An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Waste and Organization of Research
2.2. The Analytical Methods
3. Results
3.1. Fertilizing Properties and Other Parameters of the SS-OFMSW Studied
3.2. Morphological Composition of the Studied SS-OFMSW—Admixtures and Impurities
3.3. Biomethane Potential (BMP) of the SS-OFMSW Tested
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- COM/2020/98 final. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions a New Circular Economy Action Plan for a Cleaner and More Competitive Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN (accessed on 27 December 2022).
- Jakubus, M.; Stejskal, B. Municipal solid waste management systems in Poland and the Czech Republic. A comparative study. Environ. Prot. Eng. 2020, 46, 61–78. [Google Scholar] [CrossRef]
- Waszczyłko-Miłkowska, B.; Kamińska-Borak, J.; Bernat, K. The Real Share of the Morphological Components of Municipal Waste Generated in Municipal Systems in Poland. Environ. Prot. Nat. Resour. 2022, 33, 13–18. [Google Scholar] [CrossRef]
- Rolewicz-Kalińska, A.; Lelicińska-Serafin, K.; Manczarski, P. The Circular Economy and Organic Fraction of Municipal Solid Waste Recycling Strategies. Energies 2020, 13, 4366. [Google Scholar] [CrossRef]
- Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32018L0851 (accessed on 27 December 2022).
- Giordano, C.; Falasconi, L.; Cicatiello, C.; Pancino, B. The role of food waste hierarchy in addressing policy and research: A comparative analysis. J. Clean. Prod. 2020, 252, 119617. [Google Scholar] [CrossRef]
- Imbert, E. Food waste valorization options: Opportunities from the bioeconomy. Open Agric. 2017, 2, 195–204. [Google Scholar] [CrossRef]
- Kibler, K.M.; Reinhart, D.; Hawkins, C.; Motlagh, A.M.; Wright, J. Food waste and the food-energy-water nexus: A review of food waste management alternatives. Waste Manag. 2018, 74, 52–62. [Google Scholar] [CrossRef]
- Cimon, C.; Kadota, P.; Eskicioglu, C. Effect of biochar and wood ash amendment on biochemical methane production of wastewater sludge from a temperature phase anaerobic digestion process. Bioresour. Technol. 2020, 297, 122440. [Google Scholar] [CrossRef]
- Eriksson, M.; Strid, I.; Hansson, P.-A. Carbon footprint of food waste management options in the waste hierarchy – a Swedish case study. J. Clean. Prod. 2015, 93, 115–125. [Google Scholar] [CrossRef]
- Garcia-Garcia, G.; Woolley, E.; Rahimifard, S.; Colwill, J.; White, R.; Needham, L. A Methodology for Sustainable Management of Food Waste. Waste Biomass Valorization 2017, 8, 2209–2227. [Google Scholar] [CrossRef]
- EUR-Lex–European Union Law–Official Site. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32019D1597&from=EN (accessed on 29 December 2022).
- Carmona-Cabello, M.; Garcia, I.L.; Leiva-Candia, D.; Dorado, M.P. Valorization of food waste based on its composition through the concept of biorefinery. Curr. Opin. Green Sustain. Chem. 2018, 14, 67–79. [Google Scholar] [CrossRef]
- Vidal-Antich, C.; Peces, M.; Perez-Esteban, N.; Mata-Alvarez, J.; Dosta, J.; Astals, S. Impact of food waste composition on acidogenic co-fermentation with waste activated sludge. Sci. Total Environ. 2022, 849, 157920. [Google Scholar] [CrossRef]
- Adelodun, B.; Kim, S.H.; Choi, K.-S. Assessment of food waste generation and composition among Korean households using novel sampling and statistical approaches. Waste Manag. 2021, 122, 71–80. [Google Scholar] [CrossRef]
- Wainaina, S.; Awasthi, M.K.; Horváth, I.S.; Taherzadeh, M.J. Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors. Renew. Energy 2020, 152, 1140–1148. [Google Scholar] [CrossRef]
- Slopiecka, K.; Liberti, F.; Massoli, S.; Bartocci, P.; Fantozzi, F. Chemical and physical characterization of food waste to improve its use in anaerobic digestion plants. Energy Nexus 2022, 5, 100049. [Google Scholar] [CrossRef]
- Zhang, R.; El-Mashad, H.M.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 2007, 98, 929–935. [Google Scholar] [CrossRef]
- Fisgativa, H.; Tremier, A.; Dabert, P. Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Manag. 2016, 50, 264–274. [Google Scholar] [CrossRef]
- Zhang, C.; Su, C.H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- Degueurce, A.; Picard, S.; Peu, P.; Trémier, A. Storage of Food Waste: Variations of Physical–Chemical Characteristics and Consequences on Biomethane Potential. Waste Biomass Valorization 2020, 11, 2441–2454. [Google Scholar] [CrossRef]
- Dolci, G.; Catenacci, A.; Malpei, F.; Grosso, M. Effect of Paper vs. Bioplastic Bags on Food Waste Collection and Processing. Waste Biomass Valorization 2021, 12, 6293–6307. [Google Scholar] [CrossRef]
- Rodrigues, L.C.; Puig-Ventosa, I.; López, M.; Martínez, F.X.; Ruiz, A.G.; Bertrán, T.G. The impact of improper materials in biowaste on the quality of compost. J. Clean. Prod. 2020, 251, 119601. [Google Scholar] [CrossRef]
- Bong, C.P.C.; Lim, L.Y.; Lee, C.T.; Klemeš, J.J.; Ho, C.S.; Ho, W.S. The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion–A review. J. Clean. Prod. 2018, 172, 1545–1558. [Google Scholar] [CrossRef]
- Cerda, A.; Artola, A.; Font, X.; Barrena, R.; Gea, T.; Sánchez, A. Composting of food wastes: Status and challenges. Bioresour. Technol. 2018, 248, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, A.; Colomer-Mendoza, F.J.; Carlos-Alberola, M.; Badenes, C.; Edo-Alcón, N.; Esteban-Altabella, J. Efficiency of a pilot scheme for the separate collection of the biowaste from municipal solid waste in Spain. Sci. Rep. 2021, 11, 11569. [Google Scholar] [CrossRef] [PubMed]
- Website of the Warsaw City Hall. Rules of Municipal Waste Management in the City. Available online: https://warszawa19115.pl/documents/20184/1342879/Flyer/4ac01b3f-3606-4aa5-bf3e-fdcb6e15b705 (accessed on 25 December 2022).
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; De Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef]
- Kreuger, E.; Nges, I.A.; Björnsson, L. Ensiling of crops for biogas production: Effects on methane yield and total solids determination. Biotechnol. Biofuels 2011, 4, 44. [Google Scholar] [CrossRef]
- Longjan, G.G.; Dehouche, Z. Nutrient characterisation and bioenergy potential of common Nigerian food wastes. Waste Manag. Res. 2018, 36, 426–435. [Google Scholar] [CrossRef]
- Del Moral, M.O.; Fröhlich, N.; Figarella, K.; Mojtahedi, N.; Garaschuk, O. Effect of Caloric Restriction on the In Vivo Functional Properties of Aging Microglia. Front. Immunol. 2020, 11, 750. [Google Scholar] [CrossRef]
- Jędrczak, A.; Szpadt, R. Określenie Metodyki Badań Składu Sitowego, Morfologicznego i Chemicznego Odpadów Komunalnych; Kamieniec Wrocławski: Zielona Góra, Poland, 2006. (In Polish) [Google Scholar]
- Seruga, P.; Krzywonos, M.; den Boer, E.; Niedźwiecki, Ł.; Urbanowska, A.; Pawlak-Kruczek, H. Anaerobic Digestion as a Component of Circular Bioeconomy—Case Study Approach. Energies 2023, 16, 140. [Google Scholar] [CrossRef]
- Alvarez, M.D.; Sans, R.; Garrido, N.; Torres, A. Factors that affect the quality of the bio-waste fraction of selectively collected solid waste in Catalonia. Waste Manag. 2008, 28, 359–366. [Google Scholar] [CrossRef]
- Amlinger, F.; Peyr, S.; Cuhls, C. Green house gas emissions from composting and mechanical biological treatment. Waste Manag. Res. 2008, 26, 47–60. [Google Scholar] [CrossRef]
- Xu, Z.; Li, G.; Huda, N.; Zhang, B.; Wang, M.; Luo, W. Effects of moisture and carbon/nitrogen ratio on gaseous emissions and maturity during direct composting of cornstalks used for filtration of anaerobically digested manure centrate. Bioresour. Technol. 2020, 298, 122503. [Google Scholar] [CrossRef]
- Kumar, M.; Ou, Y.-L.; Lin, J.-G. Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 2010, 30, 602–609. [Google Scholar] [CrossRef]
- Huang, G.F.; Wong, J.W.; Wu, Q.T.; Nagar, B.B. Effect of C/N on composting of pig manure with sawdust. Waste Manag. 2004, 24, 805–813. [Google Scholar] [CrossRef]
- Asnani, P.U.; Zurbrugg, C. Improving Municipal Solid Waste Management in India: A Sourcebook for Policymakers and Practitioners; World Bank Publications: Washington, DC, USA, 2007. [Google Scholar]
- Moretti, P.; de Araujo, J.M.; de Castilhos, A.B.; Buffière, P.; Gourdon, R.; Bayard, R. Characterization of municipal biowaste categories for their capacity to be converted into a feedstock aqueous slurry to produce methane by anaerobic digestion. Sci. Total Environ. 2020, 716, 137084. [Google Scholar] [CrossRef]
- Rabii, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration. Energies 2019, 12, 1106. [Google Scholar] [CrossRef]
- Ghaleb, A.A.S.; Kutty, S.R.M.; Ho, Y.-C.; Jagaba, A.H.; Noor, A.; Al-Sabaeei, A.M.; Almahbashi, N.M.Y. Response Surface Methodology to Optimize Methane Production from Mesophilic Anaerobic Co-Digestion of Oily-Biological Sludge and Sugarcane Bagasse. Sustainability 2020, 12, 2116. [Google Scholar] [CrossRef]
- Brown, K.H.; Bouwkamp, J.C.; Gouin, F.R. The Influence of C:P Ratio on the Biological Degradation Of Municipal Solid Waste. Compos. Sci. Util. 1998, 6, 53–58. [Google Scholar] [CrossRef]
- Meyer-Kohlstock, D.; Haupt, T.; Heldt, E.; Heldt, N.; Kraft, E. Biochar as Additive in Biogas-Production from Bio-Waste. Energies 2016, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Arnold, R.; Paavola, T.; Vaz, F.; Correia, C.; Cavinato, C.; Kusch-Brandt, S.; Heaven, S. Compositional analysis of food waste entering the source segregation stream in four European regions and implications for valorisation via anaerobic digestion. In Proceedings of the 14th International Waste Management and Landfill Symposium, Cagliari, Italy, 30 September–4 October 2013; Available online: http://eprints.soton.ac.uk/id/eprint/359726 (accessed on 25 December 2022).
Parameter | M | S | C | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV [%] | Mean | SD | CV [%] | Mean | SD | CV [%] | |
VS [%] | 85.91 | ±1.18 | 1 | 84.42 | ±7.00 | 8 | 87.82 | ±4.05 | 5 |
TOC [%] | 35.80 | ±4.35 | 12 | 32.61 | ±5.73 | 18 | 33.99 | ±6.77 | 20 |
C/N [-] | 18 | ±2 | 9 | 17 | ±5 | 26 | 17 | ±5 | 30 |
C/P [-] | 59 | ±14 | 24 | 48 | ±7 | 14 | 42 | ±13 | 32 |
Water content [%] | 76.9 | ±3.3 | 4 | 78.1 | ±3.6 | 5 | 81.7 | ±2.9 | 3 |
Component [%] | M | S | C | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV [%] | Mean | SD | CV [%] | Mean | SD | CV [%] | |
Plant origin waste | 93.53 | ±4.01 | 4 | 92.11 | ±4.48 | 5 | 97.08 | 2.44 | 2 |
Animal origin waste | 0.68 | ±0.98 | 144 | 1.29 | ±1.81 | 140 | 0.59 | ±0.65 | 110 |
Impurities | 5.79 | ±3.58 | 62 | 6.60 | ±3.72 | 56 | 2.34 | ±2.03 | 87 |
Impurities [%] | M | S | C | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV [%] | Mean | SD | CV [%] | Mean | SD | CV [%] | |
Paper | 0.87 | ±0.71 | 82 | 1.17 | ±0.74 | 64 | 0.31 | ±0.41 | 136 |
Plastics | 2.11 | ±1.26 | 60 | 2.45 | ±1.54 | 63 | 1.62 | ±2.10 | 130 |
Glass | 0.25 | ±0.49 | 193 | 1.08 | ±2.10 | 195 | 0.03 | ±0.03 | 112 |
Metals | 0.06 | ±0.10 | 157 | 0.33 | ±0.57 | 170 | 0.01 | ±0.02 | 135 |
Others | 2.50 | ±3.41 | 136 | 1.57 | ±1.58 | 101 | 0.37 | ±0.36 | 99 |
Parameter [%] | M | S | C | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV [%] | Mean | SD | CV [%] | Mean | SD | CV [%] | |
Biogas yield [m3·Mg−1 VS] | 384 | ±57 | 15 | 422 | ±96 | 23 | 426 | ±90 | 21 |
CH4 share [%] | 57 | ±4 | 7 | 61 | ±8 | 12 | 52 | ±8 | 16 |
Parameter | The Source of SS-OFMSW Origin | CV [%] |
---|---|---|
VS | M, S, C | 1–8 |
TOC | M | 12 |
Water content | M, S, C | 3–5 |
C/N | M | 9 |
C/P | S | 16 |
The share of plant origin fractions in SS-OFMSW | M, S, C | 2–5 |
Biogas yield from SS-OFMSW | M | 15 |
CH4 share in biogas | M, S, C | 7–16 |
Parameter | Value | The Source of SS-OFMSW Origin | Literature Source |
---|---|---|---|
Content of animal origin food waste in SS-OFMSW [%] | 0.59–1.29 | Warsaw | Own studies |
8.4 | UK (from 8 cities) | [45] | |
6.3 | Finland (the city of Forssa) | ||
8.0 | Portugal (from the city of Lisbon) | ||
7.6 | Italy (the city of Treviso) | ||
Content of paper in SS-OFMSW [%] | 0.31–1.17 | Warsaw | Own studies |
<2.0 | UK (from 8 cities) | [45] | |
17.5 | Finland (the city of Forssa) | ||
6.3 | Portugal (from the city of Lisbon) | ||
13.8 | Italy (the city of Treviso) | ||
2.18–3.48 | Spain (3 regions) | [26] | |
Content of plastics, metals, and other impurities in SS-OFMSW [%] | 2.03–5.43 | Warsaw | Own studies |
<2.0 | UK (from 8 cities) | [45] | |
<2 | Finland (the city of Forssa) | ||
9.6 | Portugal (from the city of Lisbon) | ||
19.5 | Italy (the city of Treviso) | ||
TS [%] | 18.3–23.1 | Warsaw | Own studies |
23.70–28.62 | UK (from 8 cities) | [45] | |
27.02 | Finland (the city of Forssa) | ||
33.80 | Portugal (from the city of Lisbon) | ||
24.43–27.47 | Italy (the city of Treviso) | ||
28.4 | Average of approx. 30 studies from the EU | [19] | |
VS [%] | 84.42–87.82 | Warsaw | Own studies |
91.17–94.18 | UK (from 8 cities) | [45] | |
92.26 | Finland (the city of Forssa) | ||
81.7 | Lisbon | ||
83.32–86.60 | Italy (the city of Treviso) | ||
TOC [%] | 32.61–35.80 | Warsaw | Own studies |
48.3–51.3 | UK (from 8 cities) | [45] | |
C/N [-] | 17–18 | Warsaw | Own studies |
14–17 | UK (from 8 cities) | [45] | |
QCR [%] | 92–97 | Warsaw | Own studies |
80–90 | Spain (various regions) | [26] | |
89 | Italy (Calabria) | ||
70–90 | Czech Republic (Usti nad Labem) | ||
97 | Belgium (Antwerp) | ||
78 | Spain (Catalonia) | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lelicińska-Serafin, K.; Manczarski, P.; Rolewicz-Kalińska, A. An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy. Energies 2023, 16, 1735. https://doi.org/10.3390/en16041735
Lelicińska-Serafin K, Manczarski P, Rolewicz-Kalińska A. An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy. Energies. 2023; 16(4):1735. https://doi.org/10.3390/en16041735
Chicago/Turabian StyleLelicińska-Serafin, Krystyna, Piotr Manczarski, and Anna Rolewicz-Kalińska. 2023. "An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy" Energies 16, no. 4: 1735. https://doi.org/10.3390/en16041735
APA StyleLelicińska-Serafin, K., Manczarski, P., & Rolewicz-Kalińska, A. (2023). An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy. Energies, 16(4), 1735. https://doi.org/10.3390/en16041735