Simulations for Planning of Liquid Hydrogen Spill Test
Abstract
:1. Introduction
2. Simulation Methods
2.1. Scenario Descriptions
2.2. Domain and Meshing
2.2.1. Shock Tube Facility
2.2.2. CUBIT Meshing Software and Domain
2.2.3. Simulation Software
2.3. Modeling of LH2 Pool and Vaporization
2.4. Comparison of Simulations with Experiment
3. Results
3.1. Mesh Refinement Study for the D = 0.85 m Pool
3.2. Plume Behavior
3.3. Profiles along the Centerline
3.4. Summary of Plume Shape
3.5. Flammable Mass Evolution
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aurther, D. Little, Inc. Final Report on an Investigation of Hazards Associated with the Storage and Handling of Liquid Hydrogen; Report no. C-61092; U.S. Air Force Ballistic Missle Division: Los Angeles, CA, USA, 1960.
- Zabetakis, M.G.; Burgess, D.S. Research on Hazards Associated with Production and Handling of Liquid Hydrogen. [Fire Hazards and Formation of Shock-Sensitive Condensed Mixtures]; U.S. Department of the Interior, Bureau of Mines: Washington, DC, USA, 1961.
- Zabetakis, M.G.; Furno, A.L.; Martindill, G.H. Explosion Hazards of Liquid Hydrogen. In Advances in Cryogenic Engineering; Springer: Boston, MA, USA, 1961; Volume 6, pp. 185–194. [Google Scholar] [CrossRef]
- Witcofski, R.D.; Chirivella, J.E. Experimental and Analytical Analyses of the Mechanisms Governing the Dispersion of Flammable Clouds Formed by Liquid Hydrogen Spills. Int. J. Hydrogen Energy 1984, 9, 425–435. [Google Scholar] [CrossRef]
- Verfondern, K.; Dienhart, B. Pool spreading and vaporization of liquid hydrogen. Int. J. Hydrogen Energy 2007, 32, 2106–2117. [Google Scholar] [CrossRef]
- Verfondern, K.; Dienhart, B. Experimental and theoretical investigation of liquid hydrogen pool spreading and vaporization. Int. J. Hydrogen Energy 1997, 22, 649–660. [Google Scholar] [CrossRef]
- Schmidtchen, U.; Marinescu-Pasoi, L.; Verfondern, K.; Nickel, V.; Strum, B.; Dienhart, B. Simulation of accidental spills of cryogenic hydrogen in a residential area. Cryogenics 1994, 34, 401–404. [Google Scholar] [CrossRef]
- Dienhart, B. Ausbreitung und Verdampfung von flussigem Wasserstoff auf Wasser und festem Untergrund; Forschungszentrum Jülich GmbH: Jülich, Germany, 1995. [Google Scholar]
- Royle, M.; Willoughby, D. Releases of Unignited Liquid Hydrogen; RR986; Health and Safety Executive: Buxton, UK, 2014.
- Hooker, P.; Willoughby, D.; Royle, M. Experimental releases of liquid hydrogen. In Proceedings of the International Conference on Hydrogen Safety, San Francisco, CA, USA, 12–14 September 2011. [Google Scholar]
- Lyons, K.; Coldrick, S.; Atkinson, G. Summary of Experiment Series E3.5 (Rainout) Results; PRESLHY deliverable D3.6. 2020. Available online: https://hysafe.info/wp-content/uploads/sites/3/2020/08/PRESLHY_D3.6_Summary_of_Rainout_Experiments_V1.20.pdf (accessed on 1 February 2023).
- Buttner, W.; Hall, J.; Coldrick, S.; Hooker, P.; Wischmeyer, T. Hydrogen wide area monitoring of LH2 releases. Int. J. Hydrogen Energy 2021, 46, 12497–12510. [Google Scholar] [CrossRef]
- Medina, C.H.; Halford, A.; Stene, J.; Allason, D. Data Report: Outdoor Leakage Studies; Report no. 853182, Rev. 2.; DNV GL Oil and Gas, Spadeadam Testing and Research: Brampton, UK, 2020. [Google Scholar]
- Shao, X.; Pu, L.; Li, Q.; Li, Y. Numerical investigation of flammable cloud on liquid hydrogen spill under various weather conditions. Int. J. Hydrogen Energy 2018, 43, 5249–5260. [Google Scholar] [CrossRef]
- Jin, T.; Wu, M.; Liu, Y.; Lei, G.; Chen, H.; Lan, Y. CFD modeling and analysis of the influence factors of liquid hydrogen spills in open environment. Int. J. Hydrogen Energy 2017, 42, 732–739. [Google Scholar] [CrossRef]
- Molkov, V.V.; Makarov, D.; Prost, E. On Numerical Simulation of Liquefied and Gaseous Hydrogen Releases at Large Scales. In Proceedings of the International Conference on Hydrogen Safety, Pisa, Italy, 8–10 September 2005. [Google Scholar]
- Venetsanos, A.G.; Bartzis, J.G. CFD modeling of large-scale LH2 spills in open environment. Int. J. Hydrogen Energy 2007, 32, 2171–2177. [Google Scholar] [CrossRef]
- Statharas, J.; Venetsanos, A.; Bartzis, J.; Würtz, J.; Schmidtchen, U. Analysis of data from spilling experiments performed with liquid hydrogen. J. Hazard. Mater. 2000, 77, 57–75. [Google Scholar] [CrossRef] [PubMed]
- Ichard, M.; Hansen, O.R.; Middha, P.; Willoughby, D. CFD computations of liquid hydrogen releases. Int. J. Hydrogen Energy 2012, 37, 17380–17389. [Google Scholar] [CrossRef]
- Pu, L.; Tang, X.; Shao, X.; Lei, G.; Li, Y. Numerical investigation on the difference of dispersion behavior between cryogenic liquid hydrogen and methane. Int. J. Hydrogen Energy 2019, 44, 22368–22379. [Google Scholar] [CrossRef]
- Giannissi, S.G.; Venetsanos, A.G.; Markatos, N.; Bartzis, J.G. CFD modeling of hydrogen dispersion under cryogenic release conditions. Int. J. Hydrogen Energy 2014, 39, 15851–15863. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, J.; Lei, G.; Chen, H.; Lan, Y.; Gao, X.; Wang, T.; Jin, T. Spread of hydrogen vapor cloud during continuous liquid hydrogen spills. Cryogenics 2019, 103, 102975. [Google Scholar] [CrossRef]
- Hansen, O.R.; Hansen, E.S. CFD-modelling of large scale LH2 release experiments. Chem. Eng. Trans. 2022, 90, 619–624. [Google Scholar]
- Pu, L.; Shao, X.; Zhang, S.; Lei, G.; Li, Y. Plume dispersion behaviour and hazard identification for large quantities of liquid hydrogen leakage. Asia-Pac. J. Chem. Eng. 2019, 14, e2299. [Google Scholar] [CrossRef]
- Giannissi, S.G.; Venetsanos, A.G. Study of key parameters in modeling liquid hydrogen release and dispersion in open environment. Int. J. Hydrogen Energy 2018, 43, 455–467. [Google Scholar] [CrossRef]
- Giannissi, S.G.; Venetsanos, A.G. A comparative CFD assessment study of cryogenic hydrogen and LNG dispersion. Int. J. Hydrogen Energy 2019, 44, 9018–9030. [Google Scholar] [CrossRef]
- Sandia National Laboratories. Cubit. Available online: https://cubit.sandia.gov/ (accessed on 1 February 2023).
- Moen, C.; Evans, G.H.; Domino, P.; Burns, S.P. A multi-mechanics approach to computational heat transfer. In Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition. Heat Transfer, New Orleans, LA, USA, 17–22 November 2002; ASME: New York, NY, USA; Volume 6, pp. 25–32. [CrossRef]
- Shaw, R.P.; Agelastos, A.M. Guide to Using Sierra; SAND-2019-2865673446; Sandia National Laboratories: Albuquerque, NM, USA, 2019. [CrossRef]
- Nalu Development Team. Sierra Low Mach Module: Nalu - Theory Manual. Available online: https://nalu.readthedocs.io/en/latest/source/theory/index.html (accessed on 1 February 2023).
- Schefer, R.; Houf, W.G.; Bourne, B.; Colton, J. Spatial and radiative properties of an open-flame hydrogen plume. Int. J. Hydrogen Energy 2006, 31, 1332–1340. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD, 2nd ed.; DCW Industries: La Cañada, CA, USA, 1998. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Barth, T.; Jespersen, D. The design and application of upwind schemes on unstructured meshes. In Proceedings of the 27th Aerospace Sciences Meeting, Reno, NV, USA, 9–12 January 1989. [Google Scholar] [CrossRef]
- Goodwin, D.G.; Moffat, H.K.; Schoegl, I.; Speth, R.L.; Weber, B.W. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.6.0. 2022. Available online: https://www.cantera.org (accessed on 1 February 2023).
- Schefer, R.W.; Evans, G.H.; Zhang, J.; Ruggles, A.J.; Greif, R. Ignitability limits for combustion of unintended hydrogen releases: Experimental and theoretical results. Int. J. Hydrogen Energy 2011, 36, 2426–2435. [Google Scholar] [CrossRef]
Mesh | Total Length (m) | Height (m) | Angle (deg) | Flammable Mass (kg) |
---|---|---|---|---|
coarse | 10.67 | 1.28 | 6.86 | 0.091 |
medium | 10.63 | 1.51 | 8.06 | 0.094 |
fine | 10.53 | 1.40 | 7.56 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangala Gitushi, K.; Blaylock, M.; Hecht, E.S. Simulations for Planning of Liquid Hydrogen Spill Test. Energies 2023, 16, 1580. https://doi.org/10.3390/en16041580
Mangala Gitushi K, Blaylock M, Hecht ES. Simulations for Planning of Liquid Hydrogen Spill Test. Energies. 2023; 16(4):1580. https://doi.org/10.3390/en16041580
Chicago/Turabian StyleMangala Gitushi, Kevin, Myra Blaylock, and Ethan S. Hecht. 2023. "Simulations for Planning of Liquid Hydrogen Spill Test" Energies 16, no. 4: 1580. https://doi.org/10.3390/en16041580
APA StyleMangala Gitushi, K., Blaylock, M., & Hecht, E. S. (2023). Simulations for Planning of Liquid Hydrogen Spill Test. Energies, 16(4), 1580. https://doi.org/10.3390/en16041580