Water Influence on the Determination of the Rock Matrix Bulk Modulus in Reservoir Engineering and Rock-Fluid Coupling Projects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory of Problem
2.2. Materials
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alyafei, N. Fundamentals of Reservoir Rock Properties, 2nd ed.; Hamad Bin Khalifa University Press: Doha, Qatar, 2021; ISBN 9789927137273. [Google Scholar] [CrossRef]
- Fjaer, E.; Holt, R.M.; Horsrud, P.; Raaen, A.M.; Risnes, R. Petroleum Related Rock Mechanics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2008; ISBN 978-0-444-50260-5. [Google Scholar]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1996; ISBN 978-0-444-50260-5. [Google Scholar]
- Biot, M.A. General Theory of three-dimensional consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, Z. Overview of Geomechanical Properties of Bakken Formation in Williston Basin, North Dakota. In Proceedings of the 45th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 26–29 June 2011; pp. 1–11. [Google Scholar]
- Zhang, J.J. Applied Petroleum Geomechanics, 2nd ed.; Elsevier Inc.: Cambridge, MA, USA, 2019; ISBN 978-0-12-814814-3. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Vukuturi, V.S. The effect of liquids on the tensile strength of limestone. Int. J. Rock Mech. 1974, 11, 27–29. [Google Scholar] [CrossRef]
- Peck, L. Stress corrosion and crack propagation in Sioux quartzite. J. Geophys. Res. Solid Earth 1983, 88, 5037–5046. [Google Scholar] [CrossRef]
- Jaeger, J.C. The effect of absorption of water on the mechanical properties of sandstones. J. Inst. Eng. Aust. 1943, 15, 164–166. [Google Scholar]
- Rabat, Á.; Cano, M.; Tomás, R. Effect of water saturation on strength and deformability of building calcarenite stones: Correlations with their physical properties. Constr. Build. Mater. 2020, 232, 117259. [Google Scholar] [CrossRef]
- Rutter, E.H. The influence of interstitial water on the rheological behaviour of calcite rocks. Tectonophysics 1972, 14, 13–33. [Google Scholar] [CrossRef]
- Paterson, M.S.; Wong, T.F. Experimental Rock Deformation: The Brittle Field; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Qin, X.; Han, D.H.; Zhao, L. Measurement of Grain Bulk Modulus on Sandstone Samples from the Norwegian Continental Shelf. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024550. [Google Scholar] [CrossRef]
- Makhnenko, R.Y.; Labuz, J.F. Saturation of Porous Rock and Measurement of the B coefficient. In Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 23–26 June 2013. [Google Scholar]
- Tarokh, A.; Detournay, E.; Labuz, J. Direct measurement of the unjacketed pore modulus of porous solids. R. Soc. 2018, 474, 20180602. [Google Scholar] [CrossRef]
- Knez, D.; Zamani, M.A.M. Empirical Formula for Dynamic Biot Coefficient of Sandstone Samples from South-West of Poland. Energies 2021, 14, 5514. [Google Scholar] [CrossRef]
- Zamani, M.A.M.; Knez, D. A new mechanical-hydrodynamic safety factor index for sand production prediction. Energies 2021, 14, 3130. [Google Scholar] [CrossRef]
- Cosenza, P.; Ghoreychi, M.; de Marsily, G.; Vasseur, G.; Violette, S. Theoretical prediction of poroelastic properties of argillaceous rocks from in situ specific storage coefficient. Water Resour. 2002, 38, 25-1–25-12. [Google Scholar] [CrossRef]
- Hart, D.J.; Wang, H.F. Laboratory measurements of a complete set of poroelastic moduli for Berea Sandstone and Indiana Limestone. J. Geophys. Res. 1995, 100, 17741–17751. [Google Scholar] [CrossRef]
- Wang, H.F. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology; Princeton University Press: Oxford, UK, 2000. [Google Scholar]
- Rajaoalison, H.; Knez, D.; Zlotkowski, A. Changes of Dynamic Mechanical Properties of Brine-Saturated Istebna Sandstone under Action of Temperature and Stress. Przemysł Chem. 2019, 98, 801–804. [Google Scholar]
- Knez, D.; Rajaoalison, H. Discrepancy between Measured Dynamic Poroelastic Parameters and Predicted Values from Wyllie’s Equation for Water-Saturated Istebna Sandstone. Acta Geophys. 2021, 69, 673–680. [Google Scholar] [CrossRef]
- Knez, D.; Rajaoalison, H.; Nkunzi, D. Drilling Mud Influence on Sandstone Poroelastic Parameters. J. Geotechnol. Energy 2022, 39, 5–13. [Google Scholar] [CrossRef]
- Knez, D.; Rajaoalison, H. Land Subsidence Assessment for Wind Turbine Location in the South-Western Part of Madagascar. Energies 2022, 15, 4878. [Google Scholar] [CrossRef]
- Nowakowski, A. The Influence of Rate of Change in Confining and Pore Pressure on Values of the Modulus of Compressibility of the Rock Skeleton and Biot’s Coefficient. Energies 2021, 14, 3056. [Google Scholar] [CrossRef]
- Knez, D. Stress State Analysis in Aspect of Wellbore Drilling Direction. J. Arch. Min. Sci. 2014, 59, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Knez, D.; Calicki, A. Looking for a New Source of Natural Proppants in Poland. J. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66, 3–8. [Google Scholar] [CrossRef]
- Knez, D.; Mazur, S. Simulation of Fracture Conductivity Changes due to Proppant Composition and Stress Cycles. J. Pol. Miner. Eng. Soc. 2019, 2, 231–234. [Google Scholar]
- Knez, D.; Wiśniowski, R.; Owusu, W.A. Turning Filling Material into Proppant for Coalbed Methane in Poland-Crush Test Results. Energies 2019, 12, 1820. [Google Scholar] [CrossRef]
- Zhang, D.; Pathegama Gamage, R.; Perera, M.S.A.; Zhang, C.; Wanniarachchi, W.A.M. Influence of water saturation on the mechanical behaviour of low-permeability reservoir rocks. Energies 2017, 10, 236. [Google Scholar] [CrossRef]
- Brown, J.M.; Journaux, B. Local-basis-function equation of state for ice VII–X to 450 GPa at 300 K. Minerals 2020, 10, 92. [Google Scholar] [CrossRef]
- Mavko, G.; Vanorio, T. The influence of pore fluids and frequency on apparent effective stress behavior of seismic velocities. Geophysics 2010, 75, 1–7. [Google Scholar] [CrossRef]
- Khalilidermani, M.; Knez, D.; Zamani, M.A.M. Empirical Correlations between the Hydraulic Properties Obtained from the Geoelectrical Methods and Water Well Data of Arak Aquifer. Energies 2021, 14, 5415. [Google Scholar] [CrossRef]
- Fan, Z.; Eichhubl, P.; Newell, P. Basement fault reactivation by fluid injection into sedimentary reservoirs: Poroelastic effects. J. Geophys. Res. Solid Earth 2019, 124, 7354–7369. [Google Scholar] [CrossRef]
- Knez, D.; Zamani, M.A.M. A Review of the Geomechanics Aspects in Space Exploration. Energies 2021, 14, 7522. [Google Scholar] [CrossRef]
- Knez, D.; Khalilidermani, M. A Review of Different Aspects of Off-Earth Drilling. Energies 2021, 14, 7351. [Google Scholar] [CrossRef]
- Khalilidermani, M.; Knez, D. A Survey of Application of Mechanical Specific Energy in Petroleum and Space Drilling. Energies 2022, 15, 3162. [Google Scholar] [CrossRef]
- Quosay, A.A.; Knez, D. Sensitivity Analysis on Fracturing Pressure Using Monte Carlo Simulation Technique. Oil Gas Eur. Mag. 2016, 42, 140–144. [Google Scholar]
- Quosay, A.A.; Knez, D.; Ziaja, J. Hydraulic Fracturing: New Uncertainty Based Modeling Approach for Process Design Using Monte Carlo Simulation Technique. PLoS ONE 2020, 15, e0236726. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Diameter (mm) | Length (mm) | UCS (MPa) |
---|---|---|---|
UCS1 | 38 | 43 | 43.73 |
UCS2 | 38 | 42 | 50.33 |
UCS3 | 38 | 43 | 45.61 |
UCS4 | 38 | 43 | 51.60 |
UCS5 | 38 | 42 | 46.02 |
Sample Code | Diameter (mm) | Length (mm) | UCS (MPa) |
---|---|---|---|
C1 | 38 | 44 | 60.88 |
C2 | 38 | 41 | 69.70 |
C3 | 38 | 41 | 56.30 |
C4 | 38 | 41.5 | 52.05 |
C5 | 38 | 42 | 62.44 |
Sample Code | Diameter (mm) | Length (mm) | Massdry (gr) | Masssat (gr) | Porosity (%) | Density (gr/cm3) |
---|---|---|---|---|---|---|
Sample 1 | 38 | 42.5 | 99.94 | 108.21 | 17.17 | 2.50 |
Sample 2 | 38 | 44.5 | 108.30 | 116.22 | 15.70 | 2.55 |
Sample 3 | 38 | 41 | 98.50 | 105.63 | 15.34 | 2.50 |
Sample 4 | 38 | 41 | 100.34 | 107.55 | 15.51 | 2.55 |
Sample 5 | 38 | 43 | 105.29 | 112.7 | 15.20 | 2.55 |
Sample 6 | 38 | 43.5 | 104.88 | 112.28 | 15.01 | 2.50 |
Sample 7 | 38 | 40 | 96.24 | 103.53 | 16.08 | 2.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knez, D.; Khalilidermani, M.; Zamani, M.A.M. Water Influence on the Determination of the Rock Matrix Bulk Modulus in Reservoir Engineering and Rock-Fluid Coupling Projects. Energies 2023, 16, 1769. https://doi.org/10.3390/en16041769
Knez D, Khalilidermani M, Zamani MAM. Water Influence on the Determination of the Rock Matrix Bulk Modulus in Reservoir Engineering and Rock-Fluid Coupling Projects. Energies. 2023; 16(4):1769. https://doi.org/10.3390/en16041769
Chicago/Turabian StyleKnez, Dariusz, Mitra Khalilidermani, and Mohammad Ahmad Mahmoudi Zamani. 2023. "Water Influence on the Determination of the Rock Matrix Bulk Modulus in Reservoir Engineering and Rock-Fluid Coupling Projects" Energies 16, no. 4: 1769. https://doi.org/10.3390/en16041769
APA StyleKnez, D., Khalilidermani, M., & Zamani, M. A. M. (2023). Water Influence on the Determination of the Rock Matrix Bulk Modulus in Reservoir Engineering and Rock-Fluid Coupling Projects. Energies, 16(4), 1769. https://doi.org/10.3390/en16041769