Google Scholar] [CrossRef]
- Garni, H.A.; Kassem, A.; Awasthi, A.; Komljenovic, D.; Al-Haddad, K. A multicriteria decision making approach for evaluating renewable power generation sources in Saudi Arabia. Sustain. Energy Technol. Assess. 2016, 16, 137–150. [Google Scholar] [CrossRef]
- Deveci, M.; Özcan, E.; John, R. Offshore Wind Farms: A Fuzzy Approach to Site Selection in a Black Sea Region. IEEE Tex. Power Energy Conf. (TPEC) 2020, 1–6. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, J.Q. Multistage decision support framework for sites selection of solar power plants with probabilistic linguistic information. J. Clean. Prod. 2019, 230, 1396–1409. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Gamal, A.; Chakrabortty, K.; Ryan, M. A new hybrid multi-criteria decision-making approach for location selection of sustainable offshore wind energy stations: A case study. J. Clean. Prod. 2021, 280, 124462. [Google Scholar] [CrossRef]
- Vasileiou, M.; Loukogeorgaki, E.; Vagiona, D.G. GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renew. Sustain. Energy Rev. 2017, 73, 745–757. [Google Scholar] [CrossRef]
- Mandy, M.; Bahaj, A. Multi criteria decision analysis for offshore wind energy potential in Egypt. Renew. Energy 2018, 118, 278–289. [Google Scholar]
- Castro-Santos, L.; Garcia, G.P.; Simões, T.; Estanqueiro, A. Planning of the installation of offshore renewable energies: A GIS approach of the Portuguese roadmap. Renew. Energy 2019, 132, 1251–1262. [Google Scholar] [CrossRef]
- Schillings, C.; Wanderer, T.; Cameron, L.; Van der Wal, J.T.; Jacquemin, J.; Veum, K. A decision support system for assessing offshore wind energy potential in the North Sea. Energy Policy 2012, 49, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Park, J.; Maeng, J. Offshore wind farm site selection study around Jeju Island, South Korea. Abbreviated J. Name 2016, 94, 619–628. [Google Scholar] [CrossRef]
- Soukissian, T.; Reizopoulou, S.; Drakopoulou, P.; Axaopoulos, F.; Karathanasi, F.; Fraschetti, S.; Bray, L.; Foglini, F.; Papadopoulos, A.; De Leo, F.; et al. Greening offshore wind with the smart wind chart evaluation tool. Web Ecol. 2016, 16, 73–80. [Google Scholar] [CrossRef]
- Vagiona, D.; Karanikolas, N. A multicriteria approach to evaluate offshore wind farms siting in Greece. Glob. NEST J. 2012, 14, 235–243. [Google Scholar]
- Vagiona, D.; Kamilakis, M. Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece. Sustainability 2018, 10, 749. [Google Scholar] [CrossRef] [Green Version]
- Gkeka-Serpetsidaki, P.; Tsoutsos, T. A methodological framework for optimal siting of offshore wind farms: A case study on the island of Crete. Energy 2022, 239, 122296. [Google Scholar] [CrossRef]
- Sivanandam, S.; Deepa, S.N. Introduction to Genetic Algorithms; Springer Science & Business Media: Cham, Switzerland, 2008. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley Professional: Boston, MA, USA, 1989. [Google Scholar]
- Abdmouleh, Z.; Gastli, A.; Ben-Brahim, L.; Haouari, M.; Al-Emadi, N.A. Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. In Renewable Energy; Elsevier Ltd.: Amsterdam, Netherlands, 2017; pp. 266–280. [Google Scholar]
- Borges, C.L.; Falcão, D.M. Optimal distributed generation allocation for reliability, losses, and voltage improvement. Int. J. Electr. Power Energy Syst. 2006, 28, 413–420. [Google Scholar] [CrossRef]
- Singh, R.K.; Goswami, S.K. Optimum siting and sizing of distributed generations in radial and networked systems. Electr. Power Compon. Syst. 2009, 37, 127–145. [Google Scholar] [CrossRef]
- Fotakis, D.G.; Sidiropoulos, E.; Myronidis, D.; Ioannou, K. Spatial genetic algorithm for multi-objective forest planning. For. Policy Econ. 2012, 21, 12–19. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.J.; Vecchi, M. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Cerny, V. A thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J. Optim. Theory Appl. 1985, 45, 41–51. [Google Scholar] [CrossRef]
- Cheng, Y. A simulated annealing algorithm for spatial layout optimization in process industries. Chem. Eng. Sci. 1999, 54, 5585–5594. [Google Scholar]
- Aly, A.I.; Hegazy, Y.G.; Alsharkawy, M.A. A Simulated Annealing Algorithm for Multi-Objective Distributed Generation Planning. In Proceedings of the Power and Energy Society General Meeting, Minneapolis, MN, USA, 25–29 July 2010. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995. [Google Scholar]
- Shan, Y.; Bettinger, P.; Cieszewski, C.; Wang, W. Pitfalls and potential of particle swarm optimization for contemporary spatial forest planning. For. Syst. 2012, 21, 468–480. [Google Scholar] [CrossRef] [Green Version]
- Shifa, M.; Jianhua, H.; Feng, L.; Yan, Y. Land-use spatial optimization based on PSO algorithm. Geo-Spat. Inf. Sci. 2011, 14, 54–61. [Google Scholar]
- Zarghami, M.; Hajykazemian, H. Urban water resources planning by using a modified particle swarm optimization algorithm. Resour. Conserv. Recycl. 2013, 70, 1–8. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stützle, T. Ant Colony Optimization; The MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Xiaoning, F.; Yan, L.; Zhuoshang, J. The Ant Colony Optimization for Ship Pipe Route Design in 3D Space. In Proceedings of the 2006 6th World Congress on Intelligent Control and Automation IEEE, Dalian, China, 21–23 June 2006. [Google Scholar]
- Arulampalam, M.; Maskell, S.; Gordon, G.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Orton, M.; Fitzgerald, W. A Bayesian approach to tracking multiple targets using sensor arrays and particle filters. IEEE Trans. Signal Process. 2002, 50, 216–223. [Google Scholar] [CrossRef]
- Kyriakides, I. Target Tracking using Cognitive Radar and Foveal Nodes. In Proceedings of the 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini, Greece, 29–31 May 2019; pp. 694–700. [Google Scholar]
- Kyriakides, I. Cognitive fusion for target tracking. Synth. Lect. Algorithms Softw. Eng. 2019, 10, 1–65. [Google Scholar]
- Jin, X.; Han, J. K-Means Clustering. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2011. [Google Scholar]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Soukissian, T.; Papadopoulos, A.; Skrimizeas, P.; Karathanasi, F. Satellite-Based Offshore Wind Resource Assessment in the Mediterranean Sea. IEEE J. Ocean. Eng. 2017, 42, 73–86. [Google Scholar] [CrossRef]
- Soukissian, T.; Karathanasi, F.; Axaopoulos, P.; Avgoustoglou, E.; Kyriakidou, H.; Tsalis, C.; Voudouri, A.; Gofa, F.; Katsafados, P. Assessment of offshore wind power potential in the Aegean and Ionian Seas based on high-resolution hindcast model results. AIMS Energy 2017, 5, 268–289. [Google Scholar] [CrossRef]
- EMODnet Digital Bathymetry (DTM 2020). Available online: https://doi.org/10.12770/bb6a87dd-e579-4036-abe1-e649cea9881a (accessed on 11 January 2023).
- Overpass Turbo. Available online: https://overpass-turbo.eu/ (accessed on 11 January 2023).
- Maritime Safety Office. Available online: https://msi.nga.mil (accessed on 11 January 2023).
- Regions of Greece. Available online: https://geodata.gov.gr/en/dataset/periphereies-elladas (accessed on 11 January 2023).
- Bray, L.; Reizopoulou, S.; Voukouvalas, E.; Soukissian, T.; Alomar, C.; Vázquez-Luis, M.; Deudero, S.; Attrill, M.J.; Hall-Spencer, J.M. Expected Effects of Offshore Wind Farms on Mediterranean Marine Life. J. Mar. Sci. Eng. 2016, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Lloret, J.; Turiel, A.; Solé, J.; Berdalet, E.; Sabatés, A.; Olivares, A.; Gili, J.-M.; Vila-Subirós, J.; Sardá, R. Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea. Sci. Total Environ. 2022, 824, 153803. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Iglesias, G. Multi-parameter analysis and mapping of the levelised cost of energy from floating offshore wind in the Mediterranean Sea. Energy Convers. Manag. 2021, 243, 114416. [Google Scholar] [CrossRef]
- Shields, M.; Beiter, P.; Nunemaker, J. A Systematic Framework for Projecting the Future Cost of Offshore Wind Energy. Golden, CO: National Renewable Energy Laboratory 2022. NREL/TP-5000-81819. Available online: https://www.nrel.gov/docs/fy23osti/81819.pdf (accessed on 11 January 2023).
- Pulselli, R.M.; Maccanti, M.; Bruno, M.; Sabbetta, A.; Neri, E.; Patrizi, N.; Bastianoni, S. Benchmarking Marine Energy Technologies Through LCA: Offshore Floating Wind Farms in the Mediterranean. Front. Energy Res. 2022, 10, 18. [Google Scholar] [CrossRef]
- Yu, H.; Yang, X.; Chen, H.; Lou, S.; Lin, Y. Energy Storage Capacity Planning Method for Improving Offshore Wind Power Consumption. Sustainability 2022, 14, 14589. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A. Energy storage for offshore wind farms. Offshore Wind Farms 2016, 459–493. [Google Scholar] [CrossRef]
- Calado, G.; Castro, R. Hydrogen Production from Offshore Wind Parks: Current Situation and Future Perspectives. Appl. Sci. 2021, 11, 5561. [Google Scholar] [CrossRef]
Index m | Factor | Contribution to Total Weight | Factor Weight | Classification |
---|---|---|---|---|
1 | Land | 0% | 1 | Proposed location on sea |
0 | Proposed location on land | |||
2 | Distance from ship routes | 0% | 1 | ≥1 km |
0 | <1 km | |||
3 | Distance from the shore | 20% | 4 | 5–11 km |
3 | 0–5 km | |||
0 | Otherwise | |||
4 | Distance from transmission lines | 15% | 4 | 0–20 km |
3 | 20–50 km | |||
2 | 50–70 km | |||
1 | Otherwise | |||
5 | Distance from ports | 5% | 4 | 0–20 km |
3 | 20–50 km | |||
2 | 50–70 km | |||
1 | 70–100 km | |||
0 | Otherwise | |||
6 | Water depth | 25% | 4 | 40–70 m |
3 | 70–200 m | |||
2 | 0–40 m | |||
1 | 200–300 m | |||
0 | Otherwise | |||
7 | Mean annual wind speed | 35% | 4 | ≥7 m/s |
3 | 6–7 m/s | |||
2 | 5–6 m/s | |||
1 | 4–5 m/s | |||
0 | Otherwise |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polykarpou, M.; Karathanasi, F.; Soukissian, T.; Loukaidi, V.; Kyriakides, I. A Novel Data-Driven Tool Based on Non-Linear Optimization for Offshore Wind Farm Siting. Energies 2023, 16, 2235. https://doi.org/10.3390/en16052235
Polykarpou M, Karathanasi F, Soukissian T, Loukaidi V, Kyriakides I. A Novel Data-Driven Tool Based on Non-Linear Optimization for Offshore Wind Farm Siting. Energies. 2023; 16(5):2235. https://doi.org/10.3390/en16052235
Chicago/Turabian StylePolykarpou, Marina, Flora Karathanasi, Takvor Soukissian, Vasiliki Loukaidi, and Ioannis Kyriakides. 2023. "A Novel Data-Driven Tool Based on Non-Linear Optimization for Offshore Wind Farm Siting" Energies 16, no. 5: 2235. https://doi.org/10.3390/en16052235
APA StylePolykarpou, M., Karathanasi, F., Soukissian, T., Loukaidi, V., & Kyriakides, I. (2023). A Novel Data-Driven Tool Based on Non-Linear Optimization for Offshore Wind Farm Siting. Energies, 16(5), 2235. https://doi.org/10.3390/en16052235