Piezoelectric Energy Harvesting Gyroscopes: Comparative Modeling and Effectiveness
Abstract
:1. Introduction
2. Modeling of Energy Harvesting Microgyroscope
2.1. Microgyroscope Energy Harvesting: Governing Equations of Motion
2.1.1. Open-Circuit (OC) Modeling
2.1.2. Constant (Average) Electric Field Open Circuit (CE-γ)
2.1.3. Constant (Average) Electric Field (CE)
2.2. Static and Eigenvalue Problem Analyses of the Multifunctional Microgyroscope
2.3. Differential Quadrature Method (DQM)
3. Model Comparison and Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roundy, S.; Leland, E.S.; Baker, J.; Carleton, E.; Reilly, E.; Lai, E.; Otis, B.; Rabaey, J.M.; Wright, P.K.; Sundararajan, V. Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 2005, 4, 28–36. [Google Scholar] [CrossRef]
- Kumar, R.; Pachauri, R.K.; Badoni, P.; Bharadwaj, D.; Mittal, U.; Bisht, A. Investigation on parallel hybrid electric bicycle along with issuer management system for mountainous region. J. Clean. Prod. 2022, 362, 132430. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A. Nature based self-learning mechanism and simulation of automatic control smart hybrid antilock braking system. Wirel. Pers. Commun. 2021, 116, 3291–3308. [Google Scholar] [CrossRef]
- Elahi, H.; Eugeni, M.; Gaudenzi, P. A review on mechanisms for piezoelectric-based energy harvesters. Energies 2018, 11, 1850. [Google Scholar] [CrossRef] [Green Version]
- Cook-Chennault, K.A.; Thambi, N.; Sastry, A.M. Powering MEMS portable devices—A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 2008, 17, 043001. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Hu, H.; He, S. Modeling and experimental investigation of an impact-driven piezoelectric energy harvester from human motion. Smart Mater. Struct. 2013, 22, 105020. [Google Scholar] [CrossRef]
- Najini, H.; Muthukumaraswamy, S.A. Investigation on the selection of piezoelectric materials for the design of an energy harvester system to generate energy from traffic. Int J. Eng. Appl. Sci. 2016, 3, 257722. [Google Scholar]
- Elvin, N.G.; Elvin, A.A. An experimentally validated electromagnetic energy harvester. J. Sound Vib. 2011, 330, 2314–2324. [Google Scholar] [CrossRef]
- Zhou, N.; Gao, S.; Li, R.; Ao, H.; Jiang, H. Transient output performance of symmetrical V-shaped micro-piezoelectric energy harvester by using PZT-5H. Microsyst. Technol. 2021, 27, 779–787. [Google Scholar] [CrossRef]
- Pozzi, M.; Aung, M.S.; Zhu, M.; Jones, R.K.; Goulermas, J.Y. The pizzicato knee-joint energy harvester: Characterization with biomechanical data and the effect of backpack load. Smart Mater. Struct. 2012, 21, 075023. [Google Scholar] [CrossRef]
- Salazar, R.; Serrano, M.; Abdelkefi, A. Fatigue in piezoelectric ceramic vibrational energy harvesting: A review. Appl. Energy 2020, 270, 115161. [Google Scholar] [CrossRef]
- Yin, Z.; Gao, S.; Jin, L.; Sun, Y.; Wu, Q.; Zhang, X.; Guo, S. A dual impact driven frequency up-conversion piezoelectric energy harvester for ultralow-frequency and wide-bandwidth operation. Sens. Actuators A Phys. 2021, 331, 112961. [Google Scholar] [CrossRef]
- Liang, F.; Liang, D.-D.; Qian, Y.-J. Dynamical analysis of an improved MEMS ring gyroscope encircled by piezoelectric film. Int. J. Mech. Sci. 2020, 187, 105915. [Google Scholar] [CrossRef]
- Lu, H.; Chai, T.; Cooley, C.G. Vibration properties of a rotating piezoelectric energy harvesting device that experiences gyroscopic effects. J. Sound Vib. 2018, 416, 258–278. [Google Scholar] [CrossRef]
- Pillatsch, P.; Yeatman, E.M.; Holmes, A.S. A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sens. Actuators A Phys. 2014, 206, 178–185. [Google Scholar] [CrossRef]
- Chen, C.; Xu, T.-B.; Yazdani, A.; Sun, J.-Q. A high density piezoelectric energy harvesting device from highway traffic—System design and road test. Appl. Energy 2021, 299, 117331. [Google Scholar] [CrossRef]
- Fan, Y.; Ghayesh, M.H.; Lu, T.-F. High-efficient internal resonance energy harvesting: Modelling and experimental study. Mech. Syst. Signal Process. 2022, 180, 109402. [Google Scholar] [CrossRef]
- Karmakar, D.; Majumdar, K.; Pal, M.; Roy, P.K.; Machavarapu, S. Energy harvesting from pedestrian movement using piezoelectric material. Mater. Today Proc. 2021, 57, 391–397. [Google Scholar] [CrossRef]
- Chen, C.; Sharafi, A.; Sun, J.-Q. A high density piezoelectric energy harvesting device from highway traffic–Design analysis and laboratory validation. Appl. Energy 2020, 269, 115073. [Google Scholar] [CrossRef]
- Tan, T.; Zuo, L.; Yan, Z. Environment coupled piezoelectric galloping wind energy harvesting. Sens. Actuators A Phys. 2021, 323, 112641. [Google Scholar] [CrossRef]
- Yang, K.; Su, K.; Wang, J.; Wang, J.; Yin, K.; Litak, G. Piezoelectric wind energy harvesting subjected to the conjunction of vortex-induced vibration and galloping: Comprehensive parametric study and optimization. Smart Mater. Struct. 2020, 29, 075035. [Google Scholar] [CrossRef]
- Jia, J.; Shan, X.; Upadrashta, D.; Xie, T.; Yang, Y.; Song, R. Modeling and analysis of upright piezoelectric energy harvester under aerodynamic vortex-induced vibration. Micromachines 2018, 9, 667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Ruan, T.; Xu, Q.; Yang, B.; Liu, J. Wearable multifunctional piezoelectric MEMS device for motion monitoring, health warning, and earphone. Nano Energy 2021, 89, 106324. [Google Scholar] [CrossRef]
- Lee, M.-S.; Kim, C.-I.; Park, W.-I.; Cho, J.-H.; Paik, J.-H.; Jeong, Y.H. Energy harvesting performance of unimorph piezoelectric cantilever generator using interdigitated electrode lead zirconate titanate laminate. Energy 2019, 179, 373–382. [Google Scholar] [CrossRef]
- Naseer, R.; Dai, H.; Abdelkefi, A.; Wang, L. Comparative study of piezoelectric vortex-induced vibration-based energy harvesters with multi-stability characteristics. Energies 2020, 13, 71. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liao, W.; Zhang, Z.; Liao, Y.; Yan, M.; Kan, J. Development of a novel non-contact piezoelectric wind energy harvester excited by vortex-induced vibration. Energy Convers. Manag. 2021, 235, 113980. [Google Scholar] [CrossRef]
- Bai, Y.; Jantunen, H.; Juuti, J. Energy harvesting research: The road from single source to multisource. Adv. Mater. 2018, 30, 1707271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirohi, J.; Mahadik, R. Harvesting wind energy using a galloping piezoelectric beam. J. Vib. Acoust. 2011, 134, 011009. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Hajj, M.; Nayfeh, A. Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 2012, 22, 015014. [Google Scholar] [CrossRef]
- Jang, J.; Hwang, G.-T.; Min, Y.; Kim, J.-W.; Ahn, C.-W.; Choi, J.-J.; Hahn, B.-D.; Choi, J.-H.; Park, D.-S.; Jung, Y.; et al. Fatigue study and durability improvement of piezoelectric single crystal macro-fiber composite energy harvester. J. Korean Ceram. Soc. 2020, 57, 645–650. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Yan, Z.; Hajj, M.R. Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 2013, 22, 025016. [Google Scholar] [CrossRef]
- Nayfeh, A.H.; Balachandran, B. Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Alghisi, D.; Dalola, S.; Ferrari, M.; Ferrari, V. Triaxial ball-impact piezoelectric converter for autonomous sensors exploiting energy harvesting from vibrations and human motion. Sens. Actuators A Phys. 2015, 233, 569–581. [Google Scholar] [CrossRef]
- Minami, Y.; Nakamachi, E. Development of enhanced piezoelectric energy harvester induced by human motion. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; IEEE: Manhattan, NY, USA, 2012; pp. 1627–1630. [Google Scholar]
- Halim, M.A.; Khym, S.; Park, J.Y. Impact based frequency increased piezoelectric vibration energy harvester for human motion related environments. In Proceedings of the 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou, China, 7–10 April 2013; IEEE: Manhattan, NY, USA, 2013; pp. 949–952. [Google Scholar]
- Yang, B.; Yun, K.-S. Efficient energy harvesting from human motion using wearable piezoelectric shell structures. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; IEEE: Manhattan, NY, USA, 2011; pp. 2646–2649. [Google Scholar]
- Qian, F.; Xu, T.-B.; Zuo, L. Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism. Energy 2019, 189, 116140. [Google Scholar] [CrossRef]
- Ghommem, M.; Nayfeh, A.; Choura, S.; Najar, F.; Abdel-Rahman, E. Modeling and performance study of a beam microgyroscope. J. Sound Vib. 2010, 329, 4970–4979. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Jim, Y.M.; Ouyang, H.; Zou, Y.; Wang, Y.X.; Xie, L.X.; Li, Z. Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semicond. Sci. Technol. 2017, 32, 064004. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Bowen, C.; Roscow, J.; Zhanf, Y.; Danf, D.K.; Kim, E.J.; Misra, R.D.K.; Deng, L.; Chung, J.S.; Hur, S.H. Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices. Phys. Rep. 2019, 792, 1–33. [Google Scholar] [CrossRef]
- Mokhtari, F.; Spinks, G.M.; Fay, C.; Cheng, Z.; Raad, R.; Xi, J.; Foroughi, J. Wearable electronic textiles from nanostructured piezoelectric fibers. Adv. Mater. Technol. 2020, 5, 1900900. [Google Scholar] [CrossRef]
- Bellman, R.; Kusanagi, M. Methods of Nonlinear Analysis, Vol. I (Mathematics in Science and Engineering Volume 61-I). J. Dyn. Syst. Meas. Control 1973, 95, 103–104. [Google Scholar] [CrossRef]
- Biswal, P.; Kar, S.K.; Mukherjee, B. Design and optimization of high-performance through hole based MEMS energy harvester using PiezoMUMPs. J. Electron. Mater. 2021, 50, 375–388. [Google Scholar] [CrossRef]
- Naval, S.; Sinha, P.K.; Das, N.K.; Anand, A.; Kundu, S. Wideband piezoelectric energy harvester design using parallel connection of multiple beams. Int. J. Nanopart. 2020, 12, 206–223. [Google Scholar] [CrossRef]
- Panayanthatta, N.; La Rosa, R.; Trigona, C.; Bano, E.; Montes, L. Optimization of the geometry of MEMS Piezoelectric Energy Harvester cantilevers. In Proceedings of the COMSOL Conference Europe 2020, Cambridge, UK, 14–15 October 2020. [Google Scholar]
- Larkin, K.; Ghommem, M.; Serrano, M.; Abdelkefi, A. A review on vibrating beam-based micro/nano-gyroscopes. Microsyst. Technol. 2021, 27, 4157–4181. [Google Scholar] [CrossRef]
- Zhang, Y.-W.; Su, C.; Ni, Z.-Y.; Zang, J.; Chen, L.-Q. A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control. Compos. Struct. 2019, 221, 110875. [Google Scholar] [CrossRef]
- Brito-Pereira, R.; Ribeiro, C.; Pereira, N.; Lanceros-Mendez, S.; Martins, P. Printed multifunctional magnetically activated energy harvester with sensing capabilities. Nano Energy 2022, 94, 106885. [Google Scholar] [CrossRef]
- Cho, J.Y.; Kim, K.-B.; Hwang, W.S.; Yang, C.H.; Ahn, J.H.; Hong, S.D.; Jeon, D.H.; Song, G.J.; Ryu, C.H.; Woo, S.B.; et al. A multifunctional road-compatible piezoelectric energy harvester for autonomous driver-assist LED indicators with a self-monitoring system. Appl. Energy 2019, 242, 294–301. [Google Scholar] [CrossRef]
- Bellman, R.; Adomian, G. Partial Differential Equations; D. Reidel Publishing: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Bellman, R.; Roth, R. Methods in Approximation; D. Reidel Publishing: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Bert, C.W.; Malik, M. Differential Quadrature Method in Computational Mechanics: A Review; Springer: London, UK, 1996. [Google Scholar]
- Nayak, M.; Wakif, A.; Animasaun, I.; Alaoui, M. Numerical Differential Quadrature Examination of Steady Mixed Convection Nanofluid Flows Over an Isothermal Thin Needle Conveying Metallic and Metallic Oxide Nanomaterials: A Comparative Investigation. Arab. J. Sci. Eng. 2020, 45, 5331–5346. [Google Scholar] [CrossRef]
- Wang, J.; Geng, L.; Zhou, S.; Zhang, Z.; Lai, Z.; Yurchenko, D. Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mech. Sin. 2020, 36, 592–605. [Google Scholar] [CrossRef]
- Mohammadimehr, M.; Mehrabi, M.; Mousavinejad, F.S. Magneto-mechanical vibration analysis of single-/three-layered micro-Timoshenko porous beam and graphene platelet as reinforcement based on modified strain gradient theory and differential quadrature method. J. Vib. Control 2020, 27, 1077546320949083. [Google Scholar] [CrossRef]
- Larkin, K.; Ghommem, M.; Abdelkefi, A. Significance of size dependent and material structure coupling on the characteristics and performance of nanocrystalline micro/nano gyroscopes. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 99, 169–181. [Google Scholar] [CrossRef]
- Serrano, M.; Larkin, K.; Ghommem, M.; Tretiak, S.; Abdelkefi, A. Broadband piezoelectric energy harvesting microgyroscopes: Design and nonlinear analysis. Eur. J. Mech. A Solids 2022, 98, 104888. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Barsallo, N. Comparative modeling of low-frequency piezomagnetoelastic energy harvesters. J. Intell. Mater. Syst. Struct. 2014, 25, 1771–1785. [Google Scholar] [CrossRef]
- Aridogan, U.; Basdogan, I.; Erturk, A. Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate. Smart Mater. Struct. 2014, 23, 045039. [Google Scholar] [CrossRef]
- Wu, H.; Tang, L.; Yang, Y.; Soh, C.K. Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 2014, 25, 1875–1889. [Google Scholar] [CrossRef]
- Erturk, A. Electromechanical Modeling of Piezoelectric Energy Harvesters; Virginia Tech: Blacksburg, VA, USA, 2009. [Google Scholar]
- Larkin, K.; Abdelkefi, A. Neutral axis modeling and effectiveness of functionally graded piezoelectric energy harvesters. Compos. Struct. 2019, 213, 25–36. [Google Scholar] [CrossRef]
- Mahdavi, M.; Alhelou, H.H.; Hesamzadeh, M.R. An efficient stochastic reconfiguration model for distribution systems with uncertain loads. IEEE Access 2022, 10, 10640–10652. [Google Scholar] [CrossRef]
- Macedo, L.H.; Franco, J.F.; Mahdavi, M.; Romero, R. A contribution to the optimization of the reconfiguration problem in radial distribution systems. J. Control Autom. Electr. Syst. 2018, 29, 756–768. [Google Scholar] [CrossRef]
- Hosseini, H.; Jalilzadeh, S.; Nabaei, V.; Govar, G.Z.; Mahdavi, M. Enhancing deregulated distribution network reliability for minimizing penalty cost based on reconfiguration using BPSO. In Proceedings of the 2008 IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia, 1–3 December 2008; IEEE: Manhattan, NY, USA, 2008; pp. 983–987. [Google Scholar]
Model | Voltage Representation | Voltage Coupling | Voltage Coupling in Sensing E.O.M |
---|---|---|---|
SV | Spatially varying electric field | Resistance dependent | Backward coupling (resistance-dependent voltage term) |
OC | Spatially varying electric field | Open circuit () | Backward coupling (open-circuit voltage) |
CE- | Constant (average) electric field | Open circuit | Backward coupling (open-circuit voltage) |
CE | Constant (average) electric field | Short circuit | None |
Parameters | Values | Parameters | Values |
---|---|---|---|
Beam length, | Piezoelectric layer thickness, | ||
Beam thickness, | Piezoelectric layer width, | ||
Beam width, | Piezoelectric density, | ||
Driving electrode gap, | Piezoelectric Young’s modulus, | 30.336 GPa | |
Driving capacitor area, | Vacuum electric permittivity, | F/m | |
Tip mass width, | Piezoelectric permittivity, | F/m | |
Piezoelectric layer length, L | 400 |
OC (V) | CE (V) | CE- (V) | |
---|---|---|---|
15 | 0.2880 | 0.2104 | 0.0854 |
30 | 0.2797 | 0.2112 | 0.0925 |
60 | 0.2712 | 0.2148 | 0.0996 |
90 | 0.2663 | 0.2242 | 0.1038 |
150 | 0.2540 | 0.2540 | 0.1087 |
200 | 0.2547 | 0.2996 | 0.1120 |
250 | 0.2516 | 0.3911 | 0.1145 |
300 | 0.2646 | 0.5764 | 0.1052 |
Load Resistance | Model | Time (s) | Load Resistance | Model | Time (s) |
---|---|---|---|---|---|
SV | 1653 | Ω | SV | 405 | |
OC | 325 | OC | 325 | ||
CE- | 1586 | CE- | 345 | ||
CE | 1569 | CE | 380 | ||
Ω | SV | 415 | Ω | SV | 330 |
OC | 325 | OC | 325 | ||
CE- | 341 | CE- | 343 | ||
CE | 393 | CE | 368 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, M.; Larkin, K.; Tretiak, S.; Abdelkefi, A. Piezoelectric Energy Harvesting Gyroscopes: Comparative Modeling and Effectiveness. Energies 2023, 16, 2000. https://doi.org/10.3390/en16042000
Serrano M, Larkin K, Tretiak S, Abdelkefi A. Piezoelectric Energy Harvesting Gyroscopes: Comparative Modeling and Effectiveness. Energies. 2023; 16(4):2000. https://doi.org/10.3390/en16042000
Chicago/Turabian StyleSerrano, Manuel, Kevin Larkin, Sergei Tretiak, and Abdessattar Abdelkefi. 2023. "Piezoelectric Energy Harvesting Gyroscopes: Comparative Modeling and Effectiveness" Energies 16, no. 4: 2000. https://doi.org/10.3390/en16042000
APA StyleSerrano, M., Larkin, K., Tretiak, S., & Abdelkefi, A. (2023). Piezoelectric Energy Harvesting Gyroscopes: Comparative Modeling and Effectiveness. Energies, 16(4), 2000. https://doi.org/10.3390/en16042000