# Multiple Input-Single Output DC-DC Converters Assessment for Low Power Renewable Sources Integration

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Modelling of MISO DC-DC Converters

#### 2.1.1. MISO Buck Converter

#### 2.1.2. MISO Flyback Converter

#### 2.2. Non-Idealities on MISO DC-DC Converters

#### 2.2.1. Nonlinear Output Voltage

#### 2.2.2. Dynamical Modelling of MISO DC-DC Buck Converters

#### 2.3. Modelling of the Integration of Two Low-Power Renewable Energy Sources

#### 2.3.1. Modeling of the Photovoltaic Generation System

#### 2.3.2. Modelling of the Hydroelectric Generation System

#### 2.3.3. Architecture of the Hybrid Generation System

#### 2.4. Sizing of the Components of the Hybrid Generation System

#### 2.4.1. Sizing of MISO DC-DC Converters

#### 2.4.2. Sizing of Photovoltaic Voltage Source

#### 2.4.3. Sizing of Hydroelectric Voltage Source

#### 2.4.4. Sizing of Closed-Loop Control for the Non-Isolated HGS

#### 2.4.5. Sizing of Closed-Loop Control for the Isolated HGS

## 3. Results and Discussion

#### 3.1. Effect of Non-Ideal Components on Output Voltage

#### 3.2. Dynamic Response of the MISO DC-DC Converters

#### 3.3. Efficiency of Non-Ideal MISO DC-DC Converters

#### 3.3.1. Efficiency of the MISO Buck Converter

#### 3.3.2. Efficiency of the MISO Flyback Converter

#### 3.4. Response of Closed-Loop Control for HGS

#### 3.4.1. Closed-Loop Control for the Non-Isolated HGS

#### 3.4.2. Closed-Loop Control for the Isolated HGS

#### 3.5. Performance of the MISO DC-DC Converter on an HGS

#### 3.5.1. HGS Based on Non-Isolated MISO DC-DC Converter

#### 3.5.2. HGS Based on an Isolated DC-DC Converter

#### 3.6. Efficiency of the HGS with Closed-Loop Control

#### 3.7. A Comparison Analysis of Multiple Input DC-DC Converters in the Literature

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Akizu-Gardoki, O.; Bueno, G.; Wiedmann, T.; Lopez-Guede, J.M.; Arto, I.; Hernandez, P.; Moran, D. Decoupling between human development and energy consumption within footprint accounts. J. Clean. Prod.
**2018**, 202, 1145–1157. [Google Scholar] [CrossRef] - Acar, C.; Dincer, I. Environmental impact assessment of renewables and conventional fuels for different end use purposes. Int. J. Glob. Warm.
**2017**, 13, 260–277. [Google Scholar] [CrossRef] - Umayal, S.P.; Selvakumar, P.; Ramkumar, V. Multiple input Fuzzy controlled DC-DC Converter for harvesting renewable energy. In Proceedings of the 2021 7th International Conference on Electrical Energy Systems (ICEES), Virtual, 11–13 February 2021; Volume 6, pp. 329–333. [Google Scholar] [CrossRef]
- Hossain, M.; Rahim, N. Recent progress and development on power DC-DC converter topology, control, design and applications: A review. Renew. Sustain. Energy Rev.
**2018**, 81, 205–230. [Google Scholar] [CrossRef] - Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. A novel LMSRE-based adaptive PI control scheme for grid-integrated PMSG-based variable-speed wind turbine. Int. J. Electr. Power Energy Syst.
**2021**, 125, 106505. [Google Scholar] [CrossRef] - Butt, O.M.; Zulqarnain, M.; Butt, T.M. Recent advancement in smart grid technology: Future prospects in the electrical power network. Ain Shams Eng. J.
**2021**, 12, 687–695. [Google Scholar] [CrossRef] - Rehman, Z.; Al-Bahadly, I.; Mukhopadhyay, S. Multiinput DC–DC converters in renewable energy applications—An overview. Renew. Sustain. Energy Rev.
**2015**, 41, 521–539. [Google Scholar] [CrossRef] - Kolli, A.; Gaillard, A.; De Bernardinis, A.; Bethoux, O.; Hissel, D.; Khatir, Z. A review on DC/DC converter architectures for power fuel cell applications. Energy Convers. Manag.
**2015**, 105, 716–730. [Google Scholar] [CrossRef] - Alhurayyis, I.; Elkhateb, A.; Morrow, J. Isolated and nonisolated DC-to-DC converters for medium-voltage DC networks: A review. IEEE J. Emerg. Sel. Top. Power Electron.
**2020**, 9, 7486–7500. [Google Scholar] [CrossRef] - Mumtaz, F.; Yahaya, N.Z.; Meraj, S.T.; Singh, B.; Kannan, R.; Ibrahim, O. Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Ain Shams Eng. J.
**2021**, 12, 3747–3763. [Google Scholar] [CrossRef] - Arunkumari, T.; Indragandhi, V. An overview of high voltage conversion ratio DC-DC converter configurations used in DC micro-grid architectures. Renew. Sustain. Energy Rev.
**2017**, 77, 670–687. [Google Scholar] [CrossRef] - Qi, Q.; Ghaderi, D.; Guerrero, J.M. Sliding mode controller-based switched-capacitor-based high DC gain and low voltage stress DC-DC boost converter for photovoltaic applications. Int. J. Electr. Power Energy Syst.
**2021**, 125, 106496. [Google Scholar] [CrossRef] - Choudhury, T.R.; Nayak, B.; Santra, S.B. Investigation of voltage stress on a single switch boost-fly-back integrated high gain converter with light load condition. Ain Shams Eng. J.
**2019**, 10, 217–226. [Google Scholar] [CrossRef] - Wang, Y.; Tian, J.; Sun, Z.; Wang, L.; Xu, R.; Li, M.; Chen, Z. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew. Sustain. Energy Rev.
**2020**, 131, 110015. [Google Scholar] [CrossRef] - Schellekens, J.M.; Huisman, H.; Duarte, J.L.; Hendrix, M.A.; Lomonova, E.A. An analysis of the highly linear transfer characteristics of dual-buck converters. IEEE Trans. Ind. Electron.
**2017**, 65, 4681–4690. [Google Scholar] [CrossRef] - Tekin, H.; Bulut, K.; Ertekin, D. A novel switched-capacitor and fuzzy logic-based quadratic boost converter with mitigated voltage stress, applicable for DC micro-grid. Electr. Eng.
**2022**, 104, 4391–4413. [Google Scholar] [CrossRef] - Veerachary, M.; Trivedi, A. Linear Matrix Inequality-Based Multivariable Controller Design for Boost Cascaded Charge-Pump-Based Double-Input DC–DC Converter. IEEE Trans. Ind. Appl.
**2022**, 58, 7515–7528. [Google Scholar] [CrossRef] - ELhagry, M.M.; Elkady, Z.; Abdel-Rahim, N.; Bendary, F. New topology of multiple-input single-output PV system for DC load applications. J. Electr. Syst. Inf. Technol.
**2016**, 3, 471–484. [Google Scholar] [CrossRef] - Affam, A.; Buswig, Y.M.; Othman, A.K.B.H.; Julai, N.B.; Qays, O. A review of multiple input DC-DC converter topologies linked with hybrid electric vehicles and renewable energy systems. Renew. Sustain. Energy Rev.
**2021**, 135, 110186. [Google Scholar] [CrossRef] - Raj, A.; Praveen, R. Highly efficient DC-DC boost converter implemented with improved MPPT algorithm for utility level photovoltaic applications. Ain Shams Eng. J.
**2022**, 13, 101617. [Google Scholar] [CrossRef] - Alsolami, M. A multi-input, multi-stage step-up DC-DC converter for PV applications. Alex. Eng. J.
**2021**, 60, 2315–2324. [Google Scholar] [CrossRef] - Khosrogorji, S.; Ahmadian, M.; Torkaman, H.; Soori, S. Multi-input DC/DC converters in connection with distributed generation units—A review. Renew. Sustain. Energy Rev.
**2016**, 66, 360–379. [Google Scholar] [CrossRef] - Cheng, T.; Lu, D.D.; Gong, A.; Verstraete, D. Analysis of a three-port DC-DC converter for PV-battery system using DISO boost and SISO buck converters. In Proceedings of the 2015 Australasian Universities Power Engineering Conference (AUPEC), Wollongong, NSW, Australia, 27–30 September 2015; pp. 1–6. [Google Scholar]
- Kumar, S.S.; Nirmal, M.C.M.; Jayaprakash, P. Power Management of a Grid Interactive PV - Fuel Cell Hybrid System with Power Dispatch to the Grid Using Modified LMS Control. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16–19 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Yalamanchili, K.P.; Ferdowsi, M.; Corzine, K. New Double Input DC-DC Converters for Automotive Applications. In Proceedings of the 2006 IEEE Vehicle Power and Propulsion Conference, Windsor, UK, 6–8 September 2006; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Ruan, X.; Jin, K. A Double-input flyback DC/DC converter with single primary winding. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, ECCE 2010—Proceedings, Atlanta, GA, USA, 12–16 September 2010; pp. 1938–1944. [Google Scholar] [CrossRef]
- Ordys, A.W.; Pike, A.; Johnson, M.A.; Katebi, R.M.; Grimble, M.J. Modelling and Simulation of Power Generation Plants; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Madhana, R.; Mani, G. Power enhancement methods of renewable energy resources using multiport DC-DC converter: A technical review. Sustain. Comput. Inform. Syst.
**2022**, 35, 100689. [Google Scholar] [CrossRef]

**Figure 3.**Characteristic current curves of the MISO Buck converter for different output voltage conditions.

**Figure 28.**Efficiency of the DC-DC converter in the HGS: (

**a**) non-isolated architecture and (

**b**) isolated architecture.

States | S1 | S2 | Inductor Voltage (${\mathit{V}}_{\mathit{L}}$) | Inductor Current Change ($\mathbf{\Delta}{\mathit{i}}_{\mathit{L}}$) |
---|---|---|---|---|

Alpha ($\alpha $) | On | On | ${V}_{L}={V}_{S1}+{V}_{S2}-{V}_{o}$ | $\Delta {i}_{L}=({V}_{S1}+{V}_{S2}-{V}_{o})/L){D}_{2}T$ |

Beta ($\beta $) | On | Off | ${V}_{L}={V}_{S1}-{V}_{o}$ | $\Delta {i}_{L}=({V}_{S1}-{V}_{o})/L)\left({D}_{1}{D}_{2}\right)T$ |

Gamma ($\gamma $) | Off | Off | ${V}_{L}=-{V}_{o}$ | $\Delta {i}_{L}=(-{V}_{o})/L)\left(1{D}_{1}\right)T$ |

States | S1 | S2 | S3 | Inductor Votlage (${\mathit{V}}_{\mathit{L}}$) | Inductor Current Change $\left(\mathbf{\Delta}{\mathit{I}}_{\mathit{L}}\right)$ |
---|---|---|---|---|---|

Alpha | On | On | On | ${V}_{L}={V}_{S1}+{V}_{S2}$ | $\Delta {I}_{L}=(({V}_{S1}+{V}_{S2})/L){D}_{2}T$ |

Beta | On | Off | On | ${V}_{L}={V}_{S1}$ | $\Delta {I}_{L}=({V}_{S1}/L)\left({D}_{1}{D}_{2}\right)T$ |

Omega | Off | Off | Off | ${V}_{L}=-a{V}_{o}$ | $\Delta {I}_{L}=(-a{V}_{o}/L)\left(1{D}_{1}\right)T$ |

Parameters | MISO Buck | MISO Flyback | ||
---|---|---|---|---|

Values | Unit | Values | Unit | |

Output voltage | 12–50 | V | 12–50 | V |

Input voltage | 120 Max | V | 120 Max | V |

Frequency | 25 | kHz | 25 | kHz |

Inductor | 150 | $\mathsf{\mu}H$ | 150 | $\mathsf{\mu}H$ |

Capacitor | 220 | $\mathsf{\mu}$F | 220 | $\mathsf{\mu}$F |

R (load) | 10 | $\Omega $ | 10 | $\Omega $ |

${R}_{L}$ (coil) | 120 | m$\Omega $ | 40 | m$\Omega $ |

${R}_{D}$ (diode) | 100 | m$\Omega $ | 100 | m$\Omega $ |

${R}_{S}$ (switch) | 47 | m$\Omega $ | 47 | m$\Omega $ |

a (${N}_{1}/{N}_{2}$) | 1 |

Parameters | Values | Unit |
---|---|---|

Power | 224.92 | W |

Cells by module | 60 | — |

OCV | 42.66 | V |

VMP | 34.13 | V |

IMP | 6.39 | A |

ISC | 7.22 | A |

RsH | 128.27 | $\Omega $ |

Rs | 0.4994 | $\Omega $ |

Temperature | 12–45 | °C |

Irradiance | 1–125 | kW/m${}^{2}$ |

Parameters | Values | Unit |
---|---|---|

Voltaje de Salida | 25–150 | V |

Voltaje de entrada | 80 Max | V |

Inductor | 10 | $\mathsf{\mu}$H |

Capacitor | 220 | $\mathsf{\mu}$F |

Fs Max | 25 | KHz |

Parameters | Values | Unit |
---|---|---|

Power | 5 | HP |

Nominal voltage (DC) | 240 | V |

Speed | 1750 | rpm |

Field voltage | 24 | V |

Rf | 1–50 | $\Omega $ |

Parameters | Values |
---|---|

Proportional K | 0.589 |

Integral Ti | 25.28 |

Derivative Td | 0.001 |

Parameters | Values |
---|---|

Proportional K | 0.00456 |

Integral Ti | 5.1989 |

Derivative Td | 0 |

Parameters | Values |
---|---|

Proportional K | 0.00125 |

Integral Ti | 2.5989 |

Derivative Td | 0 |

Number of Ports | Duty Cycle | Efficiency % |
---|---|---|

2 | ${D}_{1}={D}_{2}=0.5$ | 91.12 |

3 | ${D}_{1}={D}_{2}={D}_{3}=0.5$ | 90.57 |

4 | ${D}_{1}={D}_{2}={D}_{3}={D}_{4}=0.5$ | 89.28 |

5 | ${D}_{1}={D}_{2}={D}_{3}={D}_{4}={D}_{5}=0.5$ | 87.92 |

6 | ${D}_{1}={D}_{2}={D}_{3}={D}_{4}={D}_{5}={D}_{6}=0.5$ | 86.48 |

Number of Ports | Duty Cycle | Eficiency % |
---|---|---|

2 | ${D}_{1}={D}_{2}=0.5$ | 88.42 |

3 | ${D}_{1}={D}_{2}={D}_{3}=0.5$ | 87.37 |

4 | ${D}_{1}={D}_{2}={D}_{3}={D}_{4}=0.5$ | 86.53 |

5 | ${D}_{1}={D}_{2}={D}_{3}={D}_{4}={D}_{5}=0.5$ | 86.31 |

Reference | DC-DC Topologies Studied | Description | Main Focuses |
---|---|---|---|

[10] | - Buck–Boost - Sepic - Cuk - Z-source - Zeta | - Analysis of non-isolated DC-DC converters - Modelling of non-isolated converters - Topology efficiency study considering duty cycle and load - Comparison of advanced control techniques | - Non-isolated DC-DC converters and advanced control techniques |

[28] | - General consideration of non-isolated and isolated converters | - DC-DC converter comparisons considering components - ZVS study for increasing the efficiency - Control strategy study - Efficiency study based on control technique analysis | - Multi-input DC-DC converters focused on control strategy and ZVS for increasing the converter efficiency |

[19] | - Multiport buck-boost converter with isolated and non-isolated port - Bidirectional multiport converter - Bidirectional LLC power converter | - Model and characteristics analysis of DC-DC converters - DC-DC converter application analysis - Analysis of Characteristics of multi-input DC-DC converters - Challenges and future trends | - Review of the DC-DC converter topologies for Electric Vehicles and Renewable energy |

[9] | - Topologies of non-isolated and isolated DC-DC converters | - Topologies comparison, characteristics and operation modes - Application study in a microgrid converters - Future trends for DC-DC converters in microgrid application | - A general review of non-isolated and isolated DC-DC converters |

This work | - Buck - Flyback | - Multi-input isolated and non-isolated converters modeling and design methodology - Efficiency analysis considering non-idealities - Analysis with real models of the energy generation systems - Control design and performance evaluation under load variation | - Design methodology and a comprehensive efficiency study for increasing the performance of simple multi-input DC-DC converters considering, real sources models, non-idealities, load variation and simple control |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Soldado-Guamán, J.; Herrera-Perez, V.; Pacheco-Cunduri, M.; Paredes-Camacho, A.; Delgado-Prieto, M.; Hernandez-Ambato, J.
Multiple Input-Single Output DC-DC Converters Assessment for Low Power Renewable Sources Integration. *Energies* **2023**, *16*, 1652.
https://doi.org/10.3390/en16041652

**AMA Style**

Soldado-Guamán J, Herrera-Perez V, Pacheco-Cunduri M, Paredes-Camacho A, Delgado-Prieto M, Hernandez-Ambato J.
Multiple Input-Single Output DC-DC Converters Assessment for Low Power Renewable Sources Integration. *Energies*. 2023; 16(4):1652.
https://doi.org/10.3390/en16041652

**Chicago/Turabian Style**

Soldado-Guamán, Joaquin, Victor Herrera-Perez, Mayra Pacheco-Cunduri, Alejandro Paredes-Camacho, Miguel Delgado-Prieto, and Jorge Hernandez-Ambato.
2023. "Multiple Input-Single Output DC-DC Converters Assessment for Low Power Renewable Sources Integration" *Energies* 16, no. 4: 1652.
https://doi.org/10.3390/en16041652